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The Krakow-Orsay collaboration has applied methods borrowed from
equilibrium statistical mechanics and analytic combinatorics to study the
geometry of random networks. Results contained in a series of recent pub-
lications and concerning networks that are either uncorrelated or causal are
briefly overviewed.
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1. Introduction

The purpose of this communication is to overview the results published
recently in the Physical Review E by the Kraków–Orsay collaboration [1–3]
and devoted to the geometry of random networks1. The discussion is sketchy
and aimed to give the reader only a general idea of what has been achieved.
All the useful details can be found in the original papers.

Network study is not our original field of research: we are trying to
exploit the experience gained working on a different subject — quantum
gravity, or, more precisely, statistical mechanics of random manifolds —
in another context and to fill the gap between two communities, that are
differently motivated but often confronted to manifestly similar problems.
This is a status report, in the same vein as my talk at the Utrecht symposium
in 2001, addressed to a similar audience [5].

There are two complementary approaches to random networks, and ac-
tually to numerous complex systems: the diachronic and the synchronic one.
In the former one focuses on the time evolution of the system. It is particu-
larly suitable if the aim is to uncover the evolution dynamics. In the latter
one works at a fixed time, considering an ensemble of related systems, with

∗ Presented at the Workshop on Random Geometry, Kraków, Poland, May 15–17, 2003.
1 Excellent general reviews on network physics can be found in Ref. [4].
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the aim of finding common structural traits. Being primarily interested in
the geometry of networks, we have adopted the synchronic approach.

The goal is to develop a statistical mechanics of random networks. In
the statistical mechanics of gases one starts with an ideal gas. Analogously,
working with uncorrelated nodes is a natural first step in our research. For
definiteness, we consider undirected networks only.

2. Networks with uncorrelated nodes

2.1. Formulation of the model

The model is compactly defined by writing the partition function as a
formal integral

Z ∼
+∞
∫

−∞

dφ exp
1

κ

[

−φ2/2λ +
∑

n>0

pnφn

]

. (1)

The set of “coupling constants” pn is eventually identified with the degree dis-
tribution, while κ and λ are control parameters. Of course, strictly speaking,
the integral does not exist. However, the perturbative series in the “coupling
constants” is well defined and the individual terms can be, as in field the-
ory, represented by Feynman diagrams. The idea is to identify the labeled
Feynman diagrams of the minifield theory defined by (1) with the graphs
representing the network and to attach to every such graph a weight equal
to the corresponding Feynman amplitude. All this is explained in detail in
Refs. [1, 2].

Consider the ensemble where N and L, the number of nodes and links,
respectively, are fixed. Using the Feynman rules one finds that the weight w
of a labeled non-degenerate graph — i.e. one without tadpoles and multiple
connections between nodes — is up to an irrelevant factor given by

w ∼
N
∏

j=1

nj! pnj
, (2)

where nj is the degree of the j-th node. This graph is, in general, not
connected.

It follows from the obvious identity

N
∑

j=1

nj = 2L (3)

that, at fixed N and L, all non-degenerate graphs are equiprobable when pn

has the Poisson form pn ∼ cn/n!, with some constant c. Hence, in this case
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graphs are those of the classical Erdös–Renyi theory [7]. In general, the sta-
tistical ensemble discussed in this section is a generalization of the classical
ensemble of random graphs to allow for an arbitrary degree distribution (see
later).

Notice, that, because of (3), the relative weights of microstates are in-
variant under the transformation pn → cn pn. We shall see later that the
ambiguity is lifted when one fixes the ratio L/N .

2.2. A few words on trees

In the “quasi-classical” limit κ → 0 only connected tree graphs contribute
to W = κ ln Z. The integral in (1) can be calculated using the saddle-point
approximation. The saddle-point condition reads

Φ = λ
∑

n>0

npn Φn−1 , (4)

and one easily checks that Φ = ∂W/∂p1, which means that Φ generates tree
graphs with one external node marked. Although Eq. (4) can be exactly
solved by Lagrange inversion, it is sufficient to use a more direct approach [6]:
Eq. (4) can only be satisfied when λ is smaller than some critical value λc.
Hence Φ is a singular function of δλ = λc−λ. Furthermore, only the singular
part of Φ is of real physical interest, since it determines the behavior of
arbitrarily large trees. And this singular part is readily found directly from
(4). The result is used to determine the distribution of the smallest distance
between pairs of nodes, the Hausdorff and spectral dimensions, etc. All this
is discussed at length in Ref. [1], where, among others, the results of Ref. [6]
are extended to the interesting case of scale-free graphs. I shall not enter
into more details here.

2.3. Algorithmic considerations

Equation (2) gives a weight to each microstate. For given L/N , this,
in essence, defines the statistical ensemble. However, in order to make this
definition being of any use, we supplement it with an explicit recipe enabling
one to construct graphs, e.g. on a computer. To this end we define a local
move transforming one graph into another. A succession of such moves
is a Markov process. The initial state of the system is rapidly forgotten
and graphs are sampled with relative frequency given by (2). The whole
procedure is a specific application of the so-called Metropolis method, widely
used in other branches of statistical physics [8].
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One move consists of three steps 2. First, we sample two distinct nodes,
say j and k. Second, we pick one neighbor of j, say i. Third, we rewire
ij → ik with probability

Prob(ij → ik) = min

(

1,
pnk+1 pnj−1

pnk
pnj

)

. (5)

It is evident, that as far as the modifications of node degrees are concerned,
the algorithm is identical to that defining the so called balls-in-boxes model
[9], defined by the partition function

z ∼
∑

{ni}

N
∏

j=1

pnj
δ



M −
N

∑

j=1

nj



 (6)

and describing M balls distributed with probability ∼ pn among N boxes
(in out case M = 2L). The constraint represented by the Kronecker delta is
in the limit N → ∞ satisfied “for free” by virtue of the law of large numbers
provided M/N = 〈n〉 ≡ ∑

n npn/
∑

n pn . When the last condition is met,
the occupation number of one box → pn when N → ∞.

The isomorphy of the graph and balls-in-boxes model implies that the
degree distribution in the graph model tends asymptotically to pn provided

L =
1

2
N〈n〉 . (7)

Although the relative weights of microstates are invariant under the trans-
formation pn → cn pn, 〈n〉 is not. Hence, the ratio L/N is fixed, once one
has decided that the degree distribution should be pn.

There is a problem, however. Graphs generated by the above described
algorithm are, in general, degenerate (as are the objects constructed in the
well-known paper by Molloy and Reed [10]; these construction is often mis-
used in the physics literature as a method of generating graphs, without due
attention to the degeneracy problem).

Our algorithm is local. The creation of degeneracies is therefore easily
forbidden: It suffices to check that i and k are neither identical nor con-
nected. But this check introduces a bias. The point is discussed in the next
subsection.

2 An equivalent and simpler definition is given in Refs. [1,2]. The one given here makes
the useful mapping on the balls-in-boxes model more evident (cf. footnote [15] in
Ref. [2].
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2.4. Finite-size effects and the degeneracy problem

The use of the Metropolis method guarantees that the degree distribution
approaches pn for large N , provided one has enough statistics, i.e. when
Npn ≫ 1, even if one forbids degeneracies. However, this condition is not
satisfied when pn has a fat tail. Then, there are large fluctuations in the tail
and introducing a constraint can bias the sample.

Assume that pn ∼ n−β at large n. At finite N the tail of pn cannot
extend to infinity, because there exists some nmax such that the expected
number of nodes with degrees n > nmax is less than unity. Neglecting all
correlations one easily finds the scaling law

nmax ∼ N1/(β−1) . (8)

It is easily seen that npn can actually be very small well below this natural
cut-off.

The bias associated with rejecting degeneracies can be evaluated [2].
Consider the symmetric adjacency matrix Cij: the elements of say the m-th
row sum up to n, the degree of the m-th node. These elements equal either
0 or 1 when the graph is non-degenerate, they are just positive integers
when the graph is degenerate. We wish to compare the number of ways the
m-th node can be connected to n other nodes, when one accepts or rejects
degeneracies. The problem reduces to counting the number of ways to place
n balls in N−1 boxes, but is not altogether trivial, since one has to take into
account the symmetry factors that appear in the weights of the degenerate
graphs as well as the shape of the degree distribution. The result at large
N is

#without degeneracy

#with possible degeneracies
∼ exp

[

−const
n2

N

]

. (9)

Notice, that although n/N is always small, n2/N may be large. We observe,
that at fixed n the rejection of degeneracies does not introduce any bias at
asymptotic N . However, at large n the rejection of degeneracies introduces a
non-uniform deformation of the spectrum. Actually, there is a cut-off scaling
like

√
N . This cut-off is smaller that the “natural” cut-off given by (8) when

2 < β < 3. And this is not a marginal case. The β exponent is like that for
most interesting networks! Apparently, forbidding degeneracies introduces
a kind of “kinematic” correlation at finite N . It is important to stress that
this is a property of the model, not a deficiency of the algorithm. Let us also
mention, that the conclusions of the above heuristic argument are confirmed
by numerical simulations.
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There is a mathematical conclusion of the above discussion: the algo-
rithm is fine. To my knowledge this is the only efficient algorithm generating
non-degenerate graphs with a given degree distribution3.

There are also physical conclusions: Independently of any specific model,
inter-node correlations are necessarily present in observed scale-free net-
works, where the tail of the degree distribution manifestly extends beyond
a cut-off scaling like

√
N . Also, the thermodynamical limit can be rather

tricky for scale-free networks.

2.5. Recent results by other people

I would like to mention a very nice result obtained by Fronczak et al. [11].
They have calculated analytically the average internode distance in graphs
with uncorrelated nodes:

〈shortest path〉 ∼ ln N

ln (〈n2〉/〈n〉 − 1)
. (10)

This formula has been proposed earlier, by other groups, but the derivation
has never been satisfactory, in my opinion. The problem is that the average
shortest path has to grow like a power of N for a generic tree with uncor-
related nodes [6]. Thus, a derivation leading to the logarithmic behavior
must use arguments that do not work for trees. This condition is satisfied
in Ref. [11], but not in earlier publications claiming the same result. Notice
that the coefficient in front of ln N diverges at the percolation threshold, i.e.

when 〈n(n − 2)〉 → 0+ (cf. the celebrated reference [10]), at the transition
to the regime dominated by trees.

Another set of related and interesting results is presented in Ref. [12].
These authors have calculated, among others, the distribution of connected
components and found the size of the percolation cluster above the percola-
tion threshold. They have also calculated the conditional degree distribution
of nodes belonging to the percolation cluster.

There are many other results of the classical theory that could be ex-
tended to graphs with a given degree distribution. Indeed, a comprehensive
discussion of the classical theory is a subject of a fat book [7]. But, we feel
we have understood some of the most salient features of the model with-
out correlations. Also, we have a numerical control of the model. Hence,
we are eager to move to the next item on our agenda, i.e. the problem of
correlations.

3 We are, of course, ready to share our numerical code with interested people.
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3. Correlations

A comprehensive theory of correlation in networks does not exist. It is
straightforward to generalize the model of the preceding section, introducing
pairwise correlations between degrees of neighbor nodes. Specific proposals
to this effect have been made, for example, in Refs. [13,14]. However, it seems
to me, that correlations of a different nature are particularly important from
the phenomenology point of view:

— Correlations induced by the growth dynamics.

— Clustering, i.e. the fact that neighbors of a randomly chosen node are
directly linked to each other more frequently than by chance.

A work on clustering is in progress, but we do not have yet results signif-
icant enough to be presented here. Let me only mention that we are dealing
with a very specific class of matrix models. On the other hand, we have de-
veloped a synchronic approach to growth processes, which is I believe worth
mentioning:

We focus our attention on trees, actually on labeled rooted trees, in
order to be able to proceed analytically. We consider a static ensemble, but
assume that the networks are endowed with a causal structure. We say a
tree is endowed with a causal structure when the labels always appear in
growing numerical order as one moves along the tree from the root towards
an arbitrary node. One can imagine that these labels refer to the time
of node formation. The approach is complementary to the more standard
diachronic one. It turns out that the presence of a causal structure generates
internode correlations, once one has summed over all possible labelings. It is,
therefore, of interest to consider models where these specific correlations do
not interfere with correlations of a different origin. Hence, we assume that
microstate weights factorize, as in Eq. (2). I have no place to enter into
details, which can be found in Ref. [3] (see also the talk by P. Bialas [15]).
Let me shortly summarize the most significant results:

— Some of the most popular growing network models, like Barabasi–
Albert’s [16], can be reformulated in our static formalism. The original
results are recovered in an elegant fashion. This shows that the widely
accepted distinction between growing and equilibrium networks is not really
correct. The opposition between diachrony and synchrony is to large extent
an illusion, except when one is interested is specific phenomena, like aging,
intrinsically reflecting the running of time.

— We derive a closed, general formula for the degree distribution.

— We also derive a closed formula for the correlation between the degree
of an ancestor and that of its descendent, when they are separated by a
geodesic distance r. Typically, the average descendent degree falls like 1/r
[17]. Manifestly, this implies a long-range correlation.
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— We further derive a general formula for the distribution of the short-
est paths connecting nodes to the root. Using this formula we show that,
generically, the length of an average such path grows at most like ln N , in
contrast to the uncorrelated trees where the growth is power-like [1, 6].

4. Concluding remarks

I am tempted to share with you a speculation, which does not rest on any
solid basis, but may animate someone’s imagination. Most present works on
networks can be classified under the following headlines:

— Geometry of networks.
— Phenomenology of networks observed in nature.
— Matter on quenched random networks (this includes e.g. Ising spins

living on networks, or the propagation of diseases).
What is manifestly missing, as far as I know, is a study of networks

whose geometry is interacting with matter living on it (like in the models of
quantum gravity, we have been working on). I am not sure that it would be
relevant for the present day phenomenology, although some experts tell me
that it might find applications in the theory of traffic and communication.
Nevertheless, I believe it would be interesting to develop, at least, some
models of that kind. I am pretty sure they would find applications in the
future.

This work was partially supported by the EC IHP Grant No. HPRN-CT-
1999-000161. Laboratoire de Physique Théorique is Unité Mixte du CNRS
UMR 8627.
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