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We review how the identification of gauge theory operators represent-
ing string states in the pp-wave/BMN correspondence and their associated
anomalous dimension reduces to the determination of the eigenvectors and
the eigenvalues of a simple quantum mechanical Hamiltonian and analyze
the properties of this Hamiltonian. Furthermore, we discuss the role of
random matrices as a tool for performing explicit evaluation of correlation
functions.

PACS numbers: 11.15.–q, 11.15.Pg, 11.25.Tq, 11.25.Hf

1. Introduction

BMN gauge theory can be characterized as the theory which appears
in the lower right corner of the diagram in figure 1. The upper line of
the diagram symbolizes the celebrated AdS/CFT conjecture which relates
N = 4 Super Yang Mills theory with gauge group SU(N) to type IIB string
theory on the ten-dimensional geometry AdS5 × S5 [1]. Unfortunately, on
this geometry the IIB string theory has so far resisted quantization. It was
understood in [2], however, that imposing a Penrose limit (left vertical arrow)
on AdS5×S5 one can obtain a simpler ten-dimensional geometry, known as a
pp-wave, on which quantization of the IIB string is possible using light cone
gauge [3, 4]. After this discovery an intriguing question was of course what
would be the corresponding procedure on the gauge theory side. The answer
was provided by Berenstein, Maldacena and Nastase who showed that the
appropriate operation consisted in considering a certain sub-sector of the
gauge theory and imposing a certain limit [5] (right vertical arrow). The
theory which results from this operation is denoted as BMN gauge theory
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Fig. 1. The emergence of BMN gauge theory.

and is via the original AdS/CFT correspondence conjectured to be the gauge
theory dual of the IIB pp-wave string.

As most gauge theories N = 4 Super Yang Mills is described by two
parameters the number of colours, N, and the ’t Hooft coupling constant,
λ = g2

YM
N . The ’t Hooft coupling constant governs the field theoretical loop

expansion and N governs the topological expansion [6]. As just mentioned,
to define BMN gauge theory one has to consider a certain sub-sector of
N = 4 Super Yang Mills. Part of this procedure consists in introducing
a new parameter, J , the SO(2) R-charge. The SO(2) R-charge is a charge
associated with a particular SO(2) sub-group of the bosonic SO(6) symmetry
group of the N = 4 Super Yang Mills theory. A BMN sector of N = 4 Super
Yang Mills can then be described as the set of operators for which the SO(2)
R-charge takes some particular value, J , and BMN gauge theory is obtained
by, in such a sector, considering the limit

J → ∞, N → ∞, g2
YM

finite,
J2

N
finite. (1)

BMN-gauge theory is again described by two parameters

λ′ =
g2

YM
N

J2
, and g2 =

J2

N
. (2)

The parameter λ′ is an effective gauge coupling constant which governs the
loop expansion [5] and g2 is an effective genus counting parameter which
governs the topological expansion [7, 8].
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Berenstein, Maldacena and Nastase argued that in the pp-wave/BMN
correspondence string states should map to gauge invariant operators with
the following identification of the quantum numbers

El.c. = ∆− J. (3)

Here El.c. is the light cone energy of the string state and ∆ and J are
respectively the conformal dimension and the SO(2) R-charge of the gauge
theory operator. For a detailed discussion of the string theory side of the
correspondence, see for instance the reviews [9, 10].

Operators which have definite conformal dimensions are characterized
by their two-point functions taking the form

〈

ÕA(x) ¯̃OB(0)
〉

=
δAB

|x|2∆A

CA, (4)

with ∆A the conformal dimension and CA some normalization constant. In
reference [5] an explicit map between the states of the quantized free IIB pp-
wave string and certain operators in the dual gauge theory was suggested. In
particular, the mapping gave rise to a prediction for the conformal dimension
of these operators. This prediction, known as the BMN square root formula,
re-sums the entire loop expansion, i.e. it can be expanded as an infinite
power series in λ′. However, it is limited to the case g2 = 0, i.e. to the
planar gauge theory. The BMN prediction has been confirmed to all orders
in λ′ [11, 12]. What we shall discuss is what happens when one includes
non-planar corrections in the gauge theory. More precisely, we shall work at
first order in λ′ and to all orders in g2. Accordingly, we can write Eq. (4) as

〈

ÕA(x) ¯̃OB(0)
〉

= CA
δAB

|x|2∆0
A

(

1 + λ′(δ∆)A log |xΛ|−2
)

. (5)

Here ∆0
A is the tree-level conformal dimension, (δ∆)A is the one loop cor-

rection and Λ is some (divergent) renormalization scale. One expects that
the one-loop correction can be expanded in genus as follows1

(δ∆)A = (δ∆)
(0)
A + g2

2(δ∆)
(1)
A + g4

2(δ∆)
(2)
A + . . . . (6)

In our analysis we will consider only operators built from scalar fields. The
N = 4 Super Yang Mills theory has three complex scalars, ψ, φ and Z

1 In the full N = 4 Super Yang Mills theory one expects an expansion similar to Eqs. (5)
and (6) with λ and 1

N
replacing λ′ and g2. However, some one-loop anomalous

dimensions have a large-N expansion involving odd powers of 1

N
and some do not

even have a well-defined double expansion in λ and 1

N
[13]. Similar complications

have not been encountered in the BMN limit so far.
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all in the adjoint representation of the gauge group. By the choice of a
particular SO(2) sub-group of the SO(6) symmetry group of N = 4 Super
Yang Mills one singles out one of these three fields, say Z, and the SO(2)
R-charge is then given as the quantum number conjugate to the phase of Z.
For scalar operators the SO(2) R-charge thus simply counts the number of
Z-fields. Furthermore, for such operators the tree-level conformal dimension
just equals the number of fields. A particular set of scalar operators are the
following with tree level conformal dimension J + 2

ΩJ0,J1,...,Jk

n (x) =
J0
∑

p=0

e2πipn/J0 Tr(φZpψZJ0−p) TrZJ1 . . .TrZJk(x),

k
∑

i=0

Ji = J. (7)

These operators have well-defined conformal dimensions in the planar BMN
limit and correspond in that limit to direct products of (k+1) string states,
k of which are vacuum states and one is a state with two oscillators ex-
cited [5]2. Once one takes into account non-planar contributions in the
gauge theory, however, the operators in Eq. (7) start to mix and do no
longer have well-defined conformal dimensions. To find the gauge theory
operators which correctly represent the string states we have to carry out a
(re-)diagonalization process. In Section 2 we will show that this process can
be described as the process of finding the eigenvectors and the eigenvalues
of a simple quantum mechanical Hamiltonian. Subsequently, in Section 3
we will explain how techniques from the field of random matrices can be
used to perform explicit evaluation of correlation functions. The reason why
random matrices appear at all is that the propagators of the scalar fields in
N = 4 Super Yang Mills take the form3 (with Z̄ the Hermitian conjugate
of Z)

〈

Zij(x)Z̄kl(0)
〉

free
=

g2
YM

8π2x2
δilδjk ≡ g2

YM

8π2x2

〈

ZijZ̄kl

〉

, (8)

〈Zij(x)Zkl(0)〉 =
〈

Z̄ij(x)Z̄kl(0)
〉

= 0, (9)

and similarly for ψ and φ. Here
〈

ZijZ̄kl

〉

is easily recognized as a propagator
of a zero-dimensional complex matrix model (cf. Section 3). Thus when-
ever the space-time dependence of a correlator can be factored out matrix
model techniques come in handy and we sketch how such techniques make
it possible to derive exact, all genera results for certain correlation func-
tions [7,8,15–17]. In the last section we briefly discuss some new insights on
the integrability of N = 4 Super Yang Mills which have been obtained on
the basis of the quantum mechanical formalism [13].

2 Operators of a similar type having well-defined planar conformal dimensions in the
full gauge theory have been constructed in reference [14].

3 We use the notation and normalization of reference [15].
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2. The quantum mechanics

Gauge theory operators which are to represent string states must be
operators with well-defined conformal dimensions. Such operators are char-
acterized by being eigenstates of the dilatation operator, D̂, with eigenvalue
equal to the conformal dimension. Equivalently, their two-point functions
take the canonical form in Eq. (4) which at one-loop level in BMN gauge
theory looks as in Eq. (5). Considering a basis of operators {Oα} with iden-
tical tree-level conformal dimension, ∆, a two-point function will generically
read

〈

Oα(x)Ōβ(0)
〉

=
1

|x|2∆

(

Sαβ + Tαβ log |xΛ|−2
)

, (10)

with Sαβ and Tαβ respectively a tree-level and a one-loop mixing matrix.
As pointed out in reference [18] (see also [19]) it is possible to read off the
matrix elements of the dilatation operator in the basis {Oα} from these

mixing matrices. Let us split the dilatation operator in a tree level part D̂0

and a one-loop correction δD̂, i.e.

D̂ = D̂0 + δD̂. (11)

Our aim is to find linear combinations of the states {Oα} which are eigen-
states of the dilatation operator when the one-loop correction is taken into
account. Denoting the sought for eigenstates as ÕA we have

Oα = VαAÕA, (12)

and
(δD̂)ÕA = (δ∆)AÕA, (13)

as well as the (equivalent) relation (4). In particular in the basis {Oα} it
holds that

(δD̂)Oα = VαA(δ∆)AV
−1
Aβ Oβ ≡ (δD)αβOβ. (14)

Inserting Eq. (12) into
〈

Oα(x)Ōβ(0)
〉

and making use of Eq. (4) one finds

〈

Oα(x)Ōβ(0)
〉

=
1

|x|2∆

(

VαACAV
†
Aβ + VαACA(δ∆)AV

†
Aβ log |xΛ|−2

)

. (15)

Comparison to Eq. (10) then gives

TαγS
−1
γβ = (δD)αβ . (16)

Let us now specialize to the following set of operators

OJ0,J1,...,Jk

p (x) = Tr(φZpψZJ0−p) TrZJ1 . . .TrZJk(x),
k

∑

i=0

Ji = J. (17)
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These operators all have tree level conformal dimension J + 2. To find the
linear combinations with definite conformal dimensions at one-loop level we
must diagonalize the matrix (δD)αβ = TαγS

−1
γβ . Taking into account only

planar contributions we should reproduce the BMN operators in Eq. (7)
and the associated BMN prediction. Including non-planar corrections we go
beyond BMN and enter into the domain of interacting IIB pp-wave strings.
Due to the simple form of the scalar propagators in N = 4 Super Yang
Mills theory (cf. Eqs. (8) and (9)) one can express the elements of the tree-
level mixing matrix Sαβ as expectation values in a zero-dimensional field
theory i.e.

Sαβ =
〈

OαŌβ

〉

, (18)

where Oα and Ōβ now consist of space-time independent fields and contrac-
tions are carried out using the Feynman rules

〈

ZijZ̄kl

〉

= δilδjk, 〈ZZ〉 =
〈

Z̄Z̄
〉

= 0, (19)

and similarly for ψ and φ. The relation (18) defines an inner product on
the space of states that we shall denote as the gauge theory inner product.
Moreover, as shown in reference [15, 20], the matrix elements Tαβ for oper-
ators involving only scalar fields can be expressed in an analogous manner
by means of an effective Hamiltonian, Ĥ. More precisely, one has

Tαβ =
〈

Oα Ĥ Ōβ

〉

, (20)

where the notation and the contraction rules are as above and where Ĥ en-
codes the combinatorial structure of the N = 4 Super Yang Mills interaction

Ĥ = −g
2
YM

8π2
:
(

Tr[Z̄, φ̄][Z, φ] + Tr[Z̄, ψ̄][Z,ψ] + Tr[φ̄, ψ̄][φ,ψ]
)

: . (21)

Here the normal ordering means that contractions between two fields of Ĥ
are forbidden. Notice that the operator Ĥ is Hermitian with respect to
the gauge theory inner product. Unlike believed until recently, determining
the matrix elements (δD)αβ = TαγS

−1
γβ does not require determining nei-

ther S nor T as we shall now explain. In evaluating (20) one can perform
the contractions in any convenient order. In particular, one may start by
contracting Ĥ with Oα. In doing so for an operator of the type (17) one
observes that the contraction produces a linear combination of operators of
the same type, i.e.

ĤOα = Hαγ Oγ . (22)

Thus, we have

Tαβ =
〈

(ĤOα) Ōβ

〉

= Hαγ

〈

Oγ Ōβ

〉

= HαγSγβ, (23)
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or comparing to (16)

Hαβ = TαγS
−1
γβ = (δD)αβ . (24)

Hence, to determine the matrix elements of δD̂ we only need to determine
the expansion coefficients Hαγ in Eq. (22). The matrix Hαγ is obviously not
Hermitian. However, it is related to its Hermitian conjugate by a similarity
transformation, i.e.

H
†
αβ ≡ H∗

βα = S−1
αγHγδSδβ , (25)

which can be seen by first contracting Ĥ with Ōβ in Eq. (23). This in par-

ticular implies that δD̂ has real eigenvalues as we expect. Furthermore, the
eigenvectors of Hαβ corresponding to different eigenvalues are automatically
orthogonal with respect to the gauge theory inner product.

Applying the operator Ĥ in equation (21) to a state of the type (17)

using the contraction rules (19) one finds that Ĥ can conveniently be split

into three parts, a trace-conserving one Ĥ0, a trace-increasing one Ĥ+ and

a trace-decreasing one Ĥ−, i.e.

Ĥ = −g
2
YM
N

4π2

(

Ĥ0 +
1

N
Ĥ+ +

1

N
Ĥ−

)

, (26)

where

Ĥ0OJ0,J1,...,Jk

p = OJ0,J1,...,Jk

p+1 − 2OJ0,J1,...,Jk

p + OJ0,J1,...,Jk

p−1 , (27)

takes the form of a discrete second derivative and where the expressions for
Ĥ+O and Ĥ−O can be found in reference [20]4. Starting from the discrete
Hamiltonian we can derive a continuum, i.e. a BMN version. To do so we

must consider J → ∞, N → ∞ while keeping fixed λ′ =
g2
YM

N

J2 and g2 = J2

N
(cf. Eqs. (1) and (2)). Preparing for this we introduce the quantities

ri =
Ji

J
, i ∈ {0, 1, . . . , k},

k
∑

i=0

ri = 1, x =
p

J0
≤ r0. (28)

Then we imagine that all the Ji become very large so that we can view the
ri and x as continuous variables. Accordingly, we replace our discrete set of
operators in Eq. (17) with a continuum set of states, i.e.

OJ0,J1,...,Jk

p −→ |x; r1, . . . , rk〉, (29)

4 The trace-conserving part Ĥ0,when acting on a general single trace operator of scalar
fields has been identified as a Hamiltonian of an integrable SO(6) spin chain [21].
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where the order of the r-quantum numbers is unimportant. Finally, imposing
the BMN limit in the explicit expression for ĤO one finds

Ĥ −→ λ′

4π2
h, h = h0 + g2(h+ + h−), (30)

where obviously the discrete second derivative in (27) turns into a continuous
one, i.e.

h0 = −∂2
x, (31)

and where h+ and h− become more involved integro-differential operators
(cf. reference [20]). It is important to notice that the expression (30) is
exact at one-loop order. In the planar limit (g2 = 0) we have h = h0. All
information about higher genera contributions is encoded in a single trace-
splitting term g2h+ and a single trace-joining term g2h−. In particular, there
are no terms of higher order in g2. The continuum Hamiltonian not allowing
for an exact diagonalization it becomes natural to split h into a free part h0

and a perturbation with g2 playing the role of a perturbation parameter

h = h0 + g2V, V = h+ + h−. (32)

The free Hamiltonian h0 is easily diagonalized. Due to the cyclicity of the
trace the variable x is effectively periodic and the eigenstates of h0 are simply
the Fourier modes

|n; r1, . . . , rk〉 =
1√
r0

r0
∫

0

dx e2πinx/r0 |x; r1, . . . , rk〉, n ∈ Z. (33)

The corresponding eigenvalues read

E
(0)
|n;r1,...,rk〉

= 4π2n
2

r20
. (34)

We notice that in the planar limit we, as promised, reproduce the BMN
operators in Eq. (7) up to normalization. In the basis given by (33) the
perturbation acts as follows [20]

h+ |n; r1, . . . , rk〉 =
r0

∫

0

drk+1

∞
∑

m=−∞

4m sin2
(

πn
rk+1

r0

)

√
r0
√
r0 − rk+1

(

m− n
r0−rk+1

r0

) |m; r1, . . . , rk+1〉,

h− |n; r1, . . . , rk〉 =

k
∑

i=1

∞
∑

m=−∞

4 rim sin2
(

πm ri

r0+ri

)

√
r0
√
r0 + ri

(

m− n r0+ri

r0

) |m; r1, . . . ,×ri, . . . , rk〉, (35)
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where the quantity r0 refers to the state on the left hand side of the equa-
tions. We can now proceed by quantum mechanical perturbation theory to
evaluate order by order in g2 the non-planar corrections to our eigenstates
and eigenvalues (i.e. to the gauge theory operators dual to string states and
their associated conformal dimensions). For that purpose it is convenient to
to introduce an inner product on the space of states given in (33)

〈n; s1, . . . sl|m; r1, . . . , rk〉 = δkl δmn

∑

π∈Sk

k
∏

i=1

δ(si − rπ(i)), (36)

where the sum runs over permutations of k elements. This inner product is
only a computational tool which makes it possible to represent calculations
in the usual language of quantum mechanics.

As is well-known, the first order energy shift in quantum mechanical per-
turbation theory is given by the diagonal elements of the perturbation —
provided there are no degeneracies or matrix elements between degenerate
states vanish. Our perturbation is entirely off-diagonal but we have huge
degeneracies. For simplicity, let us consider the case of a single trace state
|n〉. Such a state is degenerate with a multi-trace state |m; r1, . . . , rk〉 if
n = ± m

1−(r1+...+rk) [22]. The perturbation (h+ +h−) can at worst have non-

vanishing matrix elements between states for which the number of traces
differs by one. However, from the explicit form of the matrix elements in
Eq. (35) we see that such matrix elements vanish for degenerate states.5

Thus, we can actually use the formulas from first order non-degenerate per-
turbation theory and conclude that there is no energy shift for the state |n〉
at this order but that the state itself gets corrected through mixing with
double trace states (that are not degenerate with |n〉). Since the degenera-
cies are not lifted at leading order in perturbation theory we also have to
worry about these at next to leading order. Defining

P|α〉 =
1 − |α〉〈α|
E

(0)
|α〉 − h0

, (37)

the familiar formulas for the second order correction to energies and states
in non-degenerate perturbation theory read

E
(2)
|α〉 = 〈α|V P|α〉V |α〉 =

∑

β 6=α

|〈α|V |β〉|2

E
(0)
|α〉 − E

(0)
|β〉

, (38)

5 Notice that this statement is only true in the BMN limit and not in the full N = 4
Super Yang Mills theory (cf. reference [13]).
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and

|α〉(2) = P|α〉V P|α〉V |α〉 =
∑

β 6=α

|β〉〈β|V P|α〉V |α〉
E

(0)
|α〉 − E

(0)
|β〉

, (39)

where the last expression holds for an off-diagonal perturbation. Naively
applying the formula (38) to our state |n〉 the only non-vanishing contribu-
tions come from intermediate double trace states of the type |m; r〉 which
are not degenerate with |n〉, the sum is finite and gives the value presented
in references [15,22]. However, applying the formula (39) to our state |n〉 we
encounter a divergence if the matrix element 〈m; r1, r2|V P|n〉V |n〉 is non-
vanishing for n = ± m

1−r1−r2
or if 〈−n|V P|n〉V |n〉 6= 0. The possibility of

such a divergence was first discussed in reference [22]. In the present for-
malism it is simple to evaluate the problematic matrix elements and what
one finds is that the latter vanishes whereas the former is non-vanishing for
n = + m

1−r1−r2
[20]. Thus non-degenerate perturbation theory can in general

not be applied to the state |n〉. The only case for which it remains valid is
the case n = 1 where degeneracy with multi-trace states is excluded [22].
To correctly find the second order energy shift to the state |n〉 we have to
diagonalize the operator

M̂ = V P|n〉V (40)

in the space of states degenerate with |n〉, see for instance [23]. There will
be non-vanishing matrix elements between (2k+1) and (2k+3) states for all
k as well as non-vanishing matrix elements connecting k-trace states with
k-trace states. So far it has not been possible to carry out the required
diagonalization. The breakdown of non-degenerate perturbation theory was
interpreted in [24] on the string theory side as an instability causing a single
string state to decay into degenerate triple string states.

3. Random matrices

The role matrix models play in with BMN gauge theory is similar to
the role they play in the study of 2D quantum gravity, see for instance [25],
(and in the Dijkgraaf–Vafa approach to supersymmetric gauge theories [26]).
They constitute a convenient tool for handling the combinatorics of Feynman
diagrams with trivial space-time dependence. (Another point of view is
presented in references [27, 28].)

Consider a two-point function of operators built from scalar fields. Due
to the simple form of the propagators, cf. Eqs. (8) and (9), (or due to confor-
mal invariance), at tree level one can immediately factor out the space-time
dependence and one is left with a correlation function in a zero-dimensional
field theory. The same is true in the case of three-point functions. Further-
more, as a consequence of supersymmetry, some operators have two- and
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three-point functions which are protected, i.e. which do not get any quan-
tum corrections. Examples of such operators are BMN operators with zero
or one impurity, i.e.

ΩJ1,...,Jk(x) = TrZJ1 . . .TrZJk(x),

k
∑

i=1

Ji = J, (41)

Ω
J0,J1,...,Jk

0 (x) = TrφZJ0 TrZJ1 . . .TrZJk(x),
k

∑

i=0

Ji = J, (42)

or two-impurity operators with mode-number n = 0, cf. Eq. (7). For these
operators, which correspond to supergravity states on the string theory side,
tree-level two- and three-point functions are thus exact and can conveniently
be obtained using techniques from the field of random matrices. As an
example, let us consider the following two-point function

〈

ΩJ(x)Ω̄J1,...,Jk(0)
〉

=

(

g2
YM

8π2x2

)J
〈

TrZJ
k

∏

i=1

Tr Z̄Ji

〉

. (43)

Here we have factored out the trivial space-time dependence and the remain-
ing expectation value is to be evaluated using the contraction rules (19). As
we are instructed to take J → ∞ in the BMN limit the combinatorics of
these contractions would be very involved were it not for the existence of
matrix model techniques. We can represent the expectation value above as
the following matrix integral

〈

TrZJ
k

∏

i=1

Tr Z̄Ji

〉

=

∫

dZdZ̄ exp
(

−Tr Z̄Z
)

TrZJ
k

∏

i=1

Tr Z̄Ji , (44)

with measure

dZdZ̄ =

N
∏

i,j=1

dReZij dImZij

π
, (45)

as the Gaussian term produces exactly the contraction rule in Eq. (19).
A matrix integral like the one in Eq. (44) can be evaluated using an old
method due to Ginibre [29], see also [30]. Diagonalizing Z by a similarity
transformation i.e. writing

Z = XDX−1, (46)

where X as well as D are complex matrices and D is diagonal it becomes
possible to integrate out the non-diagonal degrees of freedom [29]. Doing so
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leaves one with an integral over only diagonal degrees of freedom which can
be evaluated exactly [15, 17]. The result reads
〈

TrZJ
k

∏

i=1

Tr Z̄Ji

〉

(47)

=
1

J + 1

{

Γ (N + J + 1)

Γ (N)
−

k
∑

i=1

Γ (N + J − Ji + 1)

Γ (N − Ji)

+
∑

1≤i1<i2≤k

Γ (N + J − Ji1 − Ji2 + 1)

Γ (N − Ji1 − Ji2)
− · · · + (−)k

Γ (N + 1)

Γ (N − J)

}

.

We stress that since the correlation function (43) is known to be protected
we have hereby determined its value to all orders in the loop expansion and
to all genera. A similar statement of course holds in the BMN limit where
we get

1

J NJ

〈

TrZJ
k

∏

i=1

Tr Z̄Ji

〉

−→ gk−1
2

k
∏

i=1

sinh
( g2 ri

2

)

g2

2

. (48)

The method of Ginibre allows one to evaluate (in principle) any expectation
value involving a product composed of factors of the type TrZJi and Tr Z̄Ki.
This type of expectation value is also accessible by character expansion
[31, 32]. Using either approach one can obtain exact expressions for a large
number of protected two- and three-point functions, for instance

〈

ΩJ
0 (x)Ω̄J0,J1,...,Jk

0 (0)
〉

=

(

g2
YM

8π2x2

)

1

J + 1

〈

ΩJ+1(x)Ω̄J0+1,J1,...,Jk(0)
〉

,

(49)
where to arrive at (49) we have contracted by hand the two impurities.

In general correlation functions of scalar BMN operators are not pro-
tected. Of course, at tree level any two- or three-point function of such oper-
ators can be reduced to an expectation value in a zero-dimensional Gaussian
one-matrix model, the strategy being the same as above: One first factors
out the trivial space-time dependence and next contracts by hand the finite
number of impurities. However, not all the resulting matrix model expec-
tation values can be evaluated by the method of Ginibre or by character
expansion. As an example, let us consider a tree-level two-point function of
operators of the type appearing in Eq. (7)

〈

ΩJ
n(x)Ω̄J

m(0)
〉

=
(

g2
YM

8π2x2

)J+2 J
∑

p,q=0

e2πi(np−mq)/J
〈

Tr(ZpZ̄q)Tr(ZJ−pZ̄J−q)
〉

. (50)
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Clearly the product of traces in Eq. (50) is not diagonalized by the similarity
transformation (46)6. However, there exists a strategy by means of which one
can evaluate any expectation value of traces of words of Z’s and Z̄’s order by
order in the genus expansion, namely a strategy based on loop equations [16].
Loop equations express the invariance of the matrix model partition function
under certain analytical re-definitions of the integration variables. These
equations are most conveniently expressed in terms of generating functions.
For the correlator in Eq. (50) the relevant generating function is

W (x1, y1;x2, y2) =

〈

Tr

(

1

x1 − Z

1

ȳ1 − Z̄

)

Tr

(

1

x2 − Z

1

ȳ2 − Z̄

)〉

. (51)

This function fulfills

W (Xe
−iπn

J ,Xe
−iπm

J ;Xe
iπn

J ,Xe
iπm

J ) = (52)

eiπ(m−n)
∞

∑

J=0

(XX̄)−J−2
J

∑

p,q=0

〈

Tr(ZJ−pZ̄J−q)Tr(ZpZ̄q)
〉

e2iπ(np−mq)/J ,

and allows us to easily recover the sum in Eq. (50) by a contour integration
(over XX̄). The result of the contour integration depends on the analyticity
structure of W (x1, y1;x2, y2). It can be shown thatW (x1, y1;x2, y2) only has
singularities in the form of poles [16]. For the choice of arguments of W in
Eq. (52) the position and the order of the poles, not surprisingly, depend on
n and m. Taking this into account one finds in the BMN limit at tree level
and to genus one [7, 8, 16]

〈

ΩJ
n(x)Ω̄J

m(0)
〉

−→
(

g2
YM

8π2x2

)J+2

Snm, Snm = δnm + g2
2Mnm + O(g4

2),

where Snm was defined (more generally) in Eq. (10) and where

Mnm =Mmn =



























1
24 n = m = 0
0 n 6= 0,m = 0
1
60 − 1

24π2n2 + 7
16π4n4 n = m and n 6= 0

1
48π2n2 + 35

128π4n4 n = −m and n 6= 0
2π2(n−m)2−3
24(n−m)4π4 + 2 n2−3 n m+2 m2

8 n2 m2 (n−m)2 π4 |n| 6= |m| and n 6= 0 6= m

6 There exists another possibility for diagonalizing a complex matrix, namely writing
Z = V DW † with V and W unitary and D diagonal. Exploiting this on can obtain
expectation values of products of traces of the form Tr(Z̄Z)k and that even for a
general U(N)×U(N) invariant potential [33,34], but also not this method applies to
a correlation function like the one in Eq. (50).
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The genus two result can be found in references [8, 16]. One can of course
also, by means of the effective vertex H express the one-loop correction to
non-protected two-point functions, i.e. the quantity Tαβ , as a matrix model
expectation value. As stressed earlier, when aiming at determining con-
formal dimensions one has no need of knowing neither Sαβ nor Tαβ. The
quantity Sαβ nevertheless has an interesting interpretation on the string
theory side as it is conjectured to provide the transition between gauge
theory operators and string states encompassing the effects of string inter-
actions [35–37].

4. Conclusion

Matrix model techniques played an important role in the early investi-
gations of BMN gauge theory leading to the discovery of the genus counting
parameter g2 and allowing, via the use of effective vertices, for the first cal-
culations of higher genus corrections to the one-loop anomalous dimension
of BMN operators [7, 8, 15, 22]. Later, it was understood that by focusing
on the dilatation operator of the N = 4 Super Yang Mills theory these
calculations could be considerably simplified, being equivalent to the diago-
nalization of a simple quantum mechanical Hamiltonian [20]. The quantum
mechanical picture applies also to the full N = 4 Super Yang Mills theory
and this has revealed a very promising and yet to be explored underlying
integrability structure [13]. Integrability at the planar one-loop level was
established in [21] for scalar operators and was recently generalized to all
operators in [38, 39]. The study of [13] provided evidence for two-loop inte-
grability and lead to the conjecture that integrability would hold at all loop
orders.

I thank my collaborators Niklas Beisert, Bertrand Eynard, Jan Plefka,
Gordon Semenoff and Matthias Staudacher for many inspiring and enjoyable
discussions and other events. Furthermore, I thank the organizers of the
K2003 workshop for their kind hospitality.
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