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The gonihedric spin model was first introduced as the action for a dis-
cretized tensionless string in a discretized embedding space. Afterwards
was found that there are interesting features on the dynamical behavior
of this model in 3 dimensions (as it was first formulated) that make us
think on glassy spin model without inherent disorder. Extensive simula-
tions have been carried out in the 3-dimensional model. In the following
I will report on a work composed of two different but related parts. The
first part is a numerical study through Monte Carlo simulations of the dy-
namical properties of the 2 dimensional version of the model (i.e. the loop
model), which is much simpler due to the fact that it has trivial thermo-
dynamical properties. The second part consists on an analytical approach
of this 2-dimensional loop model coupled to gravity. We solve partially the
associated two-matrix model via a reduction to an equivalent one matrix
model and saddle point methods with the last one-matrix model.

PACS numbers: 75.10.Hk, 68.35.Ja, 04.60.Nc, 04.60.Kz

1. Statistical model of loops in 2D

The gonihedric spin model was first introduced by Savvidy in relation
to a discretized model for a tensionless string theory [1], but very soon the
spin model gained interest by itself. Also its extension to a self-interacting
surfaces (κ 6= 0) showed a very rich family of models with different kind of
critical points and interesting dynamical properties [1–3]. Extensive numer-
ical and theoretical work appeared [4–7] and some interest about the glassi-
ness of the 3-dimensional gonihedric model arosen [8–12]. This is precisely
the aspect of the model that has motivated us to study the 2-dimensional
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version of the model. Its trivial thermodynamics motivates us to investigate
whether this model also has glassy behavior or not. This would provide a
toy model for glassy phenomena without inherent disorder on the couplings.

So the spin model we are going to investigate is related to a model of
loops in 2 dimensions. We are going to compare this model and the results
we obtained from analogous simulations in a 3-dimensional version of this
spin model [12]. But before we go into the analysis of the model let us define
it in terms of spin variables.

Consider the following Hamiltonian

H2D
gonih = −κ

∑

〈i,j〉

σiσj +
κ

2

∑

〈〈i,j〉〉

σiσj +
1 − κ

2

∑

[i,j,k,l]

σiσjσkσl (1.1)

in a two-dimensional lattice1, where 〈i, j〉 means sum over nearest neighbors,
〈〈i, j〉〉 means sum over next to nearest neighbors, and [i, j, k, l] means over
spins forming plaquettes on the lattice.

This Hamiltonian has some odd characteristics. The most important
of all is that the space of symmetric vacua is extremely large, in fact it is
exponentially large with the dimension of the lattice L. In particular, the
simultaneous flip of all the spins that belong to any set of non-crossing lines
leaves the energy of the ferromagnetic ground state unchanged2 [13]. This
symmetry is even larger in the κ = 0 case where the lines can cross each
other. This provides a very special landscape for the energy function of our
model that in its 3-dimensional version makes the system exhibit a very clear
glassy behavior associated to a thermodynamical phase transition [10]. This
is precisely the aim of this work: to determine whether or not the same kind
of behavior can be found in 2 dimensions given that the 2D model has no
thermodynamical phase transition.

Let us first see the relation between this model and the loop model
we announced. If we look at the energy of a given configuration we can
see that due to the precise fine tuning of the couplings all the energy is
concentrated at the bending points of the loop (surface in this 3D case) that
is the boundary between the two different phases of the system (i.e. between
plus and minus spins), and that wherever there is a crossing of this surface

1 The 3-dimensional counterpart has slightly modified couplings. The explicit form is

H
2D
gonih = −2κ

∑

〈i,j〉

σiσj +
κ

2

∑

〈〈i,j〉〉

σiσj +
1 − κ

2

∑

[i,j,k,l]

.

The reason is that the number of neighbors changes from 3D to 2D, thus the couplings
have to change too as we will argue.

2 In the 3-dimensional case this symmetry is generated by the flip of planes rather than
lines.



A Model of Loops in 2D 5033

with itself (or with another loop) there is another concentration of extra
energy. So at the end of the day we can write the energy of the spin model
(or the loop model) as follows

E = n2 + 4κn4 , (1.2)

where n2 is the number of bending points and n4 the number of self-crossing
points of the loop that separates the plus and minus spins regions.

This is exactly the same that happens in the 3-dimensional version of the
model. In fact the couplings are precisely chosen to exhibit these features.
But all this has very different consequences for 2 dimensions or 3 dimensions.
The main difference between this 2D loop model and the corresponding 3D
surface model is that the action of the surface in 3D is proportional to the
linear extent of the surface (see Fig. 1(a)) and the roughness of it, while the
action for the loop is not depending on how big it is but on how many times
it bends (see Fig. 1(b)). Thus in 2 dimensions the energy of the loop do not
depend on its size but on the shape of it (although the energy barriers do
eventually depend on the size of the loop).
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(a) (b)

Fig. 1. Examples of configurations of the system in 3D — (a) and in 2D — (b).

The energy is concentrated on the bending and crossing points (2D) and lines (3D).

1.1. Thermodynamical behavior

Let’s now take a look at the thermodynamical properties of this spin
model taking as a reference its 3-dimensional counterpart [5, 12]. Let us
begin with the special case of κ = 0 that is exactly solvable in infinite vol-
ume and reducible to an easy-computable sum for finite volume. The exact
solution for the model with κ = 0 shows us that there is no phase transition
at finite temperature. If we take a look at Fig. 2 we will see the infinite vol-
ume energy function and susceptibility compared to the numerical results of
simulations and to the exact finite volume calculation. All the discordances
between simulations and the infinite volume calculations are due to finite
volume effects as we can see comparing the simulations with the exact finite
volume calculations. For the other cases with κ 6= 0 there is no infinite
volume exact solution nor easy-computable finite-volume expression but the
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Fig. 2. (a) — energy function and (b) — specific heat of the system for κ = 0. The

exact function at infinite volume, at finite volume, and the Monte Carlo simulations

are plotted.

simulations performed do not show great differences with the κ = 0 case
(see Fig. 3). The only remarkable difference is the appearance of a second
structure for sufficiently large κ. This second structure can be interpreted
as the appearance of a new energy level for the plaquette variables. This has
been studied to see whether it evolves into a peak at large volumes, but no
volume dependence of this structure has been found, so there is no evidence
of phase transition.

On the other hand the same model in three dimensions exhibits a quite
complex phase space. For κ = 0 there is a critical temperature Tc where the
system changes from ordered to disordered phase through a first order phase
transition, and a second temperature Tg that is between two different dy-
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Fig. 3. (a) — energy function and (b) — specific heat of the system for κ = 0. The

exact function at infinite volume and the Monte-Carlo simulations are plotted.

namical phases: a glassy phase and a supercooled phase (see Fig. 4) [9,11,14].
Increasing κ we find from certain value on that this second temperature Tg

either is very close to the thermodynamical temperature Tc or they coincide,
and that this thermodynamical phase transition changes from first to second
order.

Thus we have seen that this models from 3 dimensions to 2 dimensions
changes a lot its thermodynamical behavior. From having first/second order
phase transitions (depending on the value of κ) on 3D to trivial thermody-
namics without any phase transition on 2D. But we also want to know
whether there is a great difference or not in they dynamical properties. In
particular we want to know if the slow dynamics and the glassy behavior
remains on the 2-dimensional model.
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Fig. 4. Energy versus temperature. The lower branch is produced heating the

ferromagnetic ground state. The higher branch corresponds to sudden quenches at

each temperatures from disordered configurations.

1.2. Dynamical behavior

We will move now to the dynamical properties of the model. We shall
report here only the κ = 0 case3.

To study the dynamics of this system we will consider a two-time corre-
lator of local observables [15]

C(t, tw) =
∑

i

ei(tw)ei(tw + t) , (1.3)

where the sum runs over all the sites in the lattice, and the variable ei(t) is
the energy4 of the site i at the time t. This object, in equilibrium, should
be independent of tw, but as we can see in Fig. 5 below some temperature
this function happens to depend on the waiting time tw, such observation is
identical to the one made for the 3-dimensional case where an even larger
dependence of this autocorrelation function on the waiting time appeared
below Tg (see Fig. 6). This is not per se a clear evidence for glassy behavior
of the model yet, so we will continue with the program we followed with the
3-dimensional model. Thus let us fit the curves that look tw-independent
(i.e. the curves that should be above the hypothetical glassy transition tem-
perature Tg). The fitting function will be of the form

Ae−(t/τ)b

(1.4)

3 Due that we have not established yet without ambiguities whether this case posses
or not glassy behavior we are not going to consider the κ 6= 0 case.

4 We could have used other kind of observables like the spin variables or the energy
per plaquette, but they have the same behavior for our purposes.
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Fig. 5. Autocorrelation functions for different temperatures and different waiting

times: (a) — curves are independent at tw (b) — some dependence in tw appears.

which is an stretched exponential. As you can see in Fig. 5(a) the agreement
between the fit and the simulations is rather good5. Now we can plot the
fitted values of τ against temperature, and we see that it increases as we
lower the temperature as if it liked to diverge at some point. If we fit this
points using a function of the form

τ0

(T − T∗)c
(1.5)

as we did in 3 dimensions, we will find a good parameterization of the di-

5 Lines are fits, points are simulation measurements. We looked for the consistency of
the fits by checking that the true value of the parameter A, i.e. A = 1 (which we know
by construction of the correlation function) were within the interval of confidence of
the fitted value
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Fig. 6. Curves of autocorrelation of the spin variables at both sides of Tg on the

3-dimensional gonihedric model.

vergence (see Fig. 7) although there is still something that is not completely
compatible with this fit. The problem with this fit is that the fitted “glassy”
temperature T∗ is not consistent with the point where the autocorrelation
function began to depend on the waiting time, as it should. This is why we
should analyze more carefully this autocorrelation function. Looking more
carefully at this autocorrelation function we can see that the dependence in
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Fig. 7. Autocorrelation time versus temperature at temperatures above 0.9.
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the waiting time tw disappears as we increase it. This means that the ther-
malization of these two time functions is extremely slow, but that could be
non-glassy-like. In Fig. 8 we can see this convergence of the autocorrelation
functions as we increase the waiting time.
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10 100

C
(t

,tw
)

t (MC steps)

C(t,100)
C(t,1000)

C(t,10000)

Fig. 8. Evolution of the autocorrelation function with the waiting time tw.

To explore better the dynamics behavior of this model we can perform
other type of experiments in our system. For example we can prepare our
system in a specific configuration, for example a lattice with two different
coexisting vacua, one inside the other (one possibility could be layer-like
vacua inside ferromagnetic one) and look at the decay process of the system
to the equilibrium. The problem with this tests is that as there is no ordered
phase in this model, we cannot prepare the system in an initial configuration
composed by two different coexisting vacua and pretend that they are more
disordered than the equilibrium-like configurations at the temperatures we
are examining, as it is in the 3-dimensional case (Fig. 9 shows the 3D decay
of a perturbed vacua to the unperturbed one. It is easy to see the different
behaviors in terms of temperature). In spite of this we performed those sim-
ulations and found that the decay behaved in the same way for all the range
of temperatures (Fig. 10(a) and Fig. 10(b) are two examples of this decays
at both sides of the hypothetical Tg). The magnitude we used to study this
decay in two dimensions is the energy difference with the equilibrium. If
we look at the value of the fitted exponent c of the function (1.4) that we
have also used in this experiments, we can see that they are really close to
one, and this suggests that the behavior may not be glassy but ‘usual’ albeit
rather slow exponential decay.
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Fig. 9. In the 3D gonihedric model: (a) — evolution of some order parameter

starting from a perturbed vacua as an initial configuration. We can see two kind of

behaviors. In (b) we see that the low temperature behavior is logarithmic. Lines

are evolutions for different initial volumes of the perturbations at a temperature

deep inside low temperature region.

In the analysis of the glassiness of the system we can introduce a new
observable; the Q parameter [15]. This parameter is defined in the following
way: after evolving a single system tw Monte Carlo steps, we make two copies
of the system and let them evolve independently, then the Q of a local
observable is the overlap of this observable between the two independent
copies of the system. In our case we will use the local spin variables

Q =
∑

i

σa
i (tw + t)σb

i (tw + t) . (1.6)
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Fig. 10. The decay of a prepared initial configuration to the equilibrium.

Then, using this Q parameter and the time overlap of the same local mag-
nitude,

Cspin(t, tw) =
∑

i

σi(tw)σi(tw + t) , (1.7)

we can perform different kind of analysis. One of those is the following. It
is known that the system must satisfy the relation

Cspin(tw, t) = Q

(

tw,
t

2

)

(1.8)

if we are in an ordinary non-glassy phase. As we can see in Fig. 11(a) and
Fig. 11(b) there are temperatures6 for which the behavior of the Q parameter

6 Remember that T = 0.8 is already a temperature where, at waiting times we are
considering, the energy auto-correlators are not tw independent.
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Fig. 11. Plots of the functions C(t, tw) and Q(t/2, tw) for different temperatures

and different tw. In (a) and (b) we see how the scaling (1.8) is satisfied for any tw.

In (c) and (d) we see that the relation of scaling is not satisfied at low temperatures.
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Fig. 12. The convergence to the scaling behavior is clear in this plot where tw has

been increased by one order of magnitude.



A Model of Loops in 2D 5043

with respect to the Cspin two times auto-correlator is what we expected,
while there are lower temperatures, like in Fig. 11(c) and Fig. 11(d) where
the relation (1.8) is not satisfied at large enough times, for the value of tw
we simulate, although the discrepancy region is moving to larger times as
we increase tw as if it would like to follow (1.8) for large tw (see Fig. 12).

1.3. Conclusions

At this point we have concluded the analysis of all our simulations with-
out any clear reason to believe that this 2-dimensional version of Savvidy’s
gonihedric model has really glassy behavior; on the contrary it seems to
exhibit only very slow dynamics not related to real glassiness of the model.
This has to be further investigated to clear out what type of dynamics is
this model developing. Also κ 6= 0 has to be investigated although we think
it will follow the same kind of behavior that the κ = 0 case.

2. The model of loops coupled to gravity

There exist a way to extent this model to one coupled to gravity. To
couple it to gravity we will put our spin model in a random lattice built
from quadrangular pieces. In this way we will keep the behavior of the
loops and add the gravity degrees of freedom. In order to make the matrix
model solvable (or approximately solvable) we will make the loops highly
self-interacting, that means that the loops will never cross themselves. This
corresponds to the κ → ∞ limit in the model we presented above. In Fig. 13
we can see an example of this kind of quadrangulations. From this picture
we can extract the weights of each interaction term in the matrix model that
will represent the partition function of our system. Let us see what those
terms mean.

++
− −

−

Fig. 13. Example of a random lattice with a gonihedric spin model on it.
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First of all there will be the bulk term (in other words, plaquette that is
not crossed by any loop), then we have to consider a term were a plaquette
is crossed by one loop without bending through it and finally the term were
the loop crossing the plaquette bends in one direction or the other. These
three building blocks of the random lattices are presented graphically in
Fig. 14 with the corresponding term of the matrix model that will generate
them7. As we can see we are considering the most general case where all the

A B
2 2

; ; ∼ 4g’Aλ’gABAB

Fig. 14. Correspondence between the loop pieces and the matrix interaction that

are going to generate them.

couplings are different but in our specific case we will impose the condition
g̃ = g due to the fact that a straight piece of loop do not contribute with
any amount of energy to the action, so the coupling has to be equal to the
bulk coupling. In addition to those terms we have to put the kinetic term
for the two matrices, i.e. the quadratic terms A2 and B2. So finally the
matrix model that will represent our loop model coupled to gravity will be

eZ =

∫∫

dAdB exp

(

−Tr

[

A2 + B2 +
g

N
A4 +

λ′

N
A2B2 +

g̃′

N
ABAB

])

.

(2.1)
Now that we have found the matrix model that will reproduce our loop

model coupled to gravity we only need to develop its solution. To our knowl-
edge this model has not been solved exactly. Although very similar matrix
models have been indeed solved [16] their solution cannot be applied to our
matrix model.

2.1. A partial solution to the matrix model

Let us proceed then to the approximation to the solution. To this aim

we are going to rescale the A matrix in the form A →
√

N
g A so that the

action will have the following appearance.

S =
N

g
Tr[A2 + A4] + Tr[B2 + λA2B2 + g̃ABAB] , (2.2)

7 To simplify the visual identification with the loop model we have not drawn the lines
corresponding to the “bulk” propagator, i.e. to the A matrix propagator. The loop is
generated with the B matrix propagator.
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where we have made some redefinitions like λ′/g → λ and g̃′/g → g̃. Now
we are going to pay attention to the B–dependent part. As the action S is
quadratic in B we should be able to integrate out the B matrix and find a
one matrix model equivalent to the one we are using now.

The integration we are facing now is the following
∫

dB exp ( − Tr[B(I + λA2)B] − g̃ Tr[ABAB]) . (2.3)

Here we are going to interpret the first part of the action as the free action
(and rename I + λA2 = M) and the second part as the interaction, so we
can do perturbation theory and re-sum all the diagrams at the end. But
before we calculate diagrams we need to know the free propagator of the B
matrix, and to reach this we add some external currents and perform the
quadratic integration8. So finally we find the propagator

〈BijBkl〉 = Z̃(0,M)

[

I ⊗ I

I ⊗ M + M ⊗ I

]

il;kj

, (2.4)

where Z̃(0,M) a determinant coming from the B integration. Once we
have found the propagator we can proceed with the diagrammatic. We will
only consider the connected diagrams. The Feynman rules for the diagrams
will be those shown in Fig. 15. To order n in the interaction term there

������BB

A

A

A A

���
���
���

���
���
���

���
���
���
���

������B B B B

Fig. 15. Feynman rules for our matrix model.

will be also a factor −g̃/n! due to the expansion of the exponential, and
a combinatorial factor of (n − 1)! 2n−1 coming from the reordering of the
interaction terms (in Fig. 16 we can see the kind of diagrams that will
contribute). So finally all connected diagrams add up to

8 In Appendix A is shown in detail how to make this calculation and find Z̃(J, M).
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Fig. 16. Two examples of connected diagrams that contribute to the integral. a

non trivial contraction is shown in the second diagram, can be easily seen that is

exactly equivalent to the trivial diagram.

∞
∑

n=1

(−g̃)n (n − 1)! 2n−1

n!
Tr

[

(A ⊗ A [I ⊗ M + M ⊗ I]−1)n
]

= Tr

[

1

2

∞
∑

n=1

(−2g̃)n

n

(

A ⊗ A[I ⊗ M + M ⊗ I]−1

)n
]

=
−1

2
Tr

[

log

(

I ⊗ I +
2g̃A ⊗ A

2I ⊗ I + λ(I ⊗ A2 + A2 ⊗ I)

)

]

,

where we have recovered the explicit form of M in terms of A. Thus ex-
ponentiating this last expression we recover all connected and disconnected
diagrams; i.e. the integral (2.3) we were trying to calculate.

∫

dB exp ( − Tr[B(I + λA2)B] − g̃ Tr[ABAB])

= Z̃(0,M) exp

{

−1

2
Tr

[

log

(

I ⊗ I +
2g̃A ⊗ A

2I ⊗ I + λ(I ⊗ A2 + A2 ⊗ I)

)

]}

.

So finally we have found an expression for the integration of the B matrix.

In this expression Z̃(0,M) = [ det(I + λA2)]−
N
2 that can be included in the

effective action as −N
2 Tr[log(I + λA2)]. This means that we have rewritten

our two matrix model in terms of a one matrix model. So now we can
diagonalize our remaining A matrix and integrate over the rotational degrees
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of freedom to leave our partition function in the form

eZ =

∫∫

dAdB exp ( − Tr[A2 + B2 + g̃′A4 + λA2B2 + g′ABAB])

=

∫
( N

∏

i=1

dai

)

∆2(a) exp
{

−
N

g̃
Seff({a})

}

,

where ∆(a) =
∏

i<j(aj − ai) is the usual Van der Monde determinant and
Seff is the following

Seff({a}) =

N
∑

i=1

(

a2
i + a4

i +
g

2
log(1 + λa2

i )
)

+
N

∑

i,j

g̃

2N
log

(

1 +
2g̃aiaj

2 + λ(a2
i + a2

j )

)

.

Since we are working in terms of eigenvalues we can use standard proce-
dures to try to solve the model. Using saddle point approximation we arrive
to a set of coupled equations that look quite difficult to solve exactly. In the
N → ∞ limit those equations read

a + 4a3 + g

[

λa

1 + λa2
+

∫

dbρ(b)
2g̃b(2 + λ(b2 − a2))

(2 + λ(b2 + a2) + 2g̃ba)(2 + λ(b2 + a2))

]

= 2g −

∫

db
ρ(b)

a − b
= −g(ω(a + iǫ) + ω(a − iǫ)) ,

where as usual ρ(a) = limN→∞

[

1
N ΣN

i=1δ(a − ai)
]

and the resolvent ω(z) is

defined to be equal to
∫

db ρ(b)/(b − z). This self-consistent equation has
to be analyzed carefully to see whether there is any fixed point in the set of
parameters that allowed us to pas to the continuum.

2.2. Conclusions

In the conclusions of this second part we may comment that, since the
fixed geometry model we have studied in the first part does not posses any
thermodynamical singularity, even for κ → ∞, we would naively expect the
present matrix model not to exhibit any scaling limit, but this issue deserves
further analysis. Related to this matrix model there are other matrix models
that can be exactly solved [16]. Although those other models have some
critical differences, their solutions may give some hints on how to exactly
solve the model we are interested in. In fact some of the solved models can
be found as an special limit of ours. That could be used as a test or a guide
to find the solution.
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Appendix A

Finding the B matrix propagator

To find the propagator we begin with the free action and add an external
source. In our case this will lead to

Tr [BMB + JB] . (A.1)

Then, to reabsorb the external field J into the B field we do a linear change
of variables B → B̃ + C and quadratize the action. Doing the inverse
procedure we find

B̃MB̃ − CMC = (B − C)M(B − C) − CMC

= BMB − (CMB + BMC) = BMB − JB .

So at the end the integral is

Z̃(J,M) =

∫

dB exp { − Tr[BMB − JB]}

=
(

det[M ]
)−1

exp {Tr[CMC]} , (A.2)

where the C matrix can be determined from the equation

CM + MC = J . (A.3)

Let us solve this equation to find the explicit form of the C matrix. To this
aim let us choose the basis where the M matrix is diagonal. So if Ω is the
matrix that diagonalizes it

M = ΩDΩ
† , where Dij = δijdi ,

J = ΩJ ′
Ω

† ,

C = ΩC ′
Ω

† . (A.4)

The primed matrices correspond to the not primed ones after the rotation.
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So now we will continue solving the equation (A.3) by writing it in the
M -diagonal form,

(C ′D + DC ′)ij = C ′
ijdj + diC

′
ij = J ′

ij ,

C ′
ij =

J ′
ij

di + dj
.

Now introduce it in Eq. (A.2) and invert Eq. (A.4) to find

Z(J,M) =
(

det[M ]
)−1

exp

{

N
∑

i,j=1

[

J ′
ij

di + dj
dj

J ′
ji

dj + di

]

}

=
(

det[M ]
)−1

exp

{

N
∑

i,j=1

dj

(di + dj)2
[Ω†

ikJklΩlj][Ω
†
jmJmnΩni]

}

.

That is the last expression we will write for Z(J,M). From here we can
deduce all necessary correlators, like the one we are looking for; the propa-
gator 〈BijBkl〉 = δZ(J,M)/δJjiδJlk |J=0. Calculating those variations and
rotating back the D matrices we find

Z(0,M)

[

N
∑

m,n=1

dn

d2
m + d2

n

{

(Ω†
mlΩkn)(Ω†

njΩim) + (Ω†
mjΩin)(Ω†

nlΩkm)
}

]

= Z(0,M)

[

[

M ⊗ I

[I ⊗ M + M ⊗ I]2

]

+

[

I ⊗ M

[I ⊗ M + M ⊗ I]2

]

]

il;kj

= Z(0,M)

[

I ⊗ I

I ⊗ M + M ⊗ I

]

il;kj

. (A.5)
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