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1. Introduction

Level dynamics is the parametric motion of eigenvalues of finite matrices
X such as

X(λ) = X0 + λY0 . (1)

The real parameter λ may be looked upon as the weight of a perturbation
Y0 of an “initial” X0 [1, 2]. If Hermitian, such matrices arise as Hamiltoni-
ans of quantum systems and level dynamics is then just a fancy variant of
perturbation theory for energy spectra.

Non-Hermitian matrices of the form (1) are encountered, e.g. as gen-
erators of dissipative quantum dynamics, for instance in master equations
i d
dt
ρ = Xρ for density operators ρ.
To derive differential equations governing the parametric level dynamics

of Hermitian matrices (1) one differentiates with respect to λ the eigenvalue
equation X(λ)|ψn(λ)〉 = qn(λ)|ψn(λ)〉 multiplies with the adjoint eigenvec-
tor 〈ψm(λ)|. The resulting set of differential equations can be revealed as a
classical Hamiltonian flow for a fictitious one-dimensional gas of interacting
particles (see below) [3]. The conventional strategy cannot be applied to ar-
bitrary complex matrices X(λ). First it can happen that such a matrix does
not have N eigenvectors — in fact, the non-Hermitian generators of dissipa-
tive quantum dynamics are often of precisely this non-diagonalizable type.
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What is, however, even more important, is that the obtained flow can not
be written as a Hamiltonian one with a real Hamilton function. Although
this is the situation perfectly acceptable from the point of view of theory of
Hamiltonian dynamical system, it is very inconvenient for making connec-
tions to the Random Matrix Theory — the main goal of the present paper.
If the Hamilton function is complex the canonical equilibrium ensemble can
not be constructed in a sensible way.

The fact that a real Hamilton function does not exist for the obtained in
this way dynamical equations is connected to the impossibility of diagonal-
izing an arbitrary complex matrix by an unitary transformation — usually
a general complex similarity transformation is needed to achieve the goal.
On the other hand, even for non-diagonalizable matrices, by a unitary sim-
ilarity transformation U we can reduce a matrix X to the triangular form.
The eigenvalues of X then appear as the diagonal elements (U−1XU)nn; all
elements (U−1XU)mn below the diagonal (i.e. the ones with m > n) vanish,
but the (U−1XU)mn with m < n do not.

2. Level dynamics of real symmetric matrices

2.1. Equations of motion

To present briefly the above outlined approach let us consider dynamical
equations for the eigenvalues of a real symmetric N×N matrixX undergoing
the parametric motion

X(λ) = X0 + λY0 ,

X0 = XT
0 = X†

0 ,

Y0 = Y T
0 = Y †

0 , (2)

and the corresponding eigenvalue equation X

X|ψn(λ)〉 = qn(λ)|ψn(λ)〉 ; (3)

here |ψn(λ)〉, n = 1, . . . , N , are the orthonormalized eigenvectors of X and
qn the corresponding eigenvalues (energies). By differentiating (3) with re-
spect to λ and taking matrix elements between the eigenvectors |ψn〉 we
obtain a closed system of differential equations for the quantities qn, pn :=
〈ψn|Y0|ψn〉, and lmn := 〈ψm|Y0|ψn〉(qn − qm),

q̇n =
dqn
dλ

= pn ,

ṗn =
dpn

dλ
= −2

∑

k 6=n

lnklkn

(qn − qk)3
,
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l̇mn =
dlmn

dλ
= −

∑

k 6=m,n

lmklkn

(

1

(qm − qk)2
−

1

(qn − qk)2

)

. (4)

The system (4) fully describes the fate of the eigenvalues when the parameter
λ , a fictitious time, is changed. The equations generalize the dynamics of
the Calogero system [4–6]. As already advertised, the system can be treated
as a Hamiltonian one (see [1–3]). To see that this is the case, we define the
following Poisson brackets for the phase-space variables qn, pn, and lmn:

{pm, qn} = δmn , {pm, pn} = 0 = {qm, qn} ,

{lmn, pi} = 0 = {lmn, qi} ,

{lmn, lij} =
1

2
(δmj lni + δnilmj − δnj lmi − δmilnj) , (5)

and check that the dynamical equations (4) turn out to be the Hamilton
ones

q̇n = {H, qn} , ṗn = {H, pn} , l̇mn = {H, lmn} , (6)

with the Hamilton function

H(q, p, l) =
1

2

∑

n

p2
n +

1

2

∑

n 6=m

l2mn

(qm − qn)2
. (7)

One may think of the equations (4) or (6) as describing the time evolu-
tion of a one-dimensional gas of particles with positions qn and canonically
conjugate momenta pn experiencing repulsive two-body interactions with
the coupling strengths lmn also undergoing temporal changes according to
the third equation of (4). It will be noted that the gas in question must
expand forever, due to the interparticle repulsion and the lack of confining
forces. Such expansion is in fact obvious from the parametric motion (2) of
the matrix X(λ) = X0 + λY0: for Y generic the eigenvalues of X(λ) behave
roughly like λ times the eigenvalues of Y0 and thus fly apart indefinitely as
λ→ ∞.

Not subject to such explosion are the levels of the real symmetric matrix

X(λ) = X0 cos λ+ Y0 sinλ . (8)

In full analogy to the foregoing this yields level dynamics with unchanged
Poisson brackets but the Hamilton function

H(q, p, l) =
1

2

∑

n

p2
n +

1

2

∑

n

q2n +
1

2

∑

n 6=m

l2mn

(qm − qn)2
(9)
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which differs from (7) by an added harmonic confining potential. The change
from the unbound parametric matrix motion (2) to the bounded one (8) can
be understood as a non-canonical transformation of the fictitious-particle
dynamics involving a λ-dependent rescaling of the coordinates as well as a
non-linear reparametrization of the time λ [3, 7].

The fictitious gas with the binding Hamilton function (9) offers a con-
venient starting point for a statistical theory of spectra of real symmetric
matrices X. The energy surface H = const. is compact and yields a nor-
malizable canonical phase space density ρ = exp(−H). By integrating ρ
over the variables pn and lmn we obtain a density of the fictitious-particle
coordinates, i.e. a joint density of the eigenvalues of X,

P (q1, q2, . . . , qn) ∼ exp

(

−

(

1

2

∑

n

q2n

))

∏

i<j

|qi − qj | . (10)

This is in fact the distribution known from the Gaussian Orthogonal Ensem-
ble (GOE) of random-matrix theory [8], which appears here as a consequence
of equilibrium statistical mechanics for an associated many-body system.

The case of general complex Hermitian matrix X can be analyzed with-
out special alterations of the above outlined scheme and repeated for
quaternion-real Hermitian matrices. In both cases the canonical equilib-
rium leads to distribution of energy levels complying with known from the
Random Matrix Theory Gaussian Unitary (GUE) or Gaussian Symplectic
(GSE) Ensemble.

Even the level dynamics of unitary Floquet matrices of periodically
kicked quantum systems (see [3]) can be cast into the form of Hamiltonian
matrix dynamics. Such Floquet matrices have the structure

F = exp(−iλV )F0 (11)

with V Hermitian and F0 unitary, both of dimension N , and λ once more
a real control parameter. Of interest is the fate of the eigenphases upon
varying λ. The resulting equations read in this case

dqn
dλ

= pn ,

dpn

dλ
= −

1

4

∑

k 6=n

lnklkn

cos
(

qn−qk

2

)

sin3
(

qn−qk

2

) ,

dlmn

dλ
= −

1

4

∑

k 6=m,n

lmklkn

(

1

sin2
(

qm−qk

2

) −
1

sin2
(

qn−qk

2

)

)

, (12)
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with qn — eigenphases of F , i.e. F (λ)|ψn(λ)〉 = e−iqn(λ)|ψn(λ)〉, pn :=
〈ψn|V |ψn〉, and lmn := i(eiqm〈ψm|V |ψn〉e

−iqm − 〈ψm|V |ψn〉). The equa-
tions, generalizing the Sutherland system [9], are also Hamiltonian, with the
Hamilton function

H(q, p, l) =
1

2

∑

n

p2
n +

1

8

∑

n,m;n 6=m

l2mn

sin2
(

qm−qn

2

) (13)

and the same Poisson brackets (5) as in the Hermitian case. Upon assum-
ing appropriate symmetries one recovers quasi-energy levels distributions
of Dyson’s Circular Orthogonal, Unitary and Symplectic Ensembles (COE,
CUE, and CSE) as equilibrium distributions.

2.2. Hamiltonian formulation and reduction

To understand the origin of the universal scheme encountered, valid for
all classical Gaussian and unitary ensembles I shall now rederive the Hamil-
tonian form of level dynamics for real symmetric matrices using a differ-
ent method which lends itself more easily to generalizations. The method
employs a certain symmetry inherent in the equation (2) or rather in its
differential form

Ẋ = Y , Ẏ = 0 . (14)

The system of differential equations (14) describes a free motion in the space
M of pairs of real symmetric matrices (X,Y ). Forming the matrix elements
of the matrices X and Y into canonically conjugate pairs (Xij , Yij) with i ≤ j
of “positions” Xij and “momenta” Yij, and defining the Poisson brackets

{Yii,Xkk} = δik , {Yij ,Xkl} = 1
2δikδjl for i < j, k < l ,

{Yij, Ykl} = 0 = {Xij ,Xkl} , (15)

we reproduce the free motion (14) as the Hamilton equations

Ẋij = {H,Xij} , Ẏij = {H, Yij} , i, j = 1, . . . , N (16)

with the Hamilton function

H =
1

2

∑

i

Y 2
ii +

∑

i<j

Y 2
ij =

1

2
trY 2. (17)

We furnish the phase space M with a differential two-form ω which in our
case reads

ω =
∑

i

dYii ∧ dXii + 2
∑

i<j

dYij ∧ dXij = tr(dY ∧ dX) . (18)
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As in the second member of the foregoing equation we shall usually omit
the indices ij on X and Y and indicate summations as the trace operation;
in employing that shorthand we must always keep in mind that only the
Xij , Yij with i ≤ j are our independent variables, and identify Xij = Xji.

The symplectic two-form ω is the exterior derivative, ω = dα, of a sym-
plectic potential α; in the present example the potential reads

α = tr(Y dX) . (19)

The symplectic form ω is used to define the Poisson brackets in a stan-
dard way. One introduces, namely, the Hamiltonian vector field XF of the
smooth function F is defined by requiring that the action of ω on the pair
of vector fields XF and Z (with an arbitrary Z),

Z = tr

(

ZX
∂

∂X
+ ZY

∂

∂Y

)

, (20)

gives the negative change of F along Z,

ω(XF ,Z) = −dF(Z) = −tr

(

ZX
∂F

∂X
+ ZY

∂F

∂Y

)

. (21)

We find explicitly

XF = tr

(

∂F

∂Y

∂

∂X
−
∂F

∂X

∂

∂Y

)

, (22)

and define the Poisson bracket {F ,G} of two functions as

{F ,G} = ω(XF ,XG). (23)

It is easy to check that this definition gives back the original Poisson
brackets (15) when we employ the particular symplectic two-form (18).

Observe now that the symplectic form ω (18) (and hence also the Poisson
brackets (15)) as well as the Hamilton function H (17) are invariant under
orthogonal transformations,

(X,Y ) −→ (OXO−1, OY O−1) , OOT = I . (24)

This symmetry under the group O(N) comes with a constant of the motion,
(the momentum map)

µ(X,Y ) = [Y,X] . (25)

The O(N)-invariance can be used to change coordinates on M in order
to obtain the eigenvalues of the matrix X among the new coordinates. To
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that end we choose the particular orthogonal transformation (24) which
diagonalizes X,

O−1XO = diag(q1, q2, . . . , qN ) =: Q . (26)

Obviously the matrix O is not uniquely determined by the matrix X. Nev-
ertheless we can always choose one such a matrix for each X that the below
outlined construction of coordinates is correct.

We subject the matrices Y and µ to that very same transformation and
call the resulting matrices

P := O−1Y O , l := O−1µO . (27)

To rewrite our Hamiltonian dynamics (14) alias (16) in new coordinates
we consider the differential of X. With the help of the one-form

W := O−1dO = −WT (28)

we get
dX = d(OQO−1) = O (dQ+ [W,Q])O−1. (29)

We shall also need the differential dW

dW = d(O−1dO) = −O−1dOO−1 ∧ dO = −W ∧W. (30)

We can now express our symplectic potential α in the new coordinates,

α = tr(Y dX) = tr(P (dQ+ [W,Q])) = tr(PdQ) − tr(lW ). (31)

As its differential we have the symplectic two-form

ω = dα = tr(dP ∧ dQ) − tr(dl ∧W ) + tr(lW ∧W )

=
∑

i

dpi ∧ dqi + 2
∑

i<j

dlij ∧Wij

−2
∑

i<j<k

(lijWjk ∧Wik + likWij ∧Wjk + ljkWik ∧Wij) , (32)

where pi with i = 1, . . . , N are the diagonal elements of the matrix P and lij
the elements of the antisymmetric matrix l.

As new coordinates on M we choose now N functions qi, N functions
pi, N(N − 1)/2 elements of the antisymmetric matrix l and N(N − 1)/2
independent coordinates parameterizing the orthogonal matrix O. A short
calculation expresses the Hamilton function

H = 1
2trY 2 = 1

2 trO−1Y 2O (33)
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in terms of the new coordinates. As a result we find exactly the Hamiltonian
function of level dynamics (7). Moreover, upon using (21), (23), and (32)
we derive the Poisson brackets in the new variables and recover the ones
previously given in (5). The considerations carry over immediately to real
symmetric matrices of the form (8).

Adaptation to the unitary case (11) demands only minor changes. The
phase space is now parameterized by pairs of matrices (X,Y ), defined as

X = F , Y = iF−1V . (34)

The symplectic structure given by the same form ω (18) together with the
Hamilton function

H = −1
2tr(XY )2 (35)

leads to (34) as the solution of the Hamilton equations. The procedure
quite analogous to the one presented above for Hermitian matrices gives the
desired equations (12). To this end one diagonalizes F with the help of an
unitary U :

U †FU = exp(−iQ) , Q = diag(q1, q2 . . . , qN ) (36)

and, as previously, defines l as the image of the constant of the motion (the
momentum mapping) µ = [X,Y ] under the rotation by U

l := U †µU , (37)

which, after straightforward calculations, gives

l = i(exp(iQ)v exp(−iQ) − v) , (38)

with v := U †V U . The equations of motion expressed in the new variables
qn, pn := vnn, and lnm are now given by (12), and the Hamilton function
(35) reduces to (13). Other symmetry classes are treated in the same way,
the only differences concern the diagonalizing matrix U , which reduces to a
real orthogonal one in for COE and a unitary, symplectic one for CSE.

3. Level dynamics of complex matrices

The parametric motion (1) for arbitrary complex matrices can be written
as a real one, instead of pairs of complex matrices (X,Y ) we may choose
quadruples of real ones through X = X(1) + iX(2), Y = Y (1) + iY (2) with
X(a), Y (a), a = 1, 2; the phase space is then a 4N2 dimensional real manifold.
The dynamics becomes Hamiltonian if we introduce the following symplectic
structure

α = Re tr(Y dX†) , ω = dα = Re tr(dY ∧ dX†) , (39)
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and a real, positive Hamilton function

H =
1

2
trY Y † =

1

2

N
∑

i,j

(

Y
(1)
ij

)2
+

N
∑

i,j

(

Y
(2)
ij

)2
. (40)

As already mentioned one cannot mimic exactly the procedure applied in the
Hermitian and unitary cases. Nevertheless the symplectic structure (39), as
well as the Hamilton function (40) just introduced are invariant under the
action of the unitary group U(N)

(X,Y ) −→ (UXU−1, UY U−1) , UU † = I . (41)

As in the previous section, we find the (matrix) constant of the motion

µ(X,Y ) :=
1

2

([

Y,X†
]

+
[

Y †,X
])

. (42)

Now a unitary transformation (41) putting X to the triangular form

Z := U †XU , Zij = 0 for i > j ; (43)

can be always found (see e.g. [10]) with the diagonal elements Zii being the
eigenvalues of X. The same transformation performed on the matrices Y
and µ,

P := U †Y U , l := U †µ(X,Y )U =
1

2

(

[P,Z†] + [P †, Z]
)

, (44)

yields (in general full) complex matrices P and l. Now, one can reexpress
the symplectic forms (39) in terms of P , l and the 1-form

W := U †dU = −W † (45)

as

α = Re tr(Y dX†) = Re tr(P (dZ† + [Z†,W †])) = Re tr(PdZ†) − tr(lW ) ,

ω = dα = Re tr(dP ∧ dZ†) − tr(dl ∧W ) + tr(lW ∧W ) . (46)

Mere inspection reveals the Poisson bracket between Z and P to be canon-
ical,

{Pij , Z
∗
kl} = 2δikδjl , {Pij , Zkl} = {Zij , Z

∗
kl} = {Pij , P

∗
kl} = 0 (47)

and the Poisson brackets of Pij and Zij with lkl and Ukl to vanish. Moreover,
the Poisson brackets for the lij do not depend on the Ukl. Indeed, let F ,
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G be two functions depending on the components of l only and XF , XG

the corresponding Hamiltonian vector fields calculated according to (21). A
straightforward calculation shows that

{F ,G} = ω(XF ,XG) = −tr

(

l

[

(

∂F

∂l

)T

,

(

∂G

∂l

)T
])

, (48)

where ∂F
∂l

is the matrix with the elements ∂F
∂lij

etc. In particular, for the lij
themselves we obtain the brackets related to the Lie algebra u(N),

{lpq, lmn} = lpnδmq − lmqδpn. (49)

As in the case of Hermitian matrices, we can compactify the motion by con-
sidering (8) instead of (1) and look for the canonical equilibrium distribution.
After integrating the irrelevant variables we recover for the distribution of
the eigenvalues

P ({Zii}) ∼ exp

(

−

N
∑

i

|Zii|
2

)

∏

i<j

|Zii − Zjj|
2 (50)

which is well known as the joint density of eigenvalues of Ginibre’s ensemble
[11] of random complex matrices.

4. Summary and conclusions

In the previous section I have shown how, with the help of parametric
level dynamics, obtain the known distributions of eigenvalues for various en-
sembles of unitary matrices (Gaussian and circular orthogonal, unitary and
symplectic, as well as Ginibre ensembles) using a unifying approach of reduc-
ing the dynamics via symmetry of the underlying symplectic structures. It
is to stress that there are still some conceptual problems connected with the
presented approach. For example all considered dynamical systems posses
many independent, additional integrals of motion ( [5, 6]), which should be
taken into account when calculating equilibrium distributions. First step in
this direction were taken in [12,13], where it was shown that corrections due
to other constants of motion are of the order 1/N where N is the dimension
of the considered matrices.

More detailed treatment of the presented results are given in [14, 15] on
which the present paper was entirely based.
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