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The article presents a selected set of recent results from numerical in-
vestigations of QCD at finite temperature. It is focused (i) on the present
understanding of thermodynamic properties of QCD in the presence of
dynamical quarks at various masses and at small yet phenomenologically
relevant values for the baryon density and (ii) on a fairly new approach to
studying thermal hadronic excitations.
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1. Introduction

Understanding the properties of elementary particles at high tempera-
ture and density is one of the major goals of contemporary physics. This
purpose is served by the running, commissioned and planned heavy ion ac-
celerators. On the theory side, much information has been delivered by
numerical simulations of lattice QCD. Static-equilibrium physics is well un-
der control in the continuum limit for the pure gauge theory without quarks.
Calculations with dynamical quarks are currently limited, with some excep-
tions, to pion masses mπ ≃ 300 MeV and are still affected by lattice cutoff
effects. Nevertheless, results on the critical temperature, the phase diagram
and the equation of state are becoming reliable quantitatively due to the use
of so-called improved actions which reduce the discretization effects. More-
over, the systematic errors can and will be reduced in future computations.
Beyond that, considerable progress has been made recently in the problem
of studying QCD at non-vanishing chemical potential and in addressing real-
time properties at finite temperature QCD. These advances are in the focus
of this contribution.
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2. Thermodynamics

Full QCD, i.e. strong interactions in the presence of dynamical quarks,
is expected to have a rich phase diagram depending crucially on the values
of quark masses and chemical potentials corresponding to baryon densities
of various flavor. Expectations on the phase diagram are mostly borne out
off studies of σ-models with, presumably, the same global symmetries as
relevant for QCD in the vicinity of the phase transition to the plasma phase
where long range correlations dominate the dynamical behavior. These ex-
pectations [1, 2] are summarized in Fig. 1 in the plane of degenerate u- and
d-quark masses and an independent value for the strange quark mass.
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Fig. 1. Expectations (left) and results (right) on the phase diagram in the plane of

degenerate u- and d-quark and strange quark masses. (The right plot is from [12].)

For instance, in the limit of infinitely heavy (static) quarks the transition
is of first order and in the class of a (three-dimensional) Z(3) Potts model.
The region of first order transitions ends in a critical (second order) line
with the nature of a Z(2) Ising model [2].

For two massless flavors one generally expects a second order chiral tran-
sition with O(4) behavior. This is subject to the effective restoration of the
(triangle) UA(1) anomaly: if topologically non-trivial gauge field configura-
tions have died out sufficiently at the chiral transition temperature the two
flavor transition would be first order [1]. The current lattice understanding
is that they have not [3], correspondingly all indications point to a continu-
ous behavior at the critical temperature — yet, evidence for a critical O(4)
behavior is not universal [4–8]. Since this problem is related to continuum
symmetries being fully respected on the lattice further progress depends on
either being able to carry out the continuum limit prior to the chiral one or
finding lattice actions with improved chiral properties which are tractable
numerically. Much work has been devoted to the latter approach recently [9].
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For three massless flavors the transition most likely is first order. Expec-
tations and lattice results agree on that. The region of first order transitions
will end in a critical line. QCD on that line is expected to be in the three-
dimensional Z(2) class [2] which has been supported by lattice simulations
recently [10].

With this knowledge it becomes somewhat easier to follow the line in the
plane of non-degenerate masses, either by direct simulations at appropriate
mass values or by reweighting in the quark mass. The present understanding
based on simulations with standard staggered discretizations is shown in
Fig. 1. In physical units, the critical end point for three degenerate quarks
lies at a pion mass of about 300 MeV [10, 11]. Assuming that the slope of
the line is correctly approximated by the reweighting method [12] — with
some support from the data points coming from direct simulation [12–14]

— the ratio of critical strange to physical u-quark mass of mcrit
s /mphys

u ≃ 10
would already be too small for QCD at the realized mass values being first
order [12]. This becomes even more unlikely in view of the observation that
the three-flavor critical end point moves to pion masses considerably less
than 200 MeV in a computation based on an improved fermion action i.e.
an action which leads to smaller discretization effects.

Critical temperatures, at least for degenerate quarks are known some-
what longer [15–20]. In the chiral limit Tc amounts to 175(5) MeV for two
flavors [15, 17] and is, quite independent of the quark mass, about 20 MeV
lower for three [15]. Again, these numbers originate from coarse lattices,
however, improved actions have been used and, moreover, there is agreement
in the two-flavor case between Wilson [17] and staggered [15] discretizations.

Much progress has been achieved in numerical studies of QCD at non-
vanishing baryon density or chemical potential µB = 3µq. At µq 6= 0
the action becomes complex and Monte Carlo simulations are not possible.
Reweighting zero temperature µq = 0 configurations to finite µq fails [21].
The new approaches are less ambitious insofar they are limited to µq val-
ues which are small but phenomenologically interesting as they are in the
range important for RHIC physics [22], µB ≃ 50 MeV. The three differ-
ent techniques being used are (i) multiparameter reweighting [23, 24] from
µq = 0 configurations at T ≃ Tc, (ii) analytic continuation [25,26] of results
at imaginary µq where simulations are possible [27] and (iii) Taylor expan-
sion [28–31] around µq = 0. These ways, the critical temperature Tc(µq)
was mapped out as a function of the chemical potential for NF = 2 [25,30],
NF = 2+1 [24] and NF = 4 [26]. In [24] also the location of the critical end-
point was estimated. Where comparisons are possible reasonable agreement
was found. Some results are shown in Fig. 2. As such, they suggest that the
deviation of Tc from its value at µB = 0 is small at RHIC. Moreover, there
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Fig. 2. The critical temperature as a function of the chemical potential µB = 3µq

[25, 30]. Tf is the chemical freeze-out temperature obtained from fitting statistical

models to particle ratios measured at various heavy ion collision experiments [32].

Also shown is the estimate of the critical end-point [24].

seems to be a large region in the (µB , T ) plane where the chemical freeze-out
temperature Tf from statistical models [32] is considerably lower than the
critical temperature which would leave interesting experimental options.

The techniques mentioned in the last paragraph have also been used
to compute the pressure at non-vanishing chemical potential [33, 34]. For
instance, in the Taylor expansion approach, the difference to the pressure at
vanishing µq is expressed as a series in the fugacity µq/T ,
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The coefficients cp(T ) are appropriate derivatives of the partition function
with respect to µq and are evaluated at zero chemical potential. In [34] the
series was truncated at fourth order. For comparison, one should recall that
in the Stefan–Boltzmann limit the sixth order term vanishes at zero quark
mass and is small at finite values. In Fig. 3 (left) the correction is plotted as
a function of µq/T0 where T0 is the critical temperature at vanishing chemi-
cal potential. The correction rises steeply across the transition and peaks at
about 1.1T0 before rapidly approaching the form ∆(p/T 4) = αT−2 charac-
teristic of the Stefan–Boltzmann limit, with the coefficient α having 82% of
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the continuum SB value. The comparison with the pressure at µq = 0 [35]
suggests that the correction gives a significant contribution at temperatures
in the interval [0.9T0, 1.3T0] and for µq/T0 > 0.5 only and decreases in im-
portance as T rises further. To the right of Fig. 3 the quark number density
nq is shown which can be obtained similarly to Eq. (1). As µq increases,
nq rises steeply as the plasma phase is entered. Similar results have been
obtained by [31,33].
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Fig. 3. The µq dependent contributions to the pressure (left) as a function of tem-

perature at various values for the chemical potential. T0 is the critical temperature

at µq = 0. To the right, the quark number density is shown. Both results are

from [34].

As a by-product of the Taylor expansion approach one obtains results
for susceptibilities [34] which are shown in Fig. 4. The susceptibilities are
related to event-by-event fluctuations e.g. in charged particle multiplicities
which have been proposed as signals for plasma formation [36]. The left
figure contains results at vanishing chemical potential. Here χq denotes
the quark number susceptibility, χI the isospin one and χC is the suscep-
tibility for charge. For T ≤ T0 there is a significant difference between χq

and χI , implying anti-correlated fluctuations of nu and nd. The difference
decreases rapidly above T0 and vanishes in the infinite temperature limit (de-
noted by the SB lines in the figure). Whether this difference is practically
zero already at temperatures around, say, 2Tc is currently being debated
[31, 37, 38]. Finally, the right of Fig. 4 shows the quark number suscep-
tibility for various values of µq. The peak which develops in χq when µq

is increased is a sign that fluctuations in the baryon number density are
growing as the critical end point in the (µq, T ) plane is approached.
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Fig. 4. Susceptibilities at vanishing chemical potential (left) and for various values

of µq/T (from [34]).

3. Thermal hadron masses

Lattice simulations inevitably are carried out in Euclidean space-time.
To make predictions for real-time processes, in general an analytic continu-
ation to Minkowski space is necessary. At zero temperature, this is easy for
particle masses and certain matrix elements. At finite temperature this is
more complicated since e.g. the momentum space propagator is defined at
discrete Matsubara frequencies 2πTn (for bosons) only. Moreover, Lorentz
invariance is lost due to the presence of the heat bath causing, in general, dif-
ferences between temporal and spatial correlators. Thus, lattice results for
the more readily accessible screening masses can not immediately be used
for the interpretation of experimental data. Temporal correlators, on the
other hand, are hampered by the fact that the temporal extent of the sys-
tem is physically limited by the inverse temperature which makes it difficult
to isolate a ground state contribution normally dominating the correlators
only at large distances.

The full information about the mere existence of plasma excitations and
their properties as locations and widths eventually is contained in the spec-
tral density σH(p0, ~p) for a channel with quantum numbers H. It is related
to the temporal correlation function GH(τ, ~p) at imaginary time τ as

GH(τ, ~p) =

+∞
∫

0

dp0

2π
σH(p0, ~p)

cosh[p0(τ − 1/2T )]

sinh(p0/2T )
. (2)

Ideally, by means of Eq. (2) one would like to extract the spectral density
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directly. Since the temporal correlation function is given as a discrete set
of noisy data points only this is an ill-posed problem. Progress has been
made recently [39] by applying the maximum entropy method (MEM) [40]
which attempts to reconstruct the most likely spectral density, taking into
account prior knowledge such as the perturbative behavior at large energies
by means of a default model. The method has been successfully applied in
various fields [40] and also recently in the context of zero temperature QCD
where it was possible to disentangle the contributions of various excited
states to a given correlation function [39, 41].

At temperatures above Tc it is of particular importance to be able to
separate genuine (quasi-) particle contributions to σH from those arising
from the free two-quark cut which are expected to dominate at very high
temperatures also in the interacting case. For instance, in the pion channel,
at zero quark mass, the free spectral density is given by (p = |~p|)

σfree
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Nc

8π2

(
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)

{
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(
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[
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4T )

−
ω

p

]}

. (3)

It appears that MEM is capable of reproducing the free spectral density
including the temperature effect in the infra-red as is shown in Fig. 5 (left):
here, the free zero and non-zero temperature spectral densities are shown
plus the output of a MEM analysis of a free continuum propagator at finite
temperature [42].

On the other hand, one has to control the UV effects of the finite lattice
cut-off. At the boundaries of the Brillouin zone energy bins are more densely
populated before the amount of available momenta dies out [43]. This leads
to the peaks shown to the right of Fig. 5 which move towards the continuum
result with increasing lattice cut-off 1/a ∼ Nτ .

Given these encouraging findings in the free case, one may lend some
trust to the first results [44] for the vector channel finite temperature result
at small quark mass shown in Fig. 6. The main features of the data are
that the ρ peaks at temperatures below Tc, all computed at roughly the
same physical quark mass, broaden with rising T and seem to disappear
above Tc, changing to broad “resonance” like structures whose locations move
proportional to the temperature. The vector spectral density is immediately
related to a physical process, namely the cross section for the production of
dilepton pairs. At vanishing momentum the relation reads

dW
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∣

∣

∣
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=
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p2
0(e

p0/T − 1)
σV (p0,~0) . (4)
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The rate is shown to the right of Fig. 6. The resonance-like enhancement of
σV translates into the enhancement of the dilepton rate over the perturbative
tree-level rate [45] for energies in the interval between 4T and 8T . In contrast
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the hard thermal loop result [46]. (From [44]).

to hard thermal loop calculations [46] where σV diverges at low energies, here
the spectral density drops rapidly. From inspecting the correlation function
it becomes clear already that σV vanishes ∼ pα

0 with some power α in the
p0 → 0 limit. Establishing in detail the behavior of spectral densities in
the infrared, however, is rather difficult — for a first attempt see [47] —
although it would be very interesting as the zero energy limit is related to
transport coefficients [48] and thus to non-equilibrium properties.
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4. Conclusion

The analysis of finite temperature QCD including dynamical quarks by
means of numerical lattice simulations is steadily progressing. Moreover, I
have reported on two big steps forward having been achieved by exploiting
new techniques. There are first attempts to extract spectral densities in an
unbiased way and first quantitative results are available now on QCD at
small yet interesting values for the chemical potential. These include the
critical temperature as well as the equation of state. None of the results
has been obtained in the continuum limit yet but with new machines in the
Teraflops range coming into operation soon, the systematic errors will be
reduced and the analyses will be refined.

It is a great pleasure to thank Z. Burda and J. Jurkiewicz for the invi-
tation to an inspiring workshop taking place in a marvelous atmosphere.
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