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Many small proteins fold in a two-state manner, the rate-limiting step
being the passage of the free-energy barrier separating the unfolded state
from the native one. The free-energy barrier is, however, weak or absent
for the fastest-folding proteins. Here a simple diffusion picture for such
proteins is discussed. It is tested on a model protein that makes a three-
helix bundle. Assuming the motion along individual reaction coordinates
to be diffusive on timescales beyond the reconfiguration time for a single
helix, it is found that the relaxation time can be predicted within a factor
of two. It is also shown that melting curves for this protein to a good
approximation can be described in terms of a simple two-state system,
despite the absence of a clear free-energy barrier.

PACS numbers: 87.15.Aa

1. Introduction

The folding of proteins to their functional states is a remarkable pro-
cess [1]. In the cell, the folding process may require the assistance from
helper molecules. However, as shown by refolding experiments, many pro-
teins have the ability to fold spontaneously to their native states. This
implies that the amino acid sequence contains all the information needed for
the formation of the functional state [2]. The questions of how the folding
process takes place and how the structure is encoded in the sequence are
fascinating and in the focus of both experimental and theoretical research.

Many small single-domain proteins share the common property of fold-
ing in a two-state manner, without significantly populating any meta-stable
intermediate state [3]. It is tempting to interpret the apparent two-state be-
haviour of these proteins in terms of a simple free-energy landscape with two
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minima separated by a single barrier, where the minima represent the native
and unfolded states, respectively. If the barrier is high, this picture provides
an explanation of why the folding kinetics tend to be single exponential, and
why the folding thermodynamics show two-state character.

However, it is well-known that the free-energy barrier, ∆F , is not high
for all these proteins. In fact, assuming the folding time τf to be given
by τf = τ0 exp(∆F/kT ) with τ0 ∼ 1µ s [4], it is easy to find examples of
proteins with ∆F values of a few kT [3] (k is Boltzmann’s constant and T
the temperature).

Suppose the native and unfolded states coexist at the folding tempera-
ture and that there is no well-defined intermediate state, but that a clear
free-energy barrier between the native and unfolded states is missing. What
type of relaxation behaviour should one then expect? Furthermore, would
such a protein show easily detectable deviations from thermodynamic two-
state behaviour? To gain insights into these questions, our group recently
performed a Monte Carlo (MC) study of a designed three-helix-bundle pro-
tein [5]. Inspired by energy-landscape theory (for a recent review, see [6,7]),
we compared the calculated relaxation time for this protein with predictions
from a simple one-dimensional diffusion picture.

The paper is organised as follows. In Sec. 2 the diffusion analysis is
discussed. In Sec. 3 our MC study of the thermodynamics and kinetics of
the three-helix-bundle protein is presented. A brief summary can be found
in Sec. 4.

2. Diffusion picture

In the energy-landscape approach [6, 7], the high-dimensional folding
process is projected onto one or a few coordinates; in its simplest form, the
folding process is modelled as one-dimensional Brownian motion in an ex-
ternal potential F (r) = −kT lnPeq(r), where r is the reaction coordinate
studied and Peq(r) denotes the equilibrium distribution of r. The probabil-
ity distribution of r at time t, P (r, t), then obeys Smoluchowski’s diffusion
equation

∂P (r, t)

∂t
=

∂

∂r

[

D(r)

(

∂P (r, t)

∂r
+
P (r, t)

kT

∂F (r)

∂r

)]

, (1)

where D(r) is the diffusion coefficient.
Due to the projection onto a single reaction coordinate r, Eq. (1) is not

expected to hold on short timescales. It may still be useful if the motion in r
is diffusive beyond some timescale that is small compared with the relaxation
time. It is then possible to predict the relaxation time from this equation.
In [8] such an analysis was successfully carried through for a lattice model
protein.
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If the free energy F (r) has the shape of a double well with a clear bar-
rier in between, Eq. (1) predicts single-exponential relaxation, with a rate
constant given by Kramers’ well-known formula [9, 10]. However, this re-
sult cannot be applied to systems that lack a clear free-energy barrier. To
compare the behaviour of our fast-folding model protein with that predicted
by Eq. (1), we therefore solved this equation numerically [5], by a finite-
difference scheme of Crank–Nicolson type. The analysis was carried out
using the full F (r) and D(r), as obtained from simulations (see below).

In the idealised situation when F (r) has the shape of a square well and
D(r) is a constant, Eq. (1) can be solved in a closed form. It is instructive
to take a look at this solution. Suppose, for convenience, that the reaction
coordinate r is the energy E. The equilibrium distribution is then given by
Peq(E) ∝ exp(−δβE) if E is in the square well and Peq(E) = 0 otherwise,
where δβ = 1/kT − 1/kTf , Tf being the folding temperature. With this
Peq(E), Eq. (1) takes the form

∂P (E, t)

∂t
=

∂

∂E

[

D

(

∂P (E, t)

∂E
+ δβP (E, t)

)]

, (2)

where the diffusion coefficient is assumed constant, D(E) = D. The initial
distribution P (E, t = 0) is taken to be the equilibrium distribution at an
arbitrary temperature T0.

By separation of variables, it is straightforward to solve Eq. (2) with this
initial condition for P (E, t), the energy distribution at time t. The average
energy at time t, E(t), is found to be

E(t) = 〈E〉 +

∞
∑

k=1

Ake
−t/τk , (3)

where the time constants τk are given by

1

τk
=

D

∆E2
sw

(

π2k2 + 1
4
δβ2∆E2

sw

)

, (4)

∆Esw being the width of the square-well potential. Expressions for the
equilibrium average 〈E〉 and the expansion coefficients Ak can be found
in [5].

For a general reaction coordinate r, Eq. (4) remains valid at T = Tf ; that
is, τk = ∆r2sw/Dπ

2k2, where ∆rsw is the width of the assumed square-well
potential in r. However, for a general r, the temperature dependence is not
as simple as that in Eq. (4).

Two properties of the expansion coefficients Ak are worth mentioning.
First, Ak scales as k2 if k ≪ 1

2π |δβ|∆Esw, and as 1/k4 if k ≫ 1
2π |δβ|∆Esw.
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Second, all Ak with even k are suppressed if T is close to Tf ; in fact, they
vanish if T = Tf . From these two facts it follows that |A1| is much larger
than the other |Ak| if T is near Tf . This tends to make the deviation from
single-exponential behaviour smaller than one might expect from Eq. (4).
At the same time, it should be pointed out that the exact vanishing of Ak
for even k at T = Tf is accidental and related to the perfect symmetry in
this particular case (square-well potential and constant diffusion coefficient).

In Sec. 3.3 the relaxation time of our three-helix-bundle protein is com-
pared both to the numerical solution of Eq. (1) and to the analytical solution
of the simplified Eq. (2).

3. Monte Carlo study of a designed three-helix bundle

3.1. Model and methods

The three-helix-bundle protein was studied using a reduced off-lattice
model, introduced in [11]. In this model, each amino acid is represented
by five or six atoms, three of which are the backbone atoms N, Cα and C′.
Also included are the H and O atoms of the peptide units, which are used to
define hydrogen bonds. The sixth atom is a large Cβ which represents the
side chain. The Cβ atom is taken to be either hydrophobic, polar or absent,
which gives us three types of amino acids: H with hydrophobic Cβ, P with
polar Cβ , and G (glycine) without Cβ. All bond lengths, bond angles and
peptide torsion angles (180◦) are held fixed, which means that the model
contains two degrees of freedom per amino acid, the Ramachandran torsion
angles φ and ψ.

The potential function

E = Eloc + Eev + Ehb + Ehp (5)

is composed of four terms. The local potential Eloc has a standard form
with threefold symmetry,

Eloc =
εφ
2

∑

i

(1 + cos 3φi) +
εψ
2

∑

i

(1 + cos 3ψi) . (6)

The excluded-volume term Eev is given by a hard-sphere potential of the
form

Eev = εev
∑′

i<j

(

σij
rij

)12

, (7)

where the sum runs over all possible atom pairs except those consisting of
two hydrophobic Cβ . The parameter σij is given by σij = σi + σj +∆σij,
where ∆σij = 0.625Å for CβC′, CβN and CβO pairs that are connected by
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three covalent bonds, and ∆σij = 0Å otherwise. The introduction of the
parameter ∆σij can be thought of as a change of the local potential.

The hydrogen-bond term Ehb has the form

Ehb = εhb

∑

ij

u(rij)v(αij , βij) , (8)

where the functions u(r) and v(α, β) are given by

u(r) = 5

(

σhb

r

)12

− 6

(

σhb

r

)10

, (9)

v(α, β) =

{

cos2 α cos2 β α, β > 90◦

0 otherwise .
(10)

The sum in Eq. (8) runs over all possible HO pairs, and rij denotes the HO
distance, αij the NHO angle, and βij the HOC′ angle.

The last term of the potential, Ehp, is an effective hydrophobic attraction
given by

Ehp = εhp

∑

i<j

[(

σhp

rij

)12

− 2

(

σhp

rij

)6 ]

, (11)

where the sum runs over all possible pairs of hydrophobic Cβ .
To speed up the calculations, a cutoff radius rc is used, which is taken

to be 4.5Å for Eev and Ehb, and 8Å for Ehp. Numerical values of all energy
and geometry parameters can be found in [11].

A slightly extended version of this model, with five amino acids rather
than three, has been applied to the three-helix-bundle B domain of staphy-
lococcal protein A [12] and two related sequences [13].

The idealised three-helix-bundle protein studied here contains 54 amino
acids and is a truncated three-letter version [14, 15] of a four-helix-bundle
protein de novo designed by Regan and DeGrado [16]. It consists of three
identical stretches of H and P amino acids, connected by two GGG segments.
The HP segment is given by PPHPPHHPPHPPHHPP and is such that it
can make an α-helix with all H on the same side.

The thermodynamic behaviour of this sequence was studied by using sim-
ulated tempering [17–19], in which the temperature is a dynamic variable.
This method was used in order to speed up the calculations at low temper-
atures. For a review of simulated tempering and other generalised-ensemble
techniques for protein folding, see [20]. Our simulations were started from
random configurations. Two kinds of conformation moves were used: first,
the pivot move in which a single torsion angle is turned; and second, a semi-
local method [21] that works with seven or eight adjacent torsion angles,
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which are turned in a coordinated manner. The non-local pivot move was
included in order to accelerate the evolution of the system at high temper-
atures.

An MC-based kinetic study was performed, too. These simulations are
only meant to mimic the time evolution of the system in a qualitative sense.
The kinetic simulations differ from the thermodynamic ones in two ways:
first, the temperature was held constant; and second, the non-local pivot
update was not used, but only the semi-local method [21]. This restriction
is needed in order to avoid large unphysical deformations of the chain.

3.2. Thermodynamics

It turns out that this designed sequence does make a stable three-helix
bundle in this model, except for a twofold topological degeneracy. Fig. 1 is
a schematic illustration of representative structures for the two topologies, as
obtained by energy minimisation. The difference between the two topologies
is that if one lets the first two helices form a U, then the third helix is either
in front of (FU) or behind (BU) that U. In order for the model to be able to
discriminate between these states, it would probably be necessary to change
the hydrophobicity potential Ehp. A simple pairwise additive potential like
that in Eq. (11) has problems with this task because the contact patterns
are very similar in the two topologies [23]. A measure of structural similarity
with the (degenerate) native state is provided by the parameter

Q = max

[

exp

(

−
δ2FU

(10Å)2

)

, exp

(

−
δ2BU

(10Å)2

)]

, (12)

where δFU and δBU are the root-mean-square deviations from the ideal FU
and BU conformations in Fig. 1 (calculated over all backbone atoms).

Fig. 1. Representative structures for the two topologies, FU and BU. Drawn with

RasMol [22].
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The thermodynamic behaviour of this model protein was studied in detail
in [5, 11]. In particular, it was found to have the following properties:

• Its helices are more stable than those of the corresponding one- and
two-helix segments, which is in agreement with the well-known fact
that secondary-structure elements in general are less stable in isolation
than as parts of a full protein.

• It undergoes an abrupt folding transition from an expanded state to
the three-helix-bundle state, without forming any well-defined inter-
mediate state. The temperature dependence of quantities such as the
hydrogen-bond energy and the radius of gyration can be quite well de-
scribed in terms of a simple two-state system, as illustrated in Fig. 2.
This figure also shows that helix formation and chain collapse occur
in parallel for this protein.

• It has no clear free-energy barrier between the unfolded and native
states. Fig. 3 shows the free-energy profiles F (E) and F (Q) at T = Tf .
F (Q) exhibits a very weak barrier, < 1 kT , whereas F (E) shows no
barrier at all. This clearly demonstrates that at a simple two-state
description is an oversimplification, despite that the melting curves
show approximate two-state character (see Fig. 2).
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Fig. 2. Temperature dependence of (a) the hydrogen-bond energy Ehb and (b)

the radius of gyration Rg. The lines are fits to the two-state expression X(T ) =

[Xu +XnK(T )]/[1+K(T )], where K(T ) = exp[(1/kT −1/kTm)∆E] is the effective

equilibrium constant and Xn and Xu denote the native and unfolded values of X ,

respectively. Such a fit has four parameters: the energy difference ∆E, the melting

temperature Tm, and the two baselines Xu and Xn.
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Fig. 3. Free-energy profiles at T = Tf for (a) the energy E and (b) the similarity

parameter Q (dark bands). The light-grey bands show free energies for block

averages (see Eq. 13), using a block size of τb = 106 MC steps. Each band is

centered around the expected value and shows statistical 1σ errors.

It should be stressed that the behaviour of the model depends strongly
on the parameters εhb and εhp that sets the strengths of the hydrogen bonds
and the hydrophobic attraction, respectively. These parameters must be
carefully chosen in order for the folding transition to be first-order-like [24].

3.3. Kinetics

In our MC-based kinetic study, the relaxation of ensemble averages of
various quantities was studied at T = Tf . For this purpose, a set of 3 000
folding simulations was performed, starting from equilibrium conformations
at the temperature T0 ≈ 1.06Tf . At this temperature, the chain is extended
with a relatively low helix content (see Fig. 2).

Fig. 4 shows the relaxation behaviour of the energy E and the similarity
parameter Q [see Eq. (12)]. Fits of the large-time data to an exponential
give relaxation times of τ ≈ 1.7 × 107 and τ ≈ 1.8 × 107 for E and Q,
respectively, in units of elementary MC steps.

These calculated relaxation times were compared with predictions from
the diffusion picture discussed in Sec. 2. For this purpose, it is necessary
to perform a coarse-graining in time, since the behaviour is not expected to
be diffusive on short time scales. A convenient way to implement that is to
consider block averages b(t) defined by

b(t) =
1

τb

∑

t≤s<t+τb

r(s) , t = 0, τb, 2τb, . . . , (13)
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where τb is the block size and r is the reaction coordinate considered. The
block size was taken to be τb = 106 MC step, corresponding to the recon-
figuration time for an individual helix [5]. Using the block variables, the
diffusion coefficient was estimated by using Db(r) = 〈(δb)2〉r/2τb. The free
energy Fb(r) for the block averages was calculated too, and was found to
be similar to that for the unblocked variables, as can be seen from Fig. 3.
Having obtained Db(r) and Fb(r), the relaxation time was calculated in
two ways. The first estimate, τpred,0, was obtained by using a square-well
approximation of Fb(r) and a constant Db(r) = Db. The second estimate,
τpred, was obtained by numerical solution of Eq. (1), using the full Fb(r) and
Db(r).

The results of this analysis are summarised in Table I. From this table it
can be seen that the simple estimate τpred,0 is correct within a factor of two
for both E and Q. This is encouraging, but should not be taken to suggest
that the underlying diffusion picture is perfect. If it had been perfect, the
more elaborate estimate, τpred, would have agreed with the observed value
τ , which is not the case. In fact, τpred is not better than τpred,0, at least not
in Q, despite that there is a weak barrier in this coordinate (see Fig. 3(b)).
That this one-dimensional description of the folding process is not perfect
is no surprise, given that it completely ignores non-Markovian effects. How
non-Markovian effects may affect folding times has been discussed in [7,25].
Another way to refine the analysis would be to use a set of two or more reac-
tion coordinates rather than a single one [7,26,27]. With a multidimensional
representation of the folding process, non-Markovian effects could become
smaller.

TABLE I

The predictions τpred,0 and τpred (see text) along with the observed relaxation time
τ , for the energy E and the similarity parameter Q. ∆rsw is the width of the
square-well potential and Db is the average diffusion coefficient.

∆rsw Db τpred,0 τpred τ

E 140 kTf (9.3 ± 0.2) × 10−5(kTf)
2 2.1 × 107 1.9 × 107 1.7 × 107

Q 1.0 (1.00 ± 0.02)× 10−8 1.0 × 107 0.8 × 107 1.8 × 107

The relaxation time analysis indicates that the dynamics are approxi-
mately diffusive on timescales beyond 106 MC steps ∼ τ/20. If the potential
is close to a square well and the diffusion coefficient approximately constant,
Eqs. (3) and (4) suggest that the leading correction term to the asymptotic
exponential behaviour should be a second exponential with a time constant
of τ2 = τ/4 at T = Tf (unless A2 is very small). A look at the data in
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Fig. 4 shows that Q(t) is approximately single exponential down to very
small t, whereas there are non-negligible deviations from this behaviour in
E(t) below t ∼ τ/3. The data for E(t) can be well described by a double
exponential with time constants that differ by a factor of 4, but drawing
any firm conclusion about the value of the second time constant is impos-
sible, due to limited statistics. There is, however, a recent experimental
study [28] of fast-folding mutants of the five-helix-bundle protein λ6−85, in
which double-exponential fits were performed near T = Tf (for the mutant
λQ33Y). Although it could be accidental, it is interesting to note that the
two fitted time constants differed by a factor close to 4, as predicted by
Eq. (4).

(a)

0 107 2⋅107 3⋅10710

30

100

t (MC steps)

δE(t)/kTf

(b)

0 107 2⋅107 3⋅107

0.1

0.3

t (MC steps)

−δQ(t)

Fig. 4. Relaxation behaviour at the folding temperature Tf , starting from T0 ≈

1.06Tf . (a) δE(t) = E(t) − 〈E〉 against simulation time t, where E(t) is the

average E after t MC steps (3 000 runs) and 〈E〉 denotes the equilibrium average.

(b) Same plot for the similarity parameter Q.

4. Summary

In this paper, a simple diffusion-based theory for fast-folding proteins
was discussed. It was tested against MC results for a three-helix-bundle
protein, which were obtained using a reduced off-lattice model with a rela-
tively detailed chain representation. The main findings were as follows.

• Assuming the motion in individual reaction coordinates to be diffusive
on timescales beyond the reconfiguration time for a single helix, the
relaxation time could be predicted within a factor of two.
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• The closed-form solution for a square-well potential and a constant
diffusion coefficient predicts that the leading corrections to the asymp-
totic exponential behaviour for large t are exponentials with time
constants of τ2 = τ/4 and τ3 = τ/9 at T = Tf . Due to statisti-
cal limitations, this could not be tested on our model protein, but
a double-exponential fit of recent experimental data for a fast-folding
protein actually gave time constants differing by a factor close to 4 [28].
Whether that was accidental or not remains to be seen.

• Although the relaxation time could be predicted quite well, it is clear
that the one-dimensional diffusion description leaves room for improve-
ment, as could be seen from our numerical solution of the diffusion
equation.

This work was in part supported by the Swedish Research Council.
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