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The Kauffman model describes a particularly simple class of random
Boolean networks. Despite the simplicity of the model, it exhibits complex
behavior and has been suggested as a model for real world network prob-
lems. This work is based on an earlier paper where we introduced a novel
approach to analyzing attractors in random Boolean networks. Applying
this approach to Kauffman networks, we prove that the average number of
attractors grows faster than any power law with system size.
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1. Introduction

We are increasingly often faced with the problem of modeling complex
systems of interacting entities, such as social and economic networks, com-
puters on the Internet, or protein interactions in living cells. Some properties
of such systems can be modeled by Boolean networks. The appeal of these
networks lies in the finite (and small) number of states each node can be in,
and the ease with which we can handle the networks in a computer.

A deterministic Boolean network has a finite number of states. Each
state maps to one state, possibly itself. Thus, every network has at least one
cycle or fixed point, and every trajectory will lead to such an attractor. The
behavior of attractors in Boolean networks has been investigated extensively,
see e.g. [1–6]. For a recent review, see [7].

A general problem when dealing with a system is finding the set of at-
tractors. For Boolean networks with more than a handful of nodes, state
space is too vast to be searched exhaustively. In some cases, a majority of
the attractor basins are small and very hard to find by random sampling.
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One such case is the Kauffman model [8]. Based on experience with random
samplings, it has been commonly believed that the number of attractors in
that model grows like the square root of system size. Lately this has been
brought into question [9–12].

Using an analytic approach, we are able to prove that the number of
attractors grows faster than any power law [13]. The approach is based on
general probabilistic reasoning that may also be applied to other systems
than Boolean networks. The derivations in the analysis section are just one
application of the approach. We have attempted to focus on the method
and our results, while keeping the mathematical details at a minimum level
needed for reproducibility using standard mathematical methods.

In 1969, Kauffman introduced a type of Boolean networks as a model
for gene regulation [8]. These networks are known as N–K models, since
each of the N nodes has a fixed number of inputs K. A Kauffman network
is synchronously updated, and the state (0 or 1) of any node at time step
t is some function of the state of its input nodes at the previous time step.
An assignment of states to all nodes is referred to as a configuration. When
a single network, a realization, is created, the choice of input nodes and up-
date functions is random, although the update functions are not necessarily
drawn from a flat distribution. This reflects a null hypothesis as good or
bad as any, if we have no prior knowledge of the details of the networks we
wish to model.

In this paper, we will first present our approach, and then apply it to
Kauffman’s original model, in which there are 2 inputs per node and the
same probability for all of the 16 possible update rules. These 16 rules are
the Boolean operators of two or fewer variables: and, or, true, etc. This
particular N–K model falls on the critical line, where the network dynamics
is neither ordered nor chaotic [9, 14, 15].

2. Approach

Our basic idea is to focus on the problem of finding the number of cycles
of a given length L in networks of size N . As we will see, the discreteness of
time makes it convenient to handle cycles as higher-dimensional fixed point
problems. Then it is possible to do the probabilistic averaging in a way
which is suitable for an analytic treatment. This idea may also be expanded
to applications with continuous time, rendering more complicated but also
more powerful methods.

Our approach can be described as follows, given that we consider an
ensemble of deterministic dynamical systems with discrete time and finite
state space:
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1. Write the average number of attractors as the sum of the average
number of cycles of length L = 1, 2, 3, . . ..

2. The problem of calculating the number of cycles of length L can be seen
as an L-dimensional fixed point problem, which in turn is equivalent
to calculating the partition function of a (more or less complicated)
spin system.

We demonstrate our method by applying it to Kauffman networks, using
four key assumptions: (i) the rules are chosen independently of each other
and of N , (ii) the input nodes are independently and uniformly chosen from
all N nodes, (iii) the dynamics is dominated by stable nodes, and (iv) the
distribution of rules is invariant due to inversion of any set of inputs. (iv)
means e.g. that the fraction of and and nor gates are the same whereas the
fraction and and nand gates may differ. (iv) is presumably not necessary,
but simplifies the calculations drastically. (iii) is expected to be valid for
any non-chaotic network obeying (i) and (ii) [16]. Note that (i) does not
mean that the number of inputs must be the same for every rule. We could
write a general treatment of all models obeying (i)–(iv), but for simplicity
we focus on the Kauffman model.

We will henceforth use 〈CL〉N to denote the expectation value of the
number of L-cycles over all networks of size N , with L = 1 referring to
fixed points. The average number of fixed points, 〈C1〉N , is particularly
simple to calculate. For a random choice of rules, (i) and (iv) imply that the
output state of the net is independent of the input state. Hence, the input
and output states will on average coincide once on enumeration of all input
states. This means that 〈C1〉N = 1.

The problem of finding other L-cycles can be transformed to a fixed point
problem. Assume that a Boolean network performs an L-cycle. Then each
node performs one of 2L possible time series of output values. Consider
what a rule does when it is subjected to such time series on the inputs.
It performs some Boolean operation, but it also delays the output, giving
a one-step difference in phase for the output time series. If we view each
time series as a state, we have a fixed point problem. L 〈CL〉N is then the
average number of input states (time series), for the whole network, such
that the output is the same as the input.

To take advantage of assumption (iv), we introduce the notion of L-cycle
patterns. An L-cycle pattern is s and s inverted, where s is a time series
with period L. Let Q denote a choice of L-cycle patterns for the net, and
let P (Q) denote the probability that the output of the net is Q. Using the
same line of reasoning as for fixed points, we conclude that (i) and (iv) yield
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〈CL〉N =
1

L

∑

Q∈QN
L

P (Q) , (1)

where QN
L is the set of proper L-cycles of an N -node net. A proper L-cycle

has no period shorter than L.
There are many ways to view Eq. (1) as a partition function. At its most

detailed level, it is a sum over states where each state is a specific choice of Q,
couplings and rules. For the Kauffman model, it is convenient to work with
the state space Q ∈ QN

L and thus average out the choices of couplings and
rules for each term in the partition function. This is equivalent to a system
with 2L−1-state spins where each spin interacts with all other spins.

The latter picture is used in order to evaluate Eq. (3) by simulated tem-
pering [17,18], which is a method designed for simulation of thermodynamic
systems. Simulated tempering is a Monte-Carlo scheme where the temper-
ature is a dynamical parameter. This makes it easier to cross free-energy
barriers and provides a convenient way to calculate ratios between values
of the partition function at different temperatures. Since we know the to-
tal number of states, we know the partition function at infinite temperature
and simulated tempering reveals the ratio between this number and the value
of Eq. (3).

3. Analytic calculations

Assumption (ii) implies that P (Q) is invariant under permutations of
the nodes. Let n = (n0, . . . , nm−1) denote the number of nodes expressing
each of the m = 2L−1 patterns. For nj, we refer to j as the pattern index.
For convenience, let the constant pattern have index 0. Then

〈CL〉N =
1

L

∑

n∈PN
L

(

N

n

)

P (Q) , (2)

where
(

N
n

)

denotes the multinomial N !/(n0! · · · nm−1!) and PN
L is the set of

partitions n of N such that Q ∈ QN
L . That is, n represents a proper L-cycle.

What we have this far is merely a division of the probability of an L-cycle
into probabilities of different flavors of L-cycles. Now we assume that each
node has 2 inputs. Then, we get a simple expression for P (Q) that inserted
into Eq. (2) yields

〈CL〉N =
1

L

∑

n∈PN
L

(

N

n

)

∏

0≤j<m
nj 6=0





∑

0≤l1,l2<m

nl1nl2

N2
(PL)jl1l2





nj

, (3)



Attractors in Kauffman Networks 5055

where (PL)jl1l2
denotes the probability that the output pattern of a random

2-input rule has index j, given that the input patterns have the indices l1
and l2, respectively. Note that Eq. (3) is an exact expression for the average
number of proper L-cycles in an N -node random Boolean network which
satisfies the assumptions (i), (ii), (iv), and where each node has 2 inputs.

From now on, we only consider the Kauffman model, meaning that we
also restrict the distribution of rules to be uniform. It is instructive to
explore some properties of (PL)jl1l2

; these will also be needed in the following
calculations. We see that

(PL)000 = 1 , (PL)0l10 = 1
2 and (PL)0l1l2 ≥ 1

8 , (4)

for 1 ≤ l1, l2 < m. Further, we note that for a given j 6= 0, (PL)jl10 has

a non-zero value for exactly one l1 ∈ {1, . . . ,m − 1}. Let φL(j) denote that
value of l1. We can see φL as a function that rotates an L-cycle pattern one
step backwards in time. With this in mind we define φL(0) = 0. Now, we
can write

(PL)jl10 = 1
2δl1φL(j) , (5)

for 1 ≤ j < m. (δ is the Kronecker delta.)
We can view φL as a permutation on the set {0, . . . ,m − 1}. Thus, we

divide this index space into permutation cycles which are sets of the type
{j, φL(j), φL ◦ φL(j), . . .}. We refer to these permutation cycles as invariant

sets of L-cycles. Let ρ0
L, . . . , ρHL−1

L denote the invariant sets of L-cycles,
where HL is the number of such sets. For convenience, let ρ0 be the invariant
set {0}. If two L-cycle patterns belong to the same invariant set, they can
be seen as the same pattern except for a difference in phase.

We want to find the behavior of 〈CL〉N , for large N , by approximat-
ing Eq. (3) with an integral. To do this, we use Stirling’s formula n! ≈
(n/e)n

√
2πn while noting that the boundary points where nj = 0 for some

j can be ignored in the integral approximation. Let xj = nj/N for j =
0, . . . ,m − 1 and integrate over x = (x1, . . . , xm−1). x0 is implicitly set to

x0 = 1 −
∑m−1

j=1 xj . We get

〈CL〉N ≈ 1

L

(

N

2π

)(m−1)/2 ∫

0<x0,...,xm−1

dx
eNfL(x)

∏m−1
j=0

√
xj

, (6)

where

fL(x) =

m−1
∑

j=0

xj ln





1

xj

∑

0≤l1,l2<m

xl1xl2(PL)jl1l2



 . (7)
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Eq. (7) can be seen as an average 〈ln X〉, where X is the expression inside
the parentheses. Hence, the concavity of x 7→ ln x gives fL(x) = 〈ln X〉 ≤
ln 〈X〉 = 0 with equality if and only if

xj =
∑

0≤l1,l2<m

xl1xl2(PL)jl1l2
, (8)

for all j = 0, . . . ,m − 1.

Note that Eq. (8) can be interpreted as a mean-field equation of the
model. Using Eq. (8) for j = 0 and Eq. (4) we see that fL(x) comes
arbitrarily close to zero only in the vicinity of x = 0, and for large N ,
the relevant contributions to the integral in Eq. (6) come from this region.
Thus, the dynamics of the net is dominated by stable nodes, in agreement
with [11,16]. This means that assumption (iii) is satisfied by the Kauffman
model. Using Eqs. (4) and (5), a Taylor-expansion of fL(εx) yields

fL(εx) = ε

m−1
∑

j=1

xj ln
xφ(j)

xj
+ ε2

m−1
∑

j=0

xj
x · Aj

Lx

xφ(j)

−ε3

2

m−1
∑

j=1

xj

(

x · Aj
Lx

xφ(j)

)2

+ O
(

ε4
)

, (9)

where (Aj
L)l1l2 = (PL)jl1l2

− 1
2(δl1φ(j) + δl2φ(j)).

The first order term of Eq. (9) has 0 as its maximum and reaches this
value if and only if xφL(j) = xj for all j = 1, . . . ,m − 1. The second order
term is zero at these points, while the third order term is less than zero
for all x 6= 0. Hence, the first and third order terms are governing the
behavior for large N . Using the saddle-point approximation, we reduce the
integration space to the space where the first and second order terms are 0.
Let zh = N1/3

∑

j∈ρh
L

xj for h = 1, . . . ,HL − 1 and let (P ′
L)hk1k2

denote the

probability that the output pattern of a random rule belongs to ρh
L, given

that the input patterns are randomly chosen from ρk1

L and ρk2

L , respectively.
Thus, we approximate Eq. (6) for large N as

〈CL〉N ≈ αLβLNγL , (10)
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where

αL =

(

L

HL−1
∏

h=1

∣

∣

∣
ρh

L

∣

∣

∣

)−1
(

1

2π

)(HL−1)/2

, (11)

βL =

∫

0<z1,...,zHL−1

dz

exp

(

−1

2

HL−1
∑

h=1

1

zh

(

z · Bh
Lz
)2
)

HL−1
∏

h=1

√
zh

, (12)

γL =
HL − 1

3
, (13)

and (Bh
L)k1k2

= (P ′
L)hk1k2

− 1
2 (δk1h + δk2h). (|ρ| denotes the number of ele-

ments of the set ρ.)
The error in Eq. (10) is presumably dominated by the error introduced

by the continuous approximation in Eq. (6). Since

HL−1
∑

h=1

zh = N1/3
m−1
∑

j=1

xj = N−2/3
m−1
∑

j=1

nj , (14)

we expect the length scale of the relevant region in Eq. (6) to scale like
N2/3/m. We can assume that the relative error is inversely proportional to
this length scale and proportional to the number of dimensions. This yields
N ≫ m3 ∼ 8L as a rough estimate for the limit where Eq. (10) is useful as
an approximation.

Though our calculations can not reveal an expression for the asymptotic
growth of the total number of attractors, it is clear that the growth is su-
perpolynomial. To show this, we observe that HL grows rapidly with L.
The number of elements in an invariant set of L-cycle patterns is a divisor
of L. If an invariant set consists of only one pattern, it is either the constant
pattern, or the pattern with alternating zeros and ones. The latter is only
possible if L is even. Thus, HL − 1 ≥ (2L−1 − 1)/L, with equality if L is
a prime number > 2. Applying this conclusion to Eqs. (13) and (10), we
see that for any power law N ξ, we can choose an L such that 〈CL〉N grows
faster than N ξ.

HL can be calculated using Burnside’s formula in group theory. Let φi
L

denote φL◦· · ·◦φL with i factors and let Ia = {0, . . . , a−1} for non-negative
integers a. Then, the set ΦL = {φi

L|i ∈ IL} is a group under function
composition ◦. Let ΦL act on Im with the group action (φi

L, j) 7→ φi
L(j) for
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i ∈ IL, j ∈ Im. In this formulation, HL is the number of invariant orbits in
Im under the group action of ΦL. According to Burnside’s formula, this is
given by

HL =
1

L

L−1
∑

i=0

∣

∣{j ∈ Im|φi
L(j) = j}

∣

∣ . (15)

φi
L(j) = j is equivalent to φ

gcd(L,i)
L (j) = j, which is true if and only if

the L-cycle pattern with index j consists of repeated sequences of length
gcd(L, i), possibly (if L/ gcd(L, i) is even) with every second sequence in-
verted. (gcd(L, i) denotes the greatest common divisor of L and i.) This
yields

HL =
1

L

L−1
∑

i=0

2gcd(L,i)−odd[L/ gcd(L,i)] , (16)

where odd(i) = 1 if i is odd and odd(i) = 0 otherwise. Applying 1 ≤
gcd(L, i) ≤ L/2 for 1 ≤ i < L on Eq. (16) gives

2L−1 + L − 1

L
≤ HL <

2L−1 + (L − 1)2L/2

L
, (17)

where the lower bound is the same result as above and holds with equality
for primes > 2.

4. Numerical results

We have written a set of programs to compute the number of L-cycles
in Kauffman networks, Eq. (3), both by complete enumeration and using
Monte Carlo methods, and tested them against complete enumeration of the
networks with N ≤ 4. In order to push the limit for Monte Carlo evaluation
of Eq. (3), we used the simulated tempering scheme [17, 18]. This makes it
easier to cross the free-energy barrier between the bulk of all L-cycles and
those that are significant in Eq. (3).

The results for 2 ≤ L ≤ 6 are shown in Fig. 1, along with the correspond-
ing asymptotes. The asymptotes were obtained by Monte Carlo integration
of Eq. (12). For low N , 〈CL〉N is dominated by the boundary points ne-
glected in Eq. (6), and its qualitative behavior is not obvious in that region.

A straightforward way to count attractors in a network is to simulate
trajectories from random configurations and count distinct target attractors.
As has been pointed out in [11], this gives a biased estimate. Simulations

in [8] with up to 200 trajectories per network indicated
√

N scaling with
system size, whereas [11] reported linear behavior with 1000 trajectories.
That the true growth is faster than linear has now been firmly established
[12, 13].
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Fig. 1. The number of L-cycles as functions of the network size for 2 ≤ L ≤ 6.

The numbers in the figure indicate L. Dotted lines are used for values obtained by

Monte Carlo summation, with errors comparable to the line width. The asymptotes

for N ≤ 8 have been included as dashed lines. Their slopes are γ2 = γ3 = 1

3
,

γ4 = γ5 = 1, γ6 = 7

3
, γ7 = 3, and γ8 = 19

3
.

To closer examine the problem of biased undersampling, we have imple-
mented the network reduction algorithm from [11], and gathered statistics
on networks with N . 104. We repeated the simulations for different num-
bers of trajectories τ , with 100 ≤ τ ≤ 105. For each N and τ , 103 network
realizations were examined, and we discarded configurations if no cycle was
found within 213 time steps. The results are summarized in Fig. 2(a).

For τ = 100, the number of attractors follows
√

N remarkably well,
considering that τ = 103 gives the quite different N behavior seen in [11].

If we extrapolate wildly from a log–loglog plot, e0.3
√

N fits the data rather
well.

As another example of how severe the biased undersampling is, we have
included a plot of the number of 2-cycles found in the simulations (Fig. 2(b)).
The underlying distribution is less uniform than for the total number of
attractors, so the errors are larger, but not large enough to obscure the
qualitative behavior. The number of observed 2-cycles is close to 〈C2〉N
for low N , but as N grows, a vast majority of them are overlooked. As
expected, this problem sets in sooner for lower τ , although the difference is
not as marked as it is for the total number of attractors.
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(b)
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1

10

N

2-cycles

Fig. 2. The number of observed attractors (a) and 2-cycles (b) per network as

functions of N for different numbers of trajectories τ : 100(circles), 103(squares),

104(diamonds), and 105(triangles). In (a), the dashed lines have slopes 0.5, 1, and

2. In (b) the solid line shows 〈C2〉N , the true number of 2-cycles. In the high end

of (b), 1σ corresponds to roughly 20%.

5. Summary

We have introduced a novel approach to analyzing attractors of random
Boolean networks. By applying it to Kauffman networks, we have proven
that the number of attractors in these grows faster than any power law with
network size N . This is in sharp contrast with the previously cited

√
N

behavior, but in agreement with recent findings.
For the Kauffman model, we have derived an expression for the asymp-

totic growth of the number of L-cycles, 〈CL〉N . This expression is corrobo-
rated by statistics from network simulations. The simulations also demon-
strate that biased undersampling of state space is a good explanation for
the previously observed

√
N behavior.

REFERENCES

[1] S. Bornholdt, K. Sneppen, Phys. Rev. Lett. 81, 236 (1998).

[2] N. Lemke, J.C.M. Mombach, B.E.J. Bodmann, Physica A 301, 589 (2001).

[3] A. Bhattacharjya, S. Liang, Phys. Rev. Lett. 77, 1644 (1996).

[4] R.J. Bagley, L. Glass, J. Theor. Biol. 183, 269 (1996).

[5] J.J. Fox, C.C. Hill, Chaos 11, 809 (2001).

[6] C. Oosawa, M.A. Savageua, Physica D 170, 143 (2002).

[7] M. Aldana-Gonzalez, S. Coppersmith, L.P. Kadanoff, Boolean Dynamics with
Random Couplings, in Perspectives and Problems in Nonlinear Science, Eds.
E. Kaplan, J.E. Marsden, K.R. Sreenivasan, Springer, 2003.

[8] S.A. Kauffman, J. Theor. Biol. 22, 437 (1969).



Attractors in Kauffman Networks 5061

[9] U. Bastolla, G. Parisi, J. Theor. Biol. 187, 117 (1997).

[10] U. Bastolla, G. Parisi, Physica D 115, 219 (1998).

[11] S. Bilke, F. Sjunnesson, Phys. Rev. E65, 016129 (2001).

[12] J.E.S. Socolar, S.A. Kauffman, Phys. Rev. Lett. 90, 068702 (2003).

[13] B. Samuelsson, C. Troein, Phys. Rev. Lett. 90, 098701 (2003).

[14] B. Derrida, Y. Pomeau, Europhys. Lett. 1, 45 (1986).

[15] B. Derrida, D. Stauffer, Europhys. Lett. 2, 739 (1986).

[16] H. Flyvbjerg, J. Phys. A21, L955 (1988).

[17] A.P. Lyubartsev, A.A. Martsinovski, S.V. Shevkunov, P.N. Vorontsov-
Velyaminov, J. Chem. Phys. 96, 1776 (1992).

[18] E. Marinari, G. Parisi, Europhys. Lett. 19, 451 (1992).


