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1. Introduction

One of the surprises arising in noncommutative gauge theory is the exis-
tence of a map between noncommutative and commutative gauge theories.
The so-called Seiberg–Witten map was first deduced from the observation
that different regularization schemes (point-splitting vs Pauli-Villars) in the
field theory limit of open string theory lead either to a commutative or a
noncommutative gauge theory [1] and thus suggest an equivalence between
them. Later, the Seiberg–Witten map has been extensively studied. One of
the most interesting approaches is set within the Kontsevich star product
formalism [2]. Here, the Seiberg–Witten map is found to constitute (part of)
an equivalence map between equivalent star products [3–6]. In particular,
this study shows that the Seiberg–Witten map is an integral part of any
noncommutative gauge theory obtained through deformation quantization
of a Poisson manifold. The solution is constructive and can, at least in the
Abelian case, be used to compute the SW-map for the gauge field.

On noncommutative R
4
θ characterized by a constant noncommutativ-

ity parameter θ, the Seiberg–Witten map has been constructed using var-
ious other techniques. Switching to a BRST-setting the map can be con-
structed perturbatively using a cohomological approach as well as the initial
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assumption of gauge equivalence [7, 8] (see also [9] and references therein
for a treatment within both the BRST and BV formalisms). Further, the
Seiberg–Witten differential equation may be derived using an ansatz of co-
variant coordinate transformations [10–12]. The latter approach is closely
related to that of [5] in the sense that it gives a physical interpretation to
the application of (a quantum version of) Moser’s Lemma [13]. It differs,
however, by its applicability to all fields and its straight forward treatment
of the non-Abelian case.

The Seiberg–Witten map has been exploited to formulate noncommuta-
tive gauge theories perturbatively in θ [14–16]. Recently, a noncommutative
version of the Standard Model was proposed using Seiberg–Witten maps
for all fields [17, 18]. Such theories involve a genuine coupling constant of
negative dimension and thus jeopardize renormalization. This question was
studied in [19,20] for the noncommutative Maxwell theory and in [21,22] it
was shown that θ-expanded models must involve all possible counterterms
linear in θ permitted by power-counting. At higher orders in θ things be-
come more involved; the conclusion seems to be that such theories should
be regarded as effective theories only.

In the present paper we reinvestigate the derivation of the Seiberg–
Witten map presented in [10]. In particular, we demonstrate that the map
can be constructed without additional information about the action of the
given theory.

The note is organized as follows: In Section 2 we give a definition of a
Seiberg–Witten map. In Section 3 we introduce coordinate transformations
on R

4
θ and demonstrate in Section 4 that particle (i.e. active) coordinate

transformations compatible with the gauge symmetry must exist on physical
grounds. This leads to the Seiberg–Witten differential equation for the non-
commutative gauge field. In Section 5 we expand everything around θ = 0 to
obtain the gauge equivalence condition. Finally, we summarize in Section 6.

2. The Seiberg–Witten map

Briefly stated, a SW-map is a map between gauge theories defined on a
noncommutative algebra and its commutative counterpart which maps gauge
equivalent classes onto gauge equivalent classes in a manner that allows a
perturbation of the theory in the noncommutativity parameter characterizing
the noncommutative algebra.

More specific, let a general noncommutative algebra Aθ be characterized
by a noncommutativity parameter θ. For θ = 0 the algebra coincides with
the manifold M. We assume that a gauge theory can be formulated on
Aθ involving the gauge field A and possible matter fields Ψ . We denote
by δΛ the (infinitesimal) noncommutative gauge transformations involving
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the gauge parameter Λ. For θ = 0 the corresponding gauge field, matter
field and gauge parameter are denoted by a, ψ and λ. By a SW-map we
understand a map

ρ : Aθ → M , (2.1)

where (I) ρ(A) takes the form of an expansion of the noncommutative field
in terms of the deformation parameter θ and the corresponding commutative
field and gauge parameter

ρ
(

A
)

= a+ O(θ) , ρ
(

Ψ
)

= ψ + O(θ) . (2.2)

Usually, one omits the ′ρ ′ and simply write A(a, θ) etc. (II) the expansion
is constructed to respect the gauge symmetry in the sense that the gauge

equivalence condition must hold:

A(a, θ) + δΛA(a, θ) = A(a+ δλa, θ) , (2.3)

where λ is a commutative gauge parameter related to Λ. For the matter
fields the gauge equivalence condition reads

Ψ(ψ, a, θ) + δΛΨ(ψ, a, θ) = Ψ(ψ + δλψ, a+ δla, θ) . (2.4)

The map is generated by differential equations

δA = δθX , δΨ = δθX ′ etc . (2.5)

It is important to realize that the Seiberg–Witten map is a map from the
noncommutative to the commutative algebra and not the reverse, as it is
sometimes stated in the literature.

3. Noncommutative conformal transformations

We are interested in gauge theory defined on noncommutative R
4 which

is understood to be the algebra R
4
θ of Schwarz class functions on ordinary

R
4 equipped with the ⋆-product

(f ⋆ g)(x) =

∫

d4y

∫

d4k

(4π)4
f

(

x+
1

2
θ · k

)

g(x+ y)eik·y , (3.1)

where θµν is an anti-symmetric constant tensor of dimension [length]2. In
a field theory context θµν represents a background field. The noncommu-
tative gauge field Aµ transforms under infinitesimal noncommutative gauge
transformations according to

δ
g
λAµ = ∂µλ− i[Aµ, λ]⋆ = Dµλ , (3.2)
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where the ⋆-commutator [·, ·]⋆ is the ordinary commutator equipped with
the ⋆-product. The background field θµν clearly does not transform under
gauge transformations:

δ
g

λ̂
θµν = 0 . (3.3)

Conformal transformations on R
4
θ are naturally divided into three different

kinds:

1. Observer transformations (denoted δobs): The transformations of the
reference frame. Amounts to a transformation of both dynamical and
background fields. Such transformations always constitute an invari-
ance of the theory.

2. Particle transformations (denoted δpar): The transformation of dy-
namical fields only.

3. Inverse particle transformations (denoted δ−par): The transformation
of background fields only.

In the absence of background fields the first two kinds of conformal trans-
formations coincide. In the general case one has

δobs = δpar + δ−par . (3.4)

Infinitesimal observer conformal transformations of the noncommutative
gauge field Aµ and the background field θµν are easily constructed from
conformal transformations of the commutative gauge field using the ’quan-
tization’ xµ · O → 1

2{x
µ,O}⋆ where the ⋆-anti-commutator {·, ·}⋆ is the

ordinary anti-commutator equipped with the ⋆-product. We define

δobs
f Aµ = 1

2{f
α, ∂αAµ}⋆ + 1

2{∂µf
α, Aα}⋆ , (3.5)

where fα is a Killing vector. Further, we let the background field θµν trans-
form as a tensor under observer transformations

δobs
f θµν = 1

2{f
σ, ∂σθ

µν}⋆ −
1
2{∂σf

µ, θσν}⋆ −
1
2{∂σf

ν , θµσ}⋆ . (3.6)

Since θµν is constant and should stay constant we must leave out special
conformal transformations. This means that fα is at most linear in xµ and
(3.6) reduces to

δobs
f θµν = −∂σf

µθσν − ∂σf
νθµσ . (3.7)
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The gauge and conformal transformations constructed so-far fulfill the alge-
bra

[

δobs
f , δobs

g

]

= δobs
h , hα = {gβ , ∂βf

α}⋆ − {fβ, ∂βg
α}⋆ , (3.8)

[

δ
g
λ1
, δ

g
λ2

]

= δ
g
λ3
, λ3 = −i[λ1, λ2]⋆ + δ

g
λ1
λ2 − δ

g
λ2
λ1 , (3.9)

[

δ
g
λ, δ

obs
f

]

= δ
g

λobs(λ)
, λobs(λ) = 1

2{f
α, ∂αλ}⋆ − δobs

f λ . (3.10)

Comment: In the commutative case the conformal transformations of the
gauge field (obtained by setting θµν to zero in (3.5)) lead to an energy-
momentum tensor which is not gauge invariant and thus unphysical. This
deficit is corrected by adding a field-dependent gauge transformation to the
conformal transformation [23]. The algebra of conformal transformations
closes hereafter only up to gauge transformations. The important observa-
tion is that the commutative conformal transformations of the gauge field
may be written as a gauge covariant part and a part which forms a gauge
transformation. Subtracting this gauge transformation renders gauge covari-
ant transformations. In the noncommutative case this does not work. Due
to the noncommutative product, (3.5) cannot be rewritten as a covariant
part and a gauge transformation. It turns out that the missing part can
be interpreted as the θ-dependency of the gauge field which is given by the
Seiberg–Witten differential equation (see also [12]).

4. Particle Lorentz transformations

We first attempt to define particle transformations by the (naive) dis-
partment

δ
par
f Aµ := δobs

f Aµ , (4.1)

δ
par
f θµν := 0 . (4.2)

Inverse particle transformations are then given by

δ
−par
f Aµ := 0 , (4.3)

δ
−par
f θµν := δobs

f θµν , (4.4)
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in order to fulfill (3.4). However, it turns out that the transformations
(4.1)–(4.5) do not fulfill the algebra (3.10):

[

δ
g
λ, δ

par
f

]

θαβ = 0 ,
[

δ
g
λ, δ

par
f

]

Aµ = δ
g
λ′Aµ + (δ−par

f θαβ)1
2{∂αAµ, ∂βλ}⋆ ,

λ′ = 1
2{f

α, ∂αλ}⋆ − δ
par
f λ ,

[

δ
g
λ, δ

−par
f

]

θαβ = 0 ,
[

δ
g
λ, δ

−par
f

]

Aµ = δ
g
λ′′Aµ − (δ−par

f θαβ)1
2{∂αAµ, ∂βλ}⋆ ,

λ′′ = −δ−par
f λ , (4.5)

where we used

δ(A ⋆ B) = (δA) ⋆ B +A ⋆ (δB) +
i

2
(δθαβ)∂αA ⋆ ∂βB , (4.6)

and

[fα, ∗]⋆ = iθµν∂µf
α∂ν ∗ . (4.7)

The non-closure of the algebra (4.5) represents a serious problem: Given
an observable O, δg

λO = 0, consider the transformed observable, O′ =
δ
par
f O. Since the background field θµν breaks Lorentz invariance O′ does

not equal O. It should, however, still be an observable, δg
λO

′ = 0. This

implies that the commutator
[

δ
g
λ, δ

par
f

]

must close up to another symmetry

transformation of the theory. Thus, due to (4.5) we are lead to conclude that
the transformations (4.1)–(4.4) do not display the correct (inverse) particle
transformations.

Physically acceptable particle transformations, which we are about to
construct, are required to

• involve observer transformations of the gauge field, since the limit
θµν → 0 should cast ordinary conformal transformations

• not to involve observer transformations of the background field, since
this would be a trivial dispartment

• fulfill the algebra (3.8) and (3.10).

To proceed we write down particle transformation in the general form

δ
par
f Aµ := δobs

f Aµ −Ξf,µ , (4.8)

δ
par
f θµν := Υ

µν
f , (4.9)
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followed by

δ
−par
f Aµ := Ξf,µ , (4.10)

δ
−par
f θµν := δobs

f θµν − Υ
µν
f , (4.11)

where Υ µν
f 6= δobs

f θµν and Ξf,µ 6= δobs
f Aµ. Further, both Υ µν

f and Ξf,µ must
be directly proportional to θµν

Υ
µν
f = θαβΥ

µν
f,αβ , Ξf,µ = θαβΞf,αβµ . (4.12)

Next we make the ansatz1

[

δ
g
λ, δ

par
f

]

= δ
g

λ
par

f
(λ)
,

[

δ
g
λ, δ

−par
f

]

= δ
g

λ
−par

f
(λ)
, (4.13)

where λpar
f (λ) and λ−par

f (λ) are field dependent gauge parameters yet to be

determined. In (4.13) the second condition follows from the first via (3.4) and
(3.10). Finally, we also impose the condition that particle transformations
must fulfill the conformal algebra

[

δ
par
f , δpar

g

]

= δ
par
h′ . (4.14)

However, we shall in the following not make use of this final condition2. If
we apply the first commutator in (4.13) to θµν we immediately find that Υ µν

f
cannot transform under gauge transformations and thus cannot involve the
gauge field (which would also violate our initial assumption that θ should
remain constant). Thus

Υ
µν
f = 0 . (4.15)

Next, we apply the commutator in (4.13) involving particle transformations
to the noncommutative gauge field and attempt to solve for Ξf,µ. The full
solution consist of a covariant term Ωf,µ and a gauge transformation Dµλ

′

f .
In total we have

Ωf,µ +Dµλ
′

f = 1
2{f

α, ∂αAµ}⋆ + 1
2{∂µf

α, Aα}⋆ + Ξf,µ . (4.16)

Let us first consider the term 1
2{f

α, ∂αAµ}⋆. This term is not proportional
to θµν and cannot be reorganized to form (part of) a gauge transformation.
The only option is to embed it in the covariant field polynomial Ωf,µ(A, θ).

We thus introduce the covariant quantity f̂α

f̂α = fα + θσβAβ∂σf
α , (4.17)

1 We assume that no further symmetries characterize the theory.
2 It is important when dealing with the ambiguities in the Seiberg–Witten map.
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and write

Ωf,µ(A, θ) = 1
2{f̂

α, Fαµ}⋆ +Ω′

f,µ(A, θ) , (4.18)

where Ω′

f,µ(A, θ) is a general covariant quantity and Fµν = ∂µAν − ∂νAµ −

i[Aµ, Aν ]⋆ is the noncommutative field strength tensor. Using (4.7) as well
as a graded Jacobi identity, we find

Ωf,µ(A, θ) =
1

2
{fα, ∂αAµ}⋆ −

1

2
{fα, ∂µAα}⋆ −

1

2
θσβ∂σf

α{Aα, ∂βAµ}⋆

+
1

2
θσβ∂σf

α{Aβ, Fαµ}⋆ +
i

2
[Aµ, {f

α, Aα}⋆]⋆ +Ω′

f,µ(A, θ) .

(4.19)

The first term in (4.19) is what we wanted. The second and fifth terms are
not proportional to θµν and should, due to (4.16), be transformed into a
gauge transformation:

−
1

2
{fα, ∂µAα}⋆+

i

2
[Aµ, {f

α, Aα}⋆]⋆ = Dµ

(

−
1

2
{fα, Aα}⋆

)

+
1

2
{∂µf

α, Aα}⋆.

(4.20)
Finally, the last term in (4.19) must be proportional to θ according to

Ω′

f,µ(A, θ) = θαβΩ′

f,µαβ(A, θ) . (4.21)

In total we find

Dµ

(

λ′f − 1
2{f

α, Aα}⋆

)

+Ω′

f,µ(A, θ)

+1
2θ

σβ∂σf
α
(

− {Aα, ∂βAµ}⋆ + {Aβ , Fαµ}⋆

)

= Ξf,µ , (4.22)

and we read off

λ′f = 1
2{f

α, Aα}⋆ , (4.23)

Ξf,µ = −2θσβ∂σf
αΞµαβ − θαβΩ′

f,µαβ (4.24)

with

Ξµαβ = 1
4{Aα, ∂βAµ}⋆ −

1
4{Aβ , Fαµ}⋆ . (4.25)

In the following we shall set Ω′

f,µαβ and simply bear in mind that all results
are valid up to a covariant term. Notice that Ξf,µ is only determined up
to θ-dependent gauge transformations. If we add and subtract the gauge
transformation

κDµ

(

θσβ∂σf
α{Aβ , Aα}⋆

)

= κθσβ∂σf
α
(

− {Aα, Fβµ}⋆ + {Aα, ∂βAµ}⋆

−{Aβ, Fαµ}⋆ + {Aβ , ∂αAµ}⋆

)

(4.26)
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to (4.22), we obtain for κ = 1
2 the transformation α ↔ β in Ξµαβ and for

κ = 1
4 the anti-symmetric expression

Ξµαβ = 1
8{Aα, ∂βAµ + Fβµ}⋆ −

1
8{Aβ , ∂αAµ + Fαµ}⋆ , (4.27)

which means that we may write (4.24) as

Ξf,µ =
(

δ
−par
f θαβ

)

Ξµαβ . (4.28)

The gauge parameter λ′f now reads

λ′f = 1
2{f

α + 1
2θ

σβ∂σf
αAβ, Aα}⋆ . (4.29)

In total, we find

δ
−par
f Aµ :=

(

δ
−par
f θαβ

)

Ξµαβ . (4.30)

If we write this in the suggestive form

δ
−par
f Aµ :=

(

δ
−par
f θαβ

) dAµ

dθαβ
, (4.31)

we are lead to the Seiberg–Witten differential equation

dAµ

dθαβ
= 1

8{Aα, ∂βAµ + Fβµ}⋆ −
1
8{Aβ , ∂αAµ + Fαµ}⋆ . (4.32)

Using (3.9) we find the field dependent gauge parameter λpar
f (λ)

λ
par
f (λ) = −1

4θ
σβ∂σf

α
(

{Aα, ∂βλ}⋆ − {Aβ , ∂αλ}⋆

)

+ 1
2{f

α, ∂αλ}⋆ − δ
par
f λ ,

(4.33)
and since

λobs
f (λ) = λ

par
f (λ) + λ

−par
f (λ) , (4.34)

we may write down the gauge parameter λ−par
f (λ) as well:

λ
−par
f (λ) = +1

4θ
σβ∂σf

α
(

{Aα, ∂βλ}⋆ − {Aβ , ∂αλ}⋆

)

− δ
−par
f λ . (4.35)

Let us consider under which circumstances λ−par
f (λ) vanishes, i.e. gauge

parameters λ̃ for which

[

δ
g

λ̃
, δ

−par
f

]

= 0 . (4.36)
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Comparing (4.35) we find this to be the case whenever

δ
−par
f λ̃ =

1

4
θσβ∂σf

α
(

{Aα, ∂β λ̃}⋆ − {Aβ , ∂αλ̃}⋆

)

, (4.37)

which we again may write in the form of a differential equation

δ
−par
f λ̃ =

(

δobs
f θαβ

) dλ̃

dθαβ
, (4.38)

which thus gives us a differential equation for the gauge parameter

dλ̃

dθαβ
= 1

8{Aα, ∂β λ̃}⋆ −
1
8{Aβ , ∂αλ̃}⋆ . (4.39)

This is exactly the condition on the gauge parameter one uses in the usual
derivation of the Seiberg–Witten map.

5. Gauge equivalence

Let us in the following take a closer look at (4.13) perturbed around the

point θ = 0. If we set fα = εxα (dilatation) we find that δ−par
f = εθij

d
dθij

and further

[ d

dθij
, δ

g
λ

]

= δ
g
λij
, (5.1)

where λij = ε−1θ−1
ij λ

−par(λ). We first calculate

d2δ
g
λAi

dθj2k2
dθj1k1

=

(

δ
g
λj2k2

(λj1k1
(λ)) + δ

g
λj1k1

(λ)

d

dθj2k2

+δg
λ

d

dθj2k2

d

dθj1k1

+ δ
g
λj2k2

(λ)

d

dθj1k1

)

Ai , (5.2)

setting θ = 0 and generalizing it to any order n and inserting the results
into a Taylor expansion of the fields and gauge parameters around θ = 0 we
find

(

δ
g
λAi

)

[a, θ] = δ
g
l[λ,a,θ]

(

Ai[a, θ]
)

, (5.3)

where the commutative gauge parameter l[λ, a, θ] is given by

l[λ, a, θ] =
(

λ
)

θ=0
+θj1k1

(λj1k1
(λ))θ=0+

1
2θj2k2

θj1k1
(λj1k1

(λj2k2
(λ)))θ=0+. . . .

(5.4)



Noncommutative Coordinate Transformations . . . 4865

Using (4.35) we find

λjk =
1

4

(

{Aj , ∂kλ}⋆ − {Ak, ∂jλ}⋆

)

− 2
dλ

dθjk
. (5.5)

Equation (5.3) equals the original gauge equivalence condition given by
Seiberg and Witten in [1] whenever

(

λjk(λ)
)

θ=0
= 0 which is the case when

the gauge parameter fulfills (4.39). Without further conditions on the gauge
parameter equation (5.3) reassembles the condition originally found in [5].
Further, if we define the vector a⋆ = 1

2θjkaj∂k and scale the noncommutative
parameter with a scaling factor t, θjk → tθjk, we find

l[λ, a, θ] =

∞
∑

n=0

(a⋆ + ∂t)
n(λ)

(n+ 1)!

∣

∣

∣

θ=0
, (5.6)

which is the same expression for the gauge parameter l found in [5].

6. Conclusion

We have demonstrated that the derivation of covariant coordinate trans-
formations naturally lead to the construction of the Seiberg–Witten differ-
ential equation. Further, we have shown that the derivation may be carried
through without using additional information about the action. Finally, we
find that our approach is closely connected to the analysis carried out in [5]
within the Kontsevich star-product formalism. However, the derivation pre-
sented here differs on a few important points: First of all, in the above
analysis we do not only specify any details on the gauge group, i.e. Abelian
or non-Abelian. Thus, the derivation works equally well for matrix-valued
gauge fields. Further, as demonstrated in [11] for spin-half fields and in [24]
for scalar fields presents in a supersymmetric model, the method works for
any field transforming under gauge transformations.

This research was partly supported by the TMR grant no. HPRN-CT-
1999-00161 and the University of Iceland Research Fund.
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