
Vol. 34 (2003) ACTA PHYSICA POLONICA B No 10

CONTINUUM BRANCHED POLYMERS
∗

Thordur Jonsson

University of Iceland

Dunhaga 3, 107 Reykjavik, Iceland

(Received September 3, 2003)

We discuss geometric paths and review the theory of continuous trees
which has been developed in the last 12 years. We explain the relation of
continuum trees to the extensively studied discrete trees.
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1. Introduction

Random geometry (or quantum geometry) can be viewed as classical sta-
tistical mechanics of random geometrical objects: paths, trees (or branched
polymers), surfaces, higher dimensional manifolds. Quantum geometry
arises naturally in particle physics and quantum gravity, where the func-
tional integrals used for quantization are often most naturally viewed as
being taken over geometrical objects. Random geometry arises also in many
branches of condensed matter physics, e.g., in the study of phase boundaries,
vesicles, branched polymers, foams etc. For a review of this theory up to
1997, written from the point of view of quantum field theory, see [1].

The first step in the analysis of random geometry is usually to define
a class of discrete approximations to the geometrical objects under investi-
gation. These discrete approximations are described by a finite number of
parameters so that the functional integrals become finite dimensional inte-
grals or a convergent sum of finite dimensional integrals. The second step
is the construction of a scaling limit of the theory at an appropriate critical
point. The scaling limit of the Green functions in the discrete theory are gen-
erally believed to describe the underlying continuum theory. The ultimate
goal in the study of models in quantum geometry is to understand in detail
how to integrate over the space of continuous geometrical objects. This re-
quires the construction of a measure on the appropriate space of continuum
paths, surfaces, trees, etc.
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It is fair to say that in the case of surfaces and higher dimensional man-
ifolds the last step has not been achieved. In the case of higher dimensional
manifolds even the first step is problematic since in general bounds which
ensure the convergence of discrete approximations are not known, see [1].
In [2] it is shown how to intgrate over continuous geometric paths and the
measure on such paths is constructed. Roughly speaking this is achieved by
dividing the Wiener measure by the action of the diffeomorphism group on
parametrized paths. We review this theory in the next section. In the third
section we describe Aldous’s theory of random continuum trees, see [3] for a
detailed review for probabilists and [4] for a different perspective aimed at
physicists.

Trees and continuous trees are interesting in their own right as an ex-
ample of a relatively simple random geometry. More importantly, discrete
surfaces can be represented as certain labelled trees [5] so it is possible that
one can define integration over continuous random surfaces by integrating
over random labelled continuous trees.

2. Geometric paths

It is well known that the Euclidean free field propagator can be expressed
formally as

(−∆ + m2)−1(x, y) ≡ G(x, y) =

∫

ω:x→y

e−m|ω|Dω, (1)

where the functional integral is over all geometric paths ω from x to y and
|ω| denotes the length of ω. A geometric path is an equivalence class of
parametrized paths Ω : [0, 1] 7→ R

d under the equivalence relation ∼ where
Ω ∼ Ω′ if and only if there is an increasing diffeomorphism ϕ of the unit
interval such that Ω′ = Ω ◦ ϕ.

Let us denote the set of all geometric paths from x to y by P (x, y). In [2]
a probability measure µ is constructed on P (x, y) such that

〈F (ω)〉 ≡

∫

F (ω)dµ =
1

G(x, y)

∫

ω:x→y

e−m|ω|F (ω)Dω, (2)

where the equality above means that natural discrete approximations to the
functional integral, e.g., the approximation using lattice paths with lattice
spacing a, converge to the expectation value with respect to µ as a → 0.
It comes as no surprise that the above equality holds because the measure
µ is in fact constructed as a limit of measures on discretized paths. In [2]
two different schemes are introduced, one using lattice paths and the other
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using picewise linear paths with an intrinsic metric. The ensuing continuum
limits are equivalent. Similarly, using the same techniques, one can construct
a probability measure on the space of geometric paths with an arbitrary
endpoint.

The measure µ can also be described directly in terms of the Wiener
measure. Let Wt be the Wiener measure with variance t on paths from x to
y parametrized by the unit interval. Then the measure of a set of geometric
paths A ⊂ P (x, y) is given by

µ(A) =

∞
∫

0

e−m2t/2Wt(π
−1(A)) dt , (3)

where π is the canonical mapping of parametrized paths onto their equiv-
alence classes in P (x, y). This result is established in [2] together with the
corresponding result for paths with a free endpoint.

Geometric paths have no intrinsic structure and they cannot be paramet-
rized by arclength since their local behaviour is the same as that of Wiener
paths which have infinte arclength. However, the points on the geometric
path are linearly ordered since such ordering on a parametrized paths is
preserved by increasing diffeomorphisms. It therefore makes sense to ask
whether a geometric path in R

d hits a certain set A or whether it hits
a number of mutually disjoint sets A1, . . . , An in that order. The typical
functions one could imagine integrating with respect to the measure µ are
therefore of the type

χ(ω) =

{

1, if ω first hits A and then B
0, otherwise

, (4)

where A and B are two disjoint subsets of R
d. In [2] a convenient family

of sets of geometric paths to integrate over is defined. These sets are called
cylinder sets by analogy with the cylinder sets of parametrized paths and
it is shown that the measures of of cylinder sets define µ uniquely. The
measures of cylinder sets can be evaluated in terms of Green functions for
Dirichlet propagators. The simplest example is

µ(Z(A)) =
GD

A(x, y)

G(x, y)
, (5)

where A is a sufficiently nice subset of R
d which contains x and y, GD

A(x, y)
is the Dirichlet Green function for the Helmholtz operator with data on the
boundary of A and Z(A) is the set of all geometric paths from x to y which
are contained in the set A.



4942 T. Jonsson

3. Continuous random trees

We begin by discussing the theory of discrete random trees. By discrete
trees we understand rooted planar trees, i.e., one of the vertices of each
tree is singled out and called the root and the trees should be thought of as
embedded in the plane so that the links are cyclically ordered around each
vertex. The standard theory of discrete trees is defined by the partition
function

Z(x) =
∑

t

x|t|w(t), (6)

where the sum runs over all rooted planar trees t, |t| denotes the number of
links in t and w(t) is the weight factor of the tree t. Typically the weight
factor w(t) is chosen to be a product of weight factors associated with vertices
of the tree, i.e.,

W (t) =
∏

v∈t

νk , (7)

where νk is the weight factor for a vertex v in t of order σ(v) = k. With
these definitions the partition function satisfies the equation

Z(x) = x
∞

∑

k=1

νkZ
k−1(x). (8)

This equation can be analysed in order to determine the critical behaviour
of the discrete theory, see [6,7]. The critical behaviour is universal provided
the νk go to zero sufficiently fast with k.

The weight factors defined above give rise to a probability measure on
trees with a fixed number n of links:

P (T = t) = C
∏

v∈t

νσ(v), (9)

where C is a normalization factor. Alternatively one can write

P (T = t) = C
∏

k≥1

ν
Dk(t)
k , (10)

where Dk(t) is the number of vertices of order k in t. If

νk =

(

1

2

)k

, (11)

then all trees with n vertices are equally probable and

P (T = t) =
1

♯{t : |t| = n}
=

n!(n − 1)!

(2n − 2)!
. (12)
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For the following discussion it is most convenient to focus on trees with a
fixed number n of vertices and use the fundamental fact [8] that there is a
one to one correspondence between trees with n + 1 vertices and “discrete
excursions” of duration 2n, i.e., random walks on the positive integers which
begin and end at 0. This correspondence is best explained by a picture, see
Fig. 1. We draw the tree in the plane. The excursion X(i), where X(i) is
the distance of the walker from the root after i steps, is defined by starting at
the root and walking counterclockwise around the tree, visiting the vertices

Root
Fig. 1. A rooted planar tree with 8 vertices and the associated contour walk.

sucessively and traversing each link twice as indicated in the figure. Fig. 2
shows X(i) as a function of i. A measure on discrete trees obviously defines
a measure on discrete excursions via the correspondence. A priori we do
not know how to define continuous trees but the correspondence between
discrete excursions and discrete trees allows us to define continuous trees
as the objects associated with continuous excursions in the same way as
discrete trees are associated with discrete excursions.

Let f : R
+ 7→ R

+ be a continuous function such that f(0) = 0, f(s) > 0
for 0 < s < γ and f(s) = 0 for s > γ. Such a function is said to be
a continuous excursion of duration γ. We define a pseuodometric on the
closed interval [0, γ] by putting

d(s, s′) = f(s) + f(s′) − 2 inf
s≤r≤s′

f(r) (13)

for s, s′ ∈ [0, γ] and s < s′. This is not a metric because we can have
d(s, s′) = 0 with s 6= s′ but d is easily seen to satisfy the triangle inequality.
Now define an equivalence relation ∼ on [0, γ] by s ∼ s′ if d(s, s′) = 0. Then
the tree coded by the excursion f is defined to be the metric space [0, γ]/ ∼.
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X(i)

i

Fig. 2. The excursion X(i) corresponding to the tree on Fig. 1.

It is perhaps most convenient to think of the continuous tree using the
genealogical picture. Then f(s) should be thought of as the generation of
the individual s. If s < s′ then s is an ancestor of s′ if and only if

f(s) = inf
s≤r≤s′

f(r) (14)

and

inf
s<r<s′

f(r) = generation of the last common ancestor of s and s′. (15)

If we now have a measure on the space of continuous excursions it gives rise to
a measure on the continuous trees via the correspondence we have described
above. We would of course like to have a measure on the continuous trees
that is in a natural sense a limit of the measure on discrete trees. This is
taken care of by a theorem whose most general form is due to Aldous [9,10].
Let Xn

t ≡ n−1/2X([2nt]) with 0 ≤ t ≤ 1 be a stochastic process where X(i)
is a discrete excursion and [x] denotes the integer part of x. Let Bt be a
Brownian excursion of duration 1 (which can be thought of as a Brownian
motion which starts at 0 at time 0 and is constrained to be positive until it
returns to 0 at time t = 1, see [11, 12] for a more precise discussion). Let σ
be the variance of the offspring probability distribution associated with the
weight factors νk. This is the distribution defined by

Prob.(q children) ∝ νq+1. (16)

With the above definitions, Aldous’s theorem states that the process Xn
t

converges weakly to 2σ−1Bt as n → ∞.
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The Brownian excursion can be characterized by the density

qs(x) =

(

2

π

)1/2

s−3/2(1 − s)−3/2x2e−x2/2s(1−s) (17)

which is the probability density for an excursion of duration 1 to be located
at x > 0 at time s ∈ (0, 1). The above formula does however not yield
much insight into the structure of the associated random continuous trees
but it can be used to calculate some of their properties. For example, the
occupation density ℓh of the tree at distance h from the root which for a
given excursion Wt is defined by

ℓh =
d

ds

∫

χ{Wt≤s}dt, (18)

where χA is the characteristic function of the set A, has the average

〈ℓh〉 = 4he−2h2

. (19)

More insight into the structure is obtained by a direct construction of the
random continuous tree due to Aldous. We will now outline this direct
construction which is based on taking a half line, cutting it up in a particular
random way and gluing the pieces together in another particular random
way.

Let 0 = T0 < T1 < T2 < T3 < . . . be the times of a Poisson process
with rate t, i.e., the rate increases linearly with time so we can think of the
times Ti as the clicks in a Geiger counter measuring the radioactivity of a
substance whose decay rate increases linaerly with time. Construct the line
segments [Ti, Ti+1) for i = 0, 1, 2, . . .. We now define an infinte rooted tree
inductively. Let t1 be the interval [0, T1) with 0 the root. Inductively, let
tk+1 be the tree obtained by gluing the interval [Tk, Tk+1) to tk at a random
point chosen with the uniform probability distribution on tk. The limiting
tree as k → ∞ is the random continuous tree and it can be shown to be the
same as the one associated with Brownian excursion. This random tree can
be realized rigorously as a random subset of a suitable Banach space [10]
and not surprisingly this random subset has Hausdorff dimension 2.

Another picture of the random continuous tree can be obtained by look-
ing at the subtree spanned by a number of points randomly chosen. Let µ be
the measure on the random continuous tree induced by the Lebesgue mea-
sure on the unit interval. Now we are viewing the continuous tree as being
generated by a Brownian excursion. Choose n points on the tree according
to the measure µ. These n points together with the root span a subtree
all of whose vertices have order one or three (the probability of finding a
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higher order vertex is zero) and 2n − 1 egdes with lengths ℓ1, ℓ2, . . . , ℓ2n−1.
Of course the tree is not completely specified by the edgelengths, it has some
particular topology τ . Let

L =
2n−1
∑

i=1

ℓi. (20)

Then [10,11]

Prob.(τ, ℓ1, ℓ2, . . . , ℓ2n−1) = cLe−L2/2, (21)

where c is a normalization constant. It is quite interesting that this probabil-
ity is independent of the topology τ and it can be shown to characterize the
random continuum tree uniquely. Several other properties of the continuum
tree are discussed in [3].

4. Conclusion

Aldous’ theory of the random continuous tree provides a complete quan-
tum geometry of trees. We have above outlined his approach and stated
some of the more important results. In principle one can use this theory
to answer any question about random continuous trees. Some properties of
continuous trees are not completely understood, e.g., it is not known how to
define Brownian motion on a continuous tree in a precise way even though
some suggestions are provided in [3]. One can therefore not calculate directly
the spectral dimension of continuous trees while the spectral dimension of
their discrete siblings are known to be 4/3 [13].

The most interesting potential application of Aldous’ theory of continu-
ous trees to quantum geometry would be to construct a measure on continu-
ous random surfaces as suggested in [5]. There are some technical obstacles
to carrying this programme through but using the correspondence between
trees and surfaces seems to be the most promising way of getting a hold on
integration theory for random surfaces.
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