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In this talk I describe some applications of random matrix models
to the study of N = 1 supersymmetric Yang–Mills theories with mat-
ter fields in the fundamental representation. I review the derivation of
the Veneziano–Yankielowicz–Taylor/Affleck–Dine–Seiberg superpotentials
from constrained random matrix models (hep-th/0211082), a field theo-
retical justification of the logarithmic matter contribution to the Veneziano–
Yankielowicz–Taylor superpotential (hep-th/0306242) and the random ma-
trix based solution of the complete factorization problem of Seiberg–Witten
curves for N = 2 theories with fundamental matter (hep-th/0212212).

PACS numbers: 11.15.Tk, 12.60.Jv

1. Introduction

One of the most important and challenging problems in physics is the
understanding of the non-perturbative properties of gauge theories. In the
last 10 years a series of significant breakthroughs were made in the study
of supersymmetric gauge theories, where the additional symmetry proper-
ties allowed to obtain exact non-perturbative information at the same time
unraveling various unexpected mathematical structures.

The first wave of research was based on exploiting the holomorphic prop-
erties of various N = 1 non-perturbative quantities (see e.g. [1]). The second
breakthrough, this time giving very complete information on N = 2 theo-
ries, showed that the low energy dynamics is encoded in properties of certain
elliptic (or hyperelliptic) curves — the Seiberg–Witten curves [2, 3].

The most recent breakthrough arose in the wake of the gauge theory/
string correspondence [4]. Using D-brane constructions of gauge theories and
performing ‘geometric transitions’ to a dual geometric setup, superpotentials
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in supersymmetric gauge theories where related to the geometry of the dual
Calabi–Yau manifold [5, 6]. In a subsequent crucial development Dijkgraaf
and Vafa interpreted the geometrical formulas in terms of a saddle point
solution of an associated random matrix model [7, 8]. Subsequently the
resulting random matrix prescription for calculating the superpotential was
proven purely in the field-theoretical context by using diagrammatic analysis
[9] and anomaly considerations [10].

In this talk, after recalling some basic facts about N = 1 SYM theo-
ries, I would like to review three developments [11–13] in the extension of
the original Dijkgraaf–Vafa proposal to supersymmetric gauge theories with
matter fields in the fundamental representation.

The original proposal involved only superpotentials expressed in terms of
the glueball (gaugino bilinear) superfield S. In [11] we showed how one could
incorporate into the framework mesonic superfields, and how to obtain the
classical Veneziano–Yankielowicz–Taylor/Affleck–Dine–Seiberg superpoten-
tials directly from the matrix model.

The structure of the superpotentials involve typically logarithmic and
power-series terms. The latter are quite well understood [9, 10] while the
former remain somewhat mysterious. In [12] we gave a field-theoretic di-
agrammatic derivation of the matter induced logarithmic part of the VYT
potential.

Finally I would like to review the use of random matrix models to obtain
an explicit complete factorization [13] of the Seiberg–Witten curve of an
N = 2 U(Nc) SYM theory with Nf < Nc fundamental flavours. This is
equivalent to finding the submanifold of N = 2 moduli space of vacua where
all monopoles in the theory become massless.

2. Physics of N = 1 SYM theories with fundamental matter

In order to study the dynamics of the theory at low energies one is
interested in obtaining the low energy effective action for the relevant degrees
of freedom. In the case of N = 1 gauge theories most of such degrees of
freedom may be described by chiral (and anti-chiral) superfields. Then the
constraints of supersymmetry restrict the effective action to be of the form:

Seff =

∫

d2θd2θ̄ K(Φ, Φ̃) +

∫

d2θ Weff(Φ) +

∫

d2θ̄ W̃eff(Φ̃) , (1)

where Φ stands here for a generic chiral superfield. In general little is known
about the non-chiral part K(Φ, Φ̃), but a lot of information can be obtained
on the effective superpotential Weff(Φ). Its knowledge allows us to determine
vacuum expectation values (VEV) of Φ from the equation

∂Weff(Φ)

∂Φ
= 0 . (2)
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Let us briefly recall what is known about effective superpotentials first for
pure N = 1 SYM with gauge group SU(Nc), and then for the theory with
Nf fundamental flavours.

Pure N = 1 SYM

A natural chiral superfield which can be built from the gauge field is

S = −
1

32π2
trWαW

α (3)

whose lowest component is the gaugino bilinear. The form of the effective
superpotential Weff(S) has been determined by Veneziano and Yankielowicz
based on anomaly considerations [14]:

WVY(S) = −S log
SNc

Λ3Nc
+ 2πiτ0S . (4)

The second piece is just the tree level YM coupling (τ0 = θ/2π + 4πi/g2
YM)

and can be absorbed into the first one through a redefinition of Λ. The
power SNc is determined by the anomaly, while the exponent of Λ is just the
coefficient of the 1-loop β function, in order for the superpotential to be RG
invariant. WVY(S) leads to a nonzero VEV for S-gaugino condensation.

N = 1 SYM with Nf < Nc flavours

When we add to the theory matter fields in the fundamental represen-
tation there appear additional mesonic chiral superfields

Xij = Q̃iQj . (5)

Veneziano, Yankielowicz and Taylor determined the appropriate superpo-
tential again using anomaly considerations [15]

WVYT(S,X) = (Nf−Nc)S log
S

Λ3
−S log

detX

Λ2Nf
= −S log

(

SNc−Nf det X

Λ3Nc−Nf

)

.

(6)
Note the modification of the anomaly coefficient (Nc − Nf ) and the 1-loop
β function 3Nc −Nf due to the matter fields. Later we will show how these
modifications arise from the matrix model framework. After one integrates
out S one is left with the Affleck–Dine–Seiberg superpotential [16] for the
mesonic superfield only:

WADS(X) = (Nc − Nf )

(

Λ3Nc−Nf

det X

)

1
Nc−Nf

. (7)
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Intriligator–Leigh–Seiberg (ILS) linearity principle

Suppose that the gauge theory is deformed by some tree level potential
Vtree(X) (e.g. mass terms for the flavours and some self-interactions). Intrili-
gator, Leigh and Seiberg [17] conjectured that the full dynamics is described
just by the sum

WVYT(S,X) + Vtree(X) (8)

i.e. the dynamical potential is not modified by the deformation.
This concludes the very brief review of classical results on N = 1 SYM

theories. In the next section we will present the main new ingredient —
the link with random matrix models proposed by Dijkgraaf and Vafa, and
proceed to describe its applications.

3. The Dijkgraaf–Vafa correspondence

Dijkgraaf and Vafa proposed an effective way of calculating superpo-
tentials for N = 1 theories with adjoint fields and arbitrary tree level su-
perpotentials [8] (later generalized also to include fields in the fundamental
representation [18]):

Weff(S) = WVY(S) + Nc
∂Fχ=2(S)

∂S
+ Fχ=1(S) , (9)

where the Fi’s are defined through a matrix integral

e
−

∑

χ
1

g
χ
s
Fχ(S)

=

∫

DΦDQiDQ̃i exp

{

−
1

gs
Wtree(Φ,Qi, Q̃i)

}

. (10)

Here Φ is an N × N matrix, while the Qi’s are N component (complex)
vectors. In this expression one takes the limit N → ∞, gs → 0 with gsN =
S = const in order to isolate graphs with the topology of a sphere (Fχ=2)
and of a disk (Fχ=1).

The above expression gives a prescription for the superpotential only in
terms of the glueball superfield S. However it is interesting to ask if one
could obtain directly from matrix models the superpotential which involves
also mesonic superfields. A proposal for doing that was given in [11] and
will be described in the next section.

4. Mesonic superpotentials from Wishart random matrices

In order to express the effective superpotential in terms of mesonic su-

perfields Xij = Q†
i Q̃j, it was proposed in [11] to perform only a partial
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integration over the Q′s in (10) and impose the constraint Xij = Q†
i Q̃j

directly in the matrix integral i.e.

e−
∑

χ(N
S )

χ
Fχ(S,X) =

∫

DQiDQ̃i δ(Xij − Q†
i Q̃j) exp

{

−
N

S
Vtree(X)

}

. (11)

Then the effective superpotential involving both S and X is obtained from

Weff(S,X) = WVY(S) + Nc
∂Fχ=2(S,X)

∂S
+ Fχ=1(S,X) . (12)

For theories with matter fields only in the fundamental representation (as
written in (11)) the above simplifies since Fχ=2 = 0.

From (11) we see that Vtree(X) contributes directly to Fχ=1(S,X). This
is in complete agreement with the ILS principle where the ‘dynamical’
Veneziano–Yankielowicz–Taylor superpotential is not influenced by the tree
level deformation.

The ‘dynamical’ contribution to Fχ=1(S,X) will come from the con-
strained integral over Nf vectors of length N

∫

DQiDQ̃i δ(Xij − Q†
i Q̃j) . (13)

Up to an inessential term exp(−trX) this is just the probability distribution
of (complex) Wishart random matrices [19]. The result is known1 and for
the case N > Nf reads

∫

DQDQ̃δ(Q̃Q − X) =
(2π)

N(N+1)
2

∏N
j=N−Nf+1(j − 1)!

(detX)N−Nf . (14)

Extracting now the large N asymptotics according to (11) one sees that
the normalization factor gives rise to a NfS log S term, which reflects the
contribution of the matter fields to the anomaly. The detX term leads to
the correct dependence on the mesonic superfield. The full superpotential
is then

WVY(S)+NfS log
S

Λ3
−S log

(

detX

Λ2Nf

)

+Vtree(X) = WVYT+Vtree(X) (15)

as expected from anomaly considerations [15]. It is quite surprising that
both terms arise from the classical random matrix Wishart distribution.

1 See e.g. [20] for a general proof and Eq. (15) in [21] for the numerical coefficient.
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The case with Nf = Nc

It is interesting to consider the case Nf = Nc with Vtree(X) = 0. From
the general form of (15) we see that the logarithmic term vanishes and S
appears only linearly as

Weff = S log

(

det
X

Λ2Nc

)

(16)

thus it generates in a natural way a constraint surface (moduli space) satis-
fying the equation det X = Λ2Nc . On this surface the effective potential van-
ishes. This is the correct behaviour for Nf = Nc and agrees with Seiberg’s
quantum constraint

det X − BB̄ = Λ2Nc (17)

when the baryonic fields are integrated out [22]. However a direct inclu-
sion of the baryonic superfields into the random matrix or a more general
combinatorial framework remains an open problem [23,24].

5. Perturbative justification of mesonic superpotentials

For adjoint matter fields the non-logarithmic part of the Dijkgraaf–Vafa
prescription has been verified by a perturbative diagrammatic calculation [9]
and arguments based on generalized Konishi anomalies [10]. However the
origin of the logarithmic Veneziano–Yankielowicz term remains from this
point of view quite obscure — as it should arise from Feynman graphs which
involve ‘dynamical’ vector superfield loops.

Since a logarithmic term also appeared from a random matrix calcula-
tion in the constrained matrix integral it is interesting to check if the matter
induced part of the Veneziano–Yankielowicz superpotential may be also ob-
tained diagrammatically directly in the gauge theory. This calculation was
done in [12].

The matter contribution to the effective potential in S (with all matter
superfields integrated out) is given by [9]

∫

DQDQ̃ e
∫

d4xd2θ (− 1
2
Q̃(2−iWα∂α)Q+Wtree(Q̃,Q)) , (18)

where Wα is the external field related to S through (3) and ∂α ≡ ∂
∂θα .

In [12], in order to obtain the effective superpotential involving also mesonic
superfields we introduce the superspace constraint

X = Q̃Q (19)

by inserting into (18) a Lagrange multiplier chiral superfield α. Using the
fact, exploited in [9], that the antichiral sector does not influence chiral
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superpotentials we introduce also an antichiral partner ᾱ with a tree level
potential ᾱ2 i.e.

∫

d4xd4θ ᾱα +

∫

d4xd2θ ᾱ2. (20)

The path integral over ᾱ can be carried out exactly and yields (cf. [9])

−
1

2

∫

d4xd2θ α2α. (21)

Therefore the final path integral which one has to evaluate is

∫

DαDQ̃DQ e
∫

d4xd2θ(− 1
2
Q̃(2−iWα∂α)Q− 1

2
α2α−αX+αQ̃Q) . (22)

This is a nontrivial interacting field theory, but since we want to extract
only the trW2 terms we can allow only at most two W insertions in a
Q̃Q loop. The structure of the integration over fermionic momenta then
significantly reduces the number of contributing graphs. In particular we
are left only with graphs coming from (22) which have the structure of Q̃Q
loops connected by at most one α propagator and α propagators connected
to the external field X as shown in Fig. 1. Since the α propagators are then
evaluated necessarily at zero momentum one has to include an IR cut-off
ΛIR.

a)

X

X
X

c)b)

Fig. 1. Only tree level graphs survive (like the one shown in Fig. 1(c)).
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Fig. 2. The Schwinger–Dyson equation for F .

The form of the superpotential then follows from (for details see [12])

S log det
F

Λ
, (23)
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where F is the α 1-point function determined by a Schwinger–Dyson equa-
tion (Fig. 2):

F = −
1

ΛIR
X +

1

ΛIR

S

F
. (24)

The only IR-finite solution is F = SX−1 which when inserted into (23)
yields the expected result (compare with (15))

NfS log
S

Λ3
− S log det

X

Λ2
(25)

including the matter generated logarithmic term.

6. Random matrices and Seiberg–Witten curves

In the preceeding sections we described the rederivation using either
random matrix or diagrammatic methods of the Veneziano–Yankielowicz–
Taylor/Affleck–Dine–Seiberg superpotentials. It is interesting to ask
whether one can use the close relation between random matrix models and
SYM theories with matter fields to obtain some new nontrivial information
about the latter. An example of this kind of result is the effective factor-
ization of Seiberg–Witten curves from random matrix considerations [13].
Before we describe it in the following section let us first recall some basic
facts about N = 2 SYM theories.

At low energies N = 2 U(Nc) SYM theories develop an Nc-dimensional
moduli space of vacua parametrized by vacuum expectation values

up =

〈

1

p
trΦp

〉

(26)

with 1 ≤ p ≤ Nc. The IR dynamics of the theory around each such vacuum
is described by the Seiberg–Witten curve

y2 = PNc(x, uk)
2 − 4Λ2Nc−Nf

Nf
∏

i=1

(x + mi) , (27)

where the polynomial PNc(x, uk) = 〈det(xI − Φ)〉 ≡
∑Nc

α=0 sαxNc−α depends
in an explicit way on the uk’s:

αsα +

α
∑

k=0

ksα−kuk = 0 , (28)

s0 = 1, u0 = 0 . (29)
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Of particular interest (cf. [25]) are the vacua where all the monopoles of the
theory are massless. Then the Seiberg–Witten curve completely factorizes,
i.e. the right hand side of (27) has only two single zeroes, all the remaining
zeroes are double. The Seiberg–Witten curve then has to have the form

y2 = (x − a)(x − b)HNc−1(x)2 . (30)

The problem is to find the moduli {uk}’s for which this happens. One
expects a 1-parameter family of solutions. For pure N = 2 theory (Nf = 0)
the explicit form of this submanifold of vacua has been found using special
properties of Chebyshev polynomials [25]. Unfortunately these methods
cannot be extended to the case of Nf > 0. In [13], using random matrix
model techniques, we obtained formulas for uk when the general form of the
Seiberg–Witten curve (27) completely factorizes for Nf < Nc and arbitrary
masses mi.

We note that the general problem of factorizing (27) is highly nonlinear
and involves coupled sets of polynomial equations. In fact we would not
expect a-priori that a closed-form analytic solution would exist at all.

In the following section we will briefly describe the results of [13]. Other
studies of the close link between Seiberg–Witten curves and random matrices
include [26–30].

7. Factorization solution of Seiberg–Witten curves

for theories with fundamental matter

The main tool which allows to obtain the factorization of SW curves is
the study of the N = 2 theory deformed by a tree-level superpotential

Wtree =

Nc
∑

p=1

gp ·
1

p
trΦp. (31)

Then once the factorization solution ufact.
p is known, the effective superpo-

tential is given by

Weff =

Nc
∑

p=1

gpu
fact.
p (Λ,mi, T ), (32)

which should then be minimized with respect to the parameter T of ufact.
p .

If we integrate in S by performing a Legendre transformation with respect
to log Λ2Nc−Nf we obtain the superpotential

Weff(S, u1, Ω,Λ) = S log Λ2Nc−Nf +Weff(S, u1, Ω)

= S log Λ2Nc−Nf −S log Ω2Nc−Nf +
Nc
∑

p=1

gpu
fact.
p (Ω,u1) .(33)
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In order to obtain the factorization solution ufact.
p from random matrix mod-

els we should first use the Dijkgraaf–Vafa prescription to obtain Weff(S)
from a random matrix expression and then recast it in the gauge-theoretic
form Weff(S, u1, Ω) defined by (33) which is linear in the couplings gp — this
is the most difficult part of the computation. Then one can directly read off
the factorization solution from the coefficients of the couplings.

The structure of the solution obtained in [13] is the following:

ufact.
p = Nc U

pure
p (R,T ) +

Nf
∑

i=1

Umatter
p (R,T,mi) , (34)

where the two random matrix parameters R and T are related to the physical
parameters Λ, u1 by the constraints

Λ2Nc−Nf =
RNc

∏Nf

i=1
1
2

(

mi + T +
√

(mi + T )2 − 4R
) , (35)

u1 = NcT −
1

2

Nf
∑

i=1

mi + T −
√

(mi + T )2 − 4R . (36)

In (34) Upure
p (R,T ) is the factorization solution for pure N = 2 theory

Upure
p (R,T ) =

1

p

[p/2]
∑

q=0

(

p
2q

)(

2q
q

)

RqT p−2q (37)

while the explicit form of Umatter
p (R,T,mi) is given in Section 7 of [13]. Here

we just cite the result for p ≤ 3:

Umatter
1 (R,T,m) =

1

2

(

−m − T +
√

(m + T )2 − 4R

)

, (38)

Umatter
2 (R,T,m) =

1

4

(

m2 − 2R − T 2 + (T − m)
√

(m + T )2 − 4R

)

,(39)

Umatter
3 (R,T,m) =

1

6

(

−m3 − 6RT − T 3 + (m2 + 2R − mT + T 2)

×
√

(m + T )2 − 4R

)

. (40)

Let us note some striking features of the solution (34). Firstly, it has
an extremely simple dependence on the number of colours. Secondly, each
flavour contributes linearly. Thirdly, the solution for pure SYM theory ap-
pears as a part of the expression. All of these features are quite surprising
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if we keep in mind the very much nonlinear character of the factorization
problem for the curve (27). Also from the physical point of view such un-
expected linearization seems to suggest some hidden structure of the SYM
theory with fundamental flavours.

Recently, the factorization solution (34) was used in [31] to rederive from
the Seiberg–Witten curve perspective the Affleck–Dine–Seiberg superpoten-
tial (7).

8. Discussion

The link of random matrices to supersymmetric gauge theories is one of
the most exciting theoretical developments in the last year. It is notable as
giving a completely new exact application of random matrix models. The
interest lies both in reinterpreting classical random matrix results/ensembles
in a new language and context, and in using the novel random matrix meth-
ods to obtain new results in supersymmetric gauge theories. It raises also
numerous questions of a more mathematical nature. In particular it would
be interesting to understand the precise interrelation between Calabi–Yau
constructions and random matrices in the most general setting. This link
was in fact at the origin of the Dijkgraaf–Vafa proposal.

Last but not least it would be interesting to understand the mathematical
structures which allowed to use random matrix model calculations to factor-
ize Seiberg–Witen curves. The solution obtained in [13] is based on a rein-
terpretation of a random matrix formula using input from gauge-theoretical
reasonings involving such non-perturbative concepts as ‘integrating-in’ etc. .
It would be fascinating to link directly the underlying geometry of factoriza-
tion of Seiberg–Witten curves with random matrix considerations. Another
interesting open problem would be to generalize the solution to the case of
non-complete factorization i.e. with at least one monopole staying massive.
This is of direct relevance to the study of the global structure of N = 1
vacua [32–34].

I would like to thank Jan Ambjørn and Yves Demasure with whom the
results described here were obtained. This work was supported in part by the
Polish State Committee for Scientific Research (KBN) grants 2P03B09622
(2002-2004), 2P03B08225 (2003-2006) and by the EU network on “Discrete
Random Geometry”, grant HPRN-CT-1999-00161.
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