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The duality map between gauge theories and strings suggests that when
the gauge theory is in the weak coupling regime the dual string tension
effectively tends to zero, α′ → ∞. This observation of Sundborg and
Witten initiates a fresh interest to the old problem of tensionless limit of
standard string theory and to the description of its genuine symmetries.
We approach this problem formulating tensionless string theory by means
of geometrical concept of surface perimeter. The perimeter action uniquely
leads to a tensionless theory.

PACS numbers: 11.25.–w, 11.15.–q

1. Introduction

It is a longstanding problem to describe low energy behavior of QCD in
terms of string-like extended objects. Naive identification of standard string
theory spectrum with hadronic spectrum encounters a number of concep-
tual problems connected with the appearance of massless states contain-
ing graviton in the string spectrum, soft behavior of high energy scattering
amplitudes, opposite to what one should expect in parton-like picture of
asymptotically free gauge theories and, not the least, higher dimensional
space-time.

Essential progress was achieved in [1–4] where the AdS/CFT corre-
spondence was proposed relating the classical supergravity approximation
R2

AdS/α
′ ≫ 1 of closed IIB strings moving on ten-dimensional curved space-

time background AdS5 × S5 with large ’t Hooft coupling regime of N = 4
supersymmetric Yang–Mills theory R4

AdS/α
′2 = λ ≡ g2

YMN . In this duality
map one side is weakly coupled, the other is strongly coupled and there is a
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natural prescription relating physical quantities in string and gauge theories,
in particular, identifying stringy states corresponding to the leading Regge
trajectory with highly excited gauge theory operators [5–7]. The conjecture
was applied to calculate Wilson loops, anomalous dimensions, etc. on the
gauge theory side at strong coupling regime.

If one adopts the strong form of the Maldacena conjecture stating that
two theories are exactly the same for all values of coupling constants [1],
then it is important to understand what string theory is like in the opposite
limit when the gauge theory is in the weak coupling regime [8–10, 21] . In

that regime the string tension T = 1/2πα′ =
√
λ/R2

AdS effectively tends to
zero and it is natural to assume that free gauge theory, λ≪ 1, corresponds
to zero tension string theory, that is to the string theory at extreme ener-
gies [11–13]. The dual description of weakly interacting gauge theory states
on the boundary, in particular, operators with minimal twist, consisting of
bilinear high spin tensors, on the AdS5 side are supposed to be expressed
in terms of locally interacting massless gauge fields of arbitrarily high spin
[8–10,14,17,19,20,22]. The gauge theory correlation functions on the bound-
ary define a high spin field theory in the bulk with nontrivial interaction
vertices [15, 16, 18], and the resulting holographically dual classical gauge
field theory would be the effective description of the desirable string theory
in the bulk, celebrated symmetric phase of string theory [11].

This development initiates a fresh interest to the old problem of tension-
less limit of the standard string theory and to the description of its genuine
symmetries [8, 9, 11, 13, 29–31]. In recent publications we approached this
problem formulating tensionless strings by means of geometrical concept of
surface perimeter, or its length [23,29]. The perimeter action uniquely leads
to tensionless theory. It was suggested that nonlinear world-sheet sigma
model which describes tensionless limit is defined by the following action:

S = mL = m

∫

d2ζ
√
h
√

Kia
a K

ib
b , (1)

here m has dimension of mass, hab is the induced metric and Ki
ab is the sec-

ond fundamental form (extrinsic curvature) 1. Instead of being proportional
to the area of the surfaces, as it is the case in the standard string theory

A ≃ 1

2πα′

∫

√

1 − V 2
⊥ dsdt ,

the perimeter action (1) is proportional to the length of the surface. Due
to the last property the model has two desirable features. First of all, when

1 This action is essentially different in its geometrical meaning from the action consid-
ered in previous studies [28] where it is proportional to the spherical angle and has
dimensionless coupling constant.
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the surface degenerates into a single world line, the perimeter action (1)
becomes proportional to the length of the world line [23, 29]

S ≃ m

∫

√

1 − V 2
⊥K(s, t) dsdt→ m

∫

√

1 − V 2
⊥ 2π dt , (2)

where K(s, t) = dϕ/ds is a string curvature. Thanks to this property the
functional integral over surfaces simply transforms into the Feynman path
integral for a point-like relativistic particle, naturally extending it to rela-
tivistic strings. Secondly, the action is equal to the perimeter of the flat
Wilson loop S = m(R + T ), where R is space distance between quarks,
therefore at the classical level string tension is equal to zero. The action (1)
can be written in the equivalent form [23,29]

S =
m

π

∫

d2ζ
√
h

√

(∆(h)Xµ)2, (3)

where hab = ∂aXµ∂bXµ is the induced metric, ∆(h) = 1/
√
h ∂a

√
hhab∂b is

Laplace operator2, a, b = 1, 2; µ = 0, 1, 2, . . . ,D − 1.
In the present work I shall consider so called model B [29], in which two

fields hab — the world-sheet metric and Xµ — the embedding field are con-
sidered as independent, that is we abandon the relation hab = ∂aXµ∂bXµ

between them. At this stage there is no direct relation of the model with em-
bedding into space-time and the model can be considered as two-dimensional
quantum gravity interacting with scalar fields Xµ. We shall refer to the origi-
nal theory, where fields are not independent, as to model A. The interrelation
between them is considered in [29].

We shall fix the conformal gauge hab = ρηab using the reparametrization
invariance of the action (3) and represent it in two equivalent forms [29]

S =
m

π

∫

d2ζ

√

(∂2X)2 ⇔ Ś =
1

π

∫

d2ζ{ Π
µ ∂2Xµ−Ω (Π 2−m2) }, (4)

where we have introduced the independent field Π µ and the Lagrange mul-
tiplier Ω . The system of equations which follows from Ś

(I) ∂2
Π

µ = 0, ∂2Xµ − 2ΩΠ
µ = 0, Π

µ
Πµ = m2 (5)

is equivalent to the original equation for Xµ which follows from S

(I′) ∂2



m
∂2Xµ

√

(∂2X)2



 = 0. (6)

2 The equivalence follows from the relations: Kia
a ni

µ = ∆(h)Xµ, where n
µ
i are the

normals and Kia
a Kib

b = (∆(h)Xµ)2 , i, j = 1, 2, . . . , D − 2
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The Π µ field has the form Π µ = m∂2Xµ/

√

(∂2X)2. In addition to the

reparametrization invariance the system exhibits a new gauge symmetry.
For a given parametrization the additional invariance has the form [29]

∂2Xµ → ∂2Xµ + 2ωΠ
µ , Π

µ → Π
µ , Ω → Ω + ω ,

where ω = ∂aω
a and ωa is arbitrary vector field on the world-sheet. The

above gauge transformation

∂2X
′

µ =



1 +
2ω

√

(∂2X)2



 ∂2Xµ (7)

defines a set of fields Xµ describing the same physics and can be seen as
the gauge orbit of this extra symmetry. Notice that fields on a given gauge
orbit are not related by reparametrization. This gauge symmetry renders
the string space-time coordinate Xµ “less” physical, not gauge invariant ob-
servable. Instead, the string momentum Pµ = ∂0Π

µ is a gauge invariant
quantity because Π

′

µ = Πµ.
Quantization of the bosonic string B and its massless spectrum has been

derived in [29]. The absence of conformal anomaly requires the space-time to
be 13-dimensional Dc = 13. In this string theory all particles, with arbitrary

large integer spin, are massless. This pure massless spectrum is consistent
with the tensionless character of the model and it was conjectured in [29]

that it may describe unbroken phase of standard string theory when α
′ → ∞

and all masses tend to zero M2
n = 1

α
′ (n− 1) → 0 [11] .

Supersymmetric extension of the model B with N = 1 world-sheet su-
persymmetry was constructed in [35]. Here I shall demonstrate that actually
it possesses enhanced fermionic symmetry which elevates N = 1 world-sheet
supersymmetry to N = 2 world-sheet supersymmetry. Indeed quantization
of the supersymmetric model shows that its gauge algebra is identical with
the well known N = 2 world-sheet superalgebra [36]. This new field theory
realization of the N = 2 algebra is free from old problem [37–41] connected
with the introduction of second space-time coordinate Y µ, which was intro-
duced in addition to the coordinates Xµ [36]. Instead, in this model we have
naturally two left-movers qµ

1 and qµ
2 and two right-movers q̃ µ

1 and q̃ µ
1 of the

Xµ field [29]

Xµ
L = xµ +

1

m
πµζ+ +

∞
∑

n=1

√

2

nm2

{

qµ
1n sin(nζ+) + qµ

2n cos(nζ+)
}

,

Xµ
R = xµ +

1

m
πµζ− +

∞
∑

n=1

√

2

nm2

{

q̃ µ
1n sin(nζ−) + q̃ µ

2n cos(nζ−)
}

.
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The conjugate field is described by a separate field Π µ,

Π
µ
L = meµ + kµζ+ +

∞
∑

n=1

√

2m2

n

{

−pµ
1n cos(nζ+) + pµ

2n sin(nζ+)
}

,

Π
µ
R = meµ + kµζ− +

∞
∑

n=1

√

2m2

n

{

−p̃µ
1n cos(nζ−) + p̃µ

2n sin(nζ−)
}

,

therefore, we have two times more degrees of freedom than in the standard
bosonic string theory. This result can be qualitatively understood if one
takes into account the fact that the field equations here are of the fourth
order (6). Notice that there is also doubling of zero modes, the new zero
mode coordinates are eµ and their conjugate variables are πµ, they describe
transversal polarizations [29].

In the first part of this article I shall review the quantization of the
bosonic tensionless string and shall describe its symmetries. In the second
part I shall present oscillator representation of the supersymmetric extension
of the model and its quantization. In the last section the twisted topological
string model will be constructed in analogy with the standard prescription
for N = 2 superconformal field theories [24–27,42].

2. Closed bosonic strings

In this section I shall review some facts concerning solution and quanti-
zation of the closed bosonic string which was defined in the previous section
and shall discuss algebraic structure of the corresponding gauge symmetries
(13), (14) and (15). As we shall see they naturally contain Virasoro algebra
as its subalgebra and additional new generators Θnk associated with new
gauge symmetry (7) forming an Abelian subalgebra. The conformal algebra
has here its classical form with twice larger central charge 2× D

12
= D

6
. This

result can be qualitatively understood if one takes into account the fact that
the field equations here are of the fourth order and therefore we have two left
and two right movers of Xµ field, two times more degrees of freedom than
in the standard bosonic string theory. Therefore it is not surprising that the
absence of conformal anomaly requires the space-time to be 13-dimensional:
Dc = 13.

For the closed bosonic strings the mode expansion of X field (8) can be
written in the form [29]:

Xµ
L = xµ +

1

m
πµζ+ + i

∑

n 6=0

1

n
βµ

ne−inζ+

,

Xµ
R = xµ +

1

m
πµζ− + i

∑

n 6=0

1

n
β̃µ

ne−inζ− ,
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where Xµ = 1
2
(Xµ

L(ζ+)+Xµ
R(ζ−)), and in similar manner Π µ = 1

2
(Π µ

L (ζ+)+
Π

µ
R(ζ−))

Π
µ
L = meµ + kµζ+ + i

∑

n 6=0

1

n
αµ

ne−inζ+

,

Π
µ
R = meµ + kµζ− + i

∑

n 6=0

1

n
α̃µ

ne−inζ− . (8)

The nonzero commutator is [∂±X
µ
L,R(ζ), ∂±Π ν

L,R(ζ
′

)] = 2πi ηµνδ
′

(ζ − ζ
′

),
with all others equal to zero. The momentum density operator is 2Pµ =
∂+Π

µ
L + ∂−Π

µ
R = Pµ

L + Pµ
R . This canonical commutation among the fields

imply also the following commutation relations among the coefficients of the
Fourier expansion (8):

[eµ, πν ] = [xµ, kν ] = iηµν , [αµ
n, β

ν
k ] = n ηµνδn+k,0 (9)

and similar ones for α̃µ
n and β̃µ

n . All other commutators are equal to zero.
They are connected with the creation and annihilation operators in the fol-
lowing way

αµ
0 = kµ , βµ

0 =
πµ

m
,

αµ
n = m

√
n aµ

n , n > 0 , βµ
n =

1

m

√
n bµn , n > 0 ,

αµ
−n = m

√
n a+µ

n , n > 0 , βµ
−n =

1

m

√
n b+µ

n , n > 0 , (10)

with nonzero commutator [aµ
n, b

+µ
m ] = ηµνδnm.

The Virasoro operators Ln and new operators Θn,k are defined as

Ln = 〈einζ+

: Pµ
L ∂+X

µ
L :〉, Θn,l = 〈einζ++ilζ− : Π

µ
Π

µ −m2 :〉 (11)

and have the form

Ln =
∑

l

: αn−l · βl : , L̃n =
∑

l

: α̃n−l · β̃l : ,

Θ0,0 = m2(e2 − 1) +
∑

n 6=0

1

4n2
: (α−n αn + α̃−n α̃n) : ,

Θn,0 =
im

n
e · αn − 1

4

∑

l 6=0,n

1

(n− l)l
: αn−l · αl : , n = ±1,±2, . . . ,

Θ0,n =
im

n
e · α̃n − 1

4

∑

l 6=0,n

1

(n− l)l
: α̃n−l · α̃l : , n = ±1,±2, . . . ,

Θn,k = − 1

2nk
: αn · α̃k : , n, k = ±1,±2, . . . . (12)
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The conformal algebra has here its classical form but with twice larger central
charge

[Ln , Lk] = (n − k)Ln+k +
D

6
(n3 − n)δn+k,0 (13)

and with the similar expression for right movers L̃n. The reason that the
central charge is twice bigger than in the standard bosonic string theory
2 × D

12
= D

6
is simply because we have two left and two right movers of

Xµ field. Such doubling of modes is reminiscent to the bosonic part of the
N = 2 superstring [36]. In the last model there was an essential problem
in identifying the Y µ coordinates which are introduced in addition to the
normal coordinates Xµ [36]. In our model the coordinate field X has simply
two sets of commuting oscillators and the conjugate fields are described by
the separate field Π .

The full extended gauge symmetry algebra of constraints (11) takes the
form

[Ln ,Θ0,0] = −2nΘn,0 , [L̃n ,Θ0,0] = −2nΘ0,n ,

[Ln,Θk,0] = −(n+ k)Θn+k,0 , [L̃n,Θk,0] = −2nΘk,n ,

[Ln,Θ0,k] = −2nΘn,k , [L̃n,Θ0,k] = −(n+ k)Θ0,n+k ,

[Ln,Θk,l] = −(n+ k)Θn+k,l , [L̃n,Θk,l] = −(n+ l)Θk,n+l ,

(14)

and one should stress that it is an essentially Abelian extension

[Θn,k,Θl,p] = 0, n, k, l, p = 0,±1,±2, . . . . (15)

One can easily check that Jacobi identities between all these operators are
satisfied, therefore the relations (13), (14) and (15) define Abelian extension
of Virasoro algebra. The equations (12) suggest its oscillator representation.

To define the physical Hilbert space we should first impose the Virasoro
constraints

(L0 + a)Ψphys = 0

LnΨphys = 0, n = 1, 2 . . . (16)

and then our new constraint Θ . The last operator has a linear and quadratic
τ dependence which in fact uniquely define the spectrum of this string theory

(Π 2−m2) = k2 τ2 +2{me ·k+k ·Πoscil}τ +Π
2
oscil +2me ·Πoscil +m2(e2−1) .

Indeed the first operator diverges quadratically with τ and the second one
linearly. Therefore, in order to have normalizable states in physical Hilbert–
Fock space one should impose corresponding constraints. We are enforced
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to define the physical Hilbert space as

k2
Ψphys = 0 , e·k Ψphys = 0 , k·αn Ψphys = 0 , k·α̃n Ψphys = 0 , n > 0 .

(17)
The first equation states that all physical states with different spins are

massless. This is consistent with the tensionless character of the theory.
The rest of the constraints take the form

Θn,kΨphys = 0 , n, k = 0, 1, 2, . . . . (18)

Thus the physical Hilbert space is defined by the equations (16), (17) and
(18). In the next section we shall consider N = 1 world-sheet supersymmet-
ric extension of the above model [35] and shall demonstrate that it actually
exhibits the N = 2 world-sheet supersymmetry.

3. N = 1 world-sheet supersymmetry

In the recent article [35] the authors constructed the N = 1 supersym-
metric extension of the above model using world-sheet superfields [32–34,
43,44]. Both forms of the action (4) can be extended to the supersymmetric
case as follows. For the basic fields (X,Π ,Ω) in (4) one should introduce
the corresponding superfields

X̂µ = Xµ + ϑ̄Ψµ +
1

2
ϑ̄ϑFµ ,

Π̂
µ = Π

µ + ϑ̄ηµ +
1

2
ϑ̄ϑΦµ ,

Ω̂ = ω + ϑ̄ξ +
1

2
ϑ̄ϑΩ , (19)

where ϑ is an anti-commuting variable and shall define the supersymmetric
action simply exchanging basic fields (X,Π ,Ω) in (4) by corresponding
superfields as follows

S =
−i
2π

∫

d2ζd2θ
{

Π̂
µD̄DX̂µ − 2Ω̂(Π̂ 2 −m2)

}

, (20)

where

DA =
∂

∂ϑ̄A
− i(ρaϑ)A∂a , Ψ

µ
A(ζ) ≡

(

Ψ
µ
−(ζ)Ψµ

+(ζ)
)

, (21)

ηµ
A(ζ) ≡

(

ηµ
−(ζ)
ηµ
+(ζ)

)

, ξA(ζ) ≡
(

ξ−(ζ)
ξ+(ζ)

)

, (22)
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µ is a space-time vector index, A = 1, 2 is a two-dimensional spinor index.
Ψ̄µ = Ψ+µρ0 = ΨTµρ0 and ρα are two-dimensional Dirac matrices

{ρa, ρb} = −2ηab. (23)

In Majorana basis the ρ s are given by

ρ0 =

(

0 −i
i 0

)

, ρ1 =

(

0 i
i 0

)

(24)

and iρα∂α is a real operator. The two-dimensional chiral fields are defined
as ρ3Ψ

µ
± = ∓Ψ

µ
±, where ρ3 = ρ0ρ1. Substituting superfields one can get the

following expression for the action [35]

S =
1

π

∫

d2ζ { Π
µ∂2Xµ + iη̄µρa∂aΨ

µ − Fµ
Φ

µ

−Ω(Π 2 −m2) − ω(2Π µ
Φ

µ + η̄µηµ) − 2Π µ η̄µξ } . (25)

The equations of motion are:

(I) Φ
µ = 0 ,

∂2
Π

µ = 0 ,

iρa∂aη
µ = 0 ,

2ωΠ
µ + Fµ = 0 ,

∂2Xµ − 2ΩΠ
µ − 2ωΦ

µ − 2η̄µξ = 0 ,

iρa∂aΨ
µ − 2Π µξ − 2ωηµ = 0 , (26)

and the variation over Lagrange multipliers gives constraints

(II) Π
2 −m2 = 0 ,

2Π µ
Φ

µ + η̄µηµ = 0 ,

2Π µ ηµ = 0 . (27)

The first equation represents the constrain which appears in bosonic tension-
less string theory and the last equation represents its fermionic partners. As
we shall see the first one is the analog of Klein–Gordon equation and the
second one is the analog of the Dirac equation. In some sense they are more
important relations than the motion equations (I). The SUSY transforma-
tion is:
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δXµ = ε̄Ψµ ,

δΨµ = −iρa∂aX
µε+ Fµε,

δFµ = −iε̄ρa∂aΨ
µ ,

δΠ µ = ε̄ηµ ,

δηµ = −iρa∂aΠ
µε+ Φ

µ ε ,

δΦµ = −iε̄ρa∂aη
µ ,

δω = ε̄ξ ,

δξµ = −iρa∂aωε+ Ωε ,

δΩ = −iε̄ρa∂aξ , (28)

where the anti-commuting parameter ε is a two-dimensional spinor

ε ≡
(

ε−
ε+

)

.

The action (25), equations (26) and the constraints (27) completely define
the system which exhibits the supersymmetry (28).

As we shall see bellow the action (25) possesses enhanced fermionic sym-
metry which elevates N = 1 world-sheet supersymmetry up to N = 2 world-
sheet supersymmetry. It is convenient to work in light-cone coordinates. In
the light-cone coordinates the action takes the form

S =
2

π

∫

d2ζ{−2Π µ∂+∂−X
µ + iηµ

+∂−ψ
µ
+ + iηµ

−∂+ψ
µ
− − 1

2
Fµ

Φ
µ

−1
2
Ω(Π 2 −m2) − ω(Π µ

Φ
µ + iηµ

+η
µ
−) − iΠ µηµ

+ξ− + iΠ µηµ
−ξ+} (29)

and equations of motion can be solved. As one can see the SUSY solution
of equations (26) is:

i)Ω = ω = ξ = 0

and the rest of the equations (I) reduce to the following form:

(I) ∂2
Π

µ = 0 , iρa∂aη
µ = 0 , ∂2Xµ = 0 ,

iρa∂aΨ
µ = 0 , Fµ = Φ

µ = 0 (30)

and should be accompanied by the constraints

(II) Π
2 −m2 = 0 , η̄µηµ = 0 , Π

µ ηµ = 0 . (31)
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In the light-cone coordinates these equations are easy to solve since they
take the from

∂+∂−Π
µ = 0 , ∂±η

µ
∓ = 0 , ∂+∂−X

µ = 0 , ∂±ψ
µ
∓ = 0,

Π
2 −m2 = 0 , ηµ

+η
µ
− − ηµ

−η
µ
+ = 0 , Π

µ ηµ
± = 0 . (32)

The mode expansion of X field with the appropriate boundary conditions
for closed strings was given above (8). The solution of fermionic fields can
be represented in the form of mode expansion as well

ηµ
+ =

∑

cµne−inζ+

, ψµ
+ =

∑

dµ
ne−inζ+

,

ηµ
− =

∑

c̃µne−inζ− , ψµ
− =

∑

d̃µ
ne−inζ− (33)

with the basic anti-commutators

{ηµ
±(ζ), ψν

±(ζ
′

)} = 2πηµνδ(ζ − ζ
′

) , (34)

and all others equal to zero: {ηµ
±(ζ), ην

±(ζ
′

)} = 0, {ψµ
±(ζ), ψν

±(ζ
′

)} = 0.
Substituting the mode expansion into the anti-commutators requires the
following relations between modes

{cµn, dν
k} = ηµνδn+k,0 , {cµn, cνk} = 0 , {dµ

n, d
ν
k} = 0 , (35)

and similar ones for c̃µn and d̃µ
n.

4. Enhanced N = 2 world-sheet supersymmetry

Let us now consider conserved currents: energy momentum tensor and
supercurrent

Tab = ∂{aΠ
µ ∂b}X

µ + iη̄µρ{a∂b}Ψ
µ − trace ,

Ja =
1

2
ρbρaΨ

µ∂bΠ
µ +

1

2
ρbρaη

µ∂bX
µ (36)

or in the light-cone coordinates

T++ = 2∂+Π
µ∂+X

µ + iηµ
+∂+Ψ

µ
+ − i

2
∂+(ηµ

+Ψ
µ
+) ,

T−− = 2∂−Π
µ∂−X

µ + iηµ
−∂−Ψ

µ
− − i

2
∂−(ηµ

−Ψ
µ
−) ,

J+ = 2∂+Π
µ

Ψ
µ
+ + 2ηµ

+∂+X
µ ,

J− = 2∂−Π
µ

Ψ
µ
− + 2ηµ

−∂−X
µ . (37)
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Substituting solution (8) into the last formulas one can get

T++ =
1

2
∂+Π

µ
L ∂+X

µ
L +

i

2
ηµ
+∂+Ψ

µ
+ − i

2
∂+η

µ
+ Ψ

µ
+ ,

T−− =
1

2
∂−Π

µ
R ∂−X

µ
R +

i

2
ηµ
−∂−Ψ

µ
− − i

2
∂−η

µ
− Ψ

µ
− ,

J+ = ∂+Π
µ
L Ψ

µ
+ + ηµ

+∂+X
µ
L ,

J− = ∂−Π
µ
RΨ

µ
− + ηµ

−∂−X
µ
R . (38)

The mode expansion of these currents is equal to

Ln = 〈einζ+

T++〉 =
∑

l

: αn−l · βl : +
∑

l

: (l − n

2
)cn−l · dl : ,

Fn = 〈einζ+

J+〉 =
∑

l

αn−l · dl +
∑

l

βn−l · cl . (39)

The standard computation of quantum commutation relations between these
currents gives

[Ln, Lm] = (n−m)Ln+m +
D

4
m3δn+m ,

[Ln, Fm] =
(n

2
−m

)

Fn+m ,

{Fn, Fm} = 2Ln+m +Dn2δn+m . (40)

This is a standard N = 1 superalgebra with the central charge twice larger
than in the standard superstring theory. It is also clear from the expression
for the full supercurrent Ja that its two separate pieces G1

a = 1
2
ρbρaη

µ∂bX
µ

and G2
a = 1

2
ρbρaΨ

µ∂bΠ
µ also represent conserved currents and therefore are

pointing to the fact that there should exist a higher symmetry group. In the
light-cone coordinates these currents have the form

G1
+ = 2ηµ

+ ∂+X
µ , G2

+ = 2∂+Π
µ

Ψ
µ
+ ,

G1
− = 2ηµ

− ∂−X
µ , G2

− = 2∂−Π
µ

Ψ
µ
− . (41)

Mode expansion of these currents is defined as:

G1
n = 〈einζ+

G1
+〉 =

∑

l

βn−l · cl ,

G2
n = 〈einζ+

G2
+〉 =

∑

l

αn−l · dl , (42)

therefore
Fn = G1

n +G2
n .
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These conserved currents form the following algebra

[Ln, G
1
m] =

(n

2
−m

)

G1
n+m , (J = 3/2) ,

[Ln, G
2
m] =

(n

2
−m

)

G2
n+m , (J = 3/2) ,

{G1
n, G

1
m} = 0 ,

{G2
n, G

2
m} = 0 . (43)

Here J denotes the conformal spin of the corresponding operators. The
anti-commutator {G1

n, G
2
m} cannot be computed in closed form unless we

introduce additional current

Ta = 1
2
η̄µρaΨ

µ (44)

which appears to be also conserved as it is easy to check using equations
of motion. This conserved current is connected with the U(1) invariance
of the action which rotates fermionic fields. Its components are T+ =
−ηµ

+Ψ
µ
+, T− = −ηµ

−Ψ
µ
−, ∂−T+ = ∂+T− = 0, and mode expansion is

Tn = 〈einζ+

T+〉 = −
∑

l

: cn−l · dl : . (45)

Then we can compute the anti-commutator:

{G1
n, G

2
m} = Ln+m + 1

2
(n−m)Tn+m +

D

2
n2δn+m,0

and the rest of the algebra will take the form:

[Ln, Tm] = −mTn+m , (J = 1) ,

[Tn, Tm] = Dnδn+m,0 ,

[Tn, G
1
m] = −G1

n+m ,

[Tn, G
2
m] = +G2

n+m . (46)

It is clear now that this is a well known N = 2 superconformal algebra
[36] and that initially implemented N = 1 SUSY transformation has been
naturally enhanced to N = 2 world-sheet supersymmetry. This symmetry
can also be seen if one introduces the N = 2 superfield as follows:

X̂µ(ζ, ϑ1, ϑ2) = Xµ + ϑ1Ψ
µ + ϑ2η

µ + ϑ2ϑ1Π
µ

= Xµ + ϑ1Ψ
µ + ϑ2 (ηµ + ϑ1Π

µ) . (47)

The important point is that there is no natural extensions of the superfield
Ω̂ to N = 2 superfield, simply because the constrain Π 2 −m2 = 0 breaks
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the symmetry between X and Π fields. This can be seen as a sign that
actually the whole system together with constraints breaks the N = 2 down
to N = 1. This observation makes the computation of critical dimension
more subtle here. In particular it is not obvious at all that it should be two,
as it is the case for N = 2 strings.

Let us now consider the new superconstraints (II) (32) which appear in
our case: ∆ = Π µ ηµ

±

∆
±
n,l = 〈einζ++ilζ− : Π

µ ηµ
± :〉 (48)

or in terms of oscillators

∆
+
0,0 = me · c0 +

∑

n 6=0

α−n cn , ∆
−
0,0 = me · c̃0 +

∑

n 6=0

α̃−n c̃n ,

∆
+
n,0 = i

∑

l 6=0,n

αn−l · cl , ∆
−
0,n = i

∑

l 6=0,n

α̃n−l · c̃l , n = ±1,±2, . . . ,

∆
+
n,l = αn · c̃l , ∆

−
n,l = α̃n · cl , n, l = ±1,±2, . . . . (49)

The important fact which uniquely defines the spectrum of this superstring
theory is again the τ dependence of the operators Π 2 and Π · η±

(Π 2 −m2) = k2 τ2 + 2{me · k + k · Πoscil}τ
+m2(e2 − 1) + 2me · Πoscil + Π

2
oscil ,

Π · η+ = (c0 · k + k · η+ oscil)τ +me · c0 +me · η+ oscil + Πoscil · η+ oscil ,

Π · η− = (c̃0 · k + k · η− oscil)τ +me · c̃0 +me · η− oscil + Πoscil · η− oscil .

(50)

The first operator diverges quadratically with τ and the second one linearly
in bosonic sector and we have linear divergency of first operators in fermionic
sector. Therefore in order to have normalizable states in physical Hilbert
space one should impose corresponding constraints. We are enforced to
define the physical Hilbert space as

k2
Ψphys = 0 , c0 · kΨphys = 0 , c̃0 · k Ψphys = 0 ,

k · αnΨphys = 0 , k · α̃nΨphys = 0 , k · cnΨphys = 0 , k · c̃nΨphys = 0 ,

e · kΨphys = 0 , n > 0 . (51)

All these constraints can naturally be grouped into three systems of equa-
tions. The first three equations are nothing else but massless Klein–Gordon
and Dirac equations and uniquely define the spectrum of the theory. We con-
clude that all physical states with integer and half integer spins are massless.
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This is consistent with tensionless character of the theory. The second sys-
tem of equations imposes important condition of transversality on fermion
and boson oscillators. Finally the last equation suggests that the vector eµ
should be interpreted as polarization vector transverse to the momentum
vector kµ.

We should impose the constraints of N = 2 superconformal algebra

(L0 + a)Ψphys = 0 ,

LnΨphys = 0 , n = 1, 2, . . . ,

T0Ψphys = 0 ,

TnΨphys = 0 , n = 1, 2, . . . ,

G1
nΨphys = 0 , n = 1, 2, . . . ,

G2
nΨphys = 0 , n = 1, 2, . . . , (52)

together with the additional constraints Θk,l (18) and fermionic constraints
(49)

∆
±
n,lΨphys = 0 , n, l = 0, 1, 2, . . . . (53)

One should study in great details this Hilbert space in order to learn more
about content of the theory and to prove the absence of the negative norm
states. We cannot also say anything certain about critical dimension of
the model because we have additional symmetries and the corresponding
constraints, the influence of which on the calculation of the critical dimension
at the moment is not quite well understood.

In the rest of the article we shall consider a close topological model
which can be constructed by twisting [24–27]. Indeed the redefinition of
the energy momentum tensor by the total derivative of the U(1) current,
leads to the topological theory. By this twisting operation the above N = 2
supersymmetry transforms into BRST symmetry as in [24, 27].

5. Twisted topological strings

We shall obtain the topological version of the above N = 2 theory by
the redefinition of the energy momentum tensor T by T̂ as follows:

T̂ab = Tab −
i

2
∂aJb ,

where Jb is the U(1) current (44). In light-cone components we have

T̃++ = 2∂+Π
µ∂+X

µ + iηµ
+∂+Ψ

µ
+ , T̃−− = 2∂−Π

µ∂−X
µ + iηµ

−∂−Ψ
µ
− ,

F+ = 2∂+Π
µ
Ψ

µ
+ + 2ηµ

+∂+X
µ , F− = 2∂−Π

µ
Ψ

µ
− + 2ηµ

−∂−X
µ ,

J+ = −ηµ
+Ψ

µ
+ , J− = −ηµ

−Ψ
µ
− . (54)
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Substituting solutions (8) into the last formulas one can get

T̃++ = 1
2
∂+Π

µ
L ∂+X

µ
L + iηµ

+∂+Ψ
µ
+ ,

T̃−− = 1
2
∂−Π

µ
R∂−X

µ
R + iηµ

−∂−Ψ
µ
− ,

F 1
+ = ∂+Π

µ
L Ψ

µ
+ + ηµ

+∂+X
µ
L ,

F 1
− = ∂−Π

µ
RΨ

µ
− + ηµ

−∂−X
µ
R ,

J+ = −ηµ
+Ψ

µ
+ ,

J− = −ηµ
−Ψ

µ
− . (55)

Mode expansion of these currents is defined as:

Ln = 〈einζ+

T̃++〉 =
∑

l

: αn−l · βl : +
∑

l

: l cn−l · dl : ,

F 1
n = 〈einζ+

F+〉 =
∑

l

αn−l · dl +
∑

l

βn−l · cl ,

F 2
n = 〈einζ+

F 2
+〉 =

∑

l

αn−l · dl −
∑

l

βn−l · cl ,

Jn = 〈einζ+

J+〉 = −
∑

l

: cn−l · dl : , (56)

where we have introduced a new operator F 2
+ which is equal to the following

expression
F 2

+ = ∂+Π
µ
L Ψ

µ
+ − ηµ

+∂+X
µ
L . (57)

The necessity of introducing this operator comes from the fact that again
when we compute the algebra between operators T, F 1, J the algebra is
closed only if we introduce this new operator. For these four operators the
algebra is closed

[Ln, Lm] = (n −m)Ln+m ,

[Ln, F
1
m] =

(n

2
−m

)

F 1
n+m − n

2
F 2

n+m ,

[Ln, F
2
m] =

(n

2
−m

)

F 2
n+m − n

2
F 1

n+m ,

[Ln, Jm] = −mJn+m − D

2
n(n+ 1)δn+m,0 ,

[Jn, Jm] = Dnδn+m,0 ,

[Jn, F
1
m] = F 2

n+m ,

[Jn, F
2
m] = F 1

n+m ,
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{F 1
n , F

1
m} = 2Ln+m + (n+m)Jn+m +Dn2δn+m,0 ,

{F 1
n , F

2
m} = −(n−m)Jn+m +D n δn+m,0 ,

{F 2
n , F

2
m} = −2Ln+m − (n+m)Jn+m −Dn2δn+m,0 . (58)

There is no defined conformal dimensions for the fermion operators F 1 and
F 2, they also do not have defined charges with respect to the U(1) group.
As it is easy to see the linear combination of these operators do have defined
charges. Indeed we should introduce the linear combination of supercurrents
as we did in the previous model

2Gn = F 1
n − F 2

n , 2Qn = F 1
n + F 2

n , (59)

in order to have diagonal form of supercurrent with respect to the conformal
operator Ln. In coordinate space they look as (41). For these conserved
currents the algebra takes the form

[Ln, Lm] = (n−m)Ln+m , (J = 2) ,

[Ln, Gm] = (n−m)Gn+m , (J = 2) ,

[Ln, Qm] = −mQn+m , (J = 1) ,

[Ln, Jm] = −mJn+m − D

2
n(n+ 1)δn+m,0 , (J = 1) ,

[Jn, Jm] = Dmδn+m,0 ,

[Jn, Gm] = −Gn+m ,

[Jn, Qm] = +Qn+m ,

{Gn, Gm} = 0 ,

{Qn, Qm} = 0 ,

{Gn, Qm} = Ln+m +mJn+m +
D

2
n(n+ 1)δn+m,0 (60)

which is well known in topological conformal field theory [27]. One can see
that we have here zero central charge and two nilpotent fermion operators G
and Q which form the N = 2 world-sheet supersymmetry. Two conserved su-
percurrents which appear above should have come from the explicit fermion
symmetry of the theory. As we shall see in a moment these symmetries
can be justified. One can check that the system is invariant under fermion
transformation laws δ and δ̄ defined as follows [35]:
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δXµ = 0 ,
δΨµ

− = −2ε+∂−X
µ ,

δΨµ
+ = 0 ,

δFµ = −2iε+∂−Ψ
µ
+ ,

δΠ µ = iε+η
µ
− ,

δηµ
− = 0 ,

δηµ
+ = −ε+Φµ ,

δΦµ = 0 ,

δ̄Xµ = 0 ,
δ̄Ψµ

− = 0 ,
δ̄Ψµ

+ = −2ε−∂+X
µ ,

δ̄Fµ = 2iε−∂+Ψ
µ
− ,

δ̄Π µ = iε−η
µ
+ ,

δ̄ηµ
− = ε−Φµ ,

δ̄ηµ
+ = 0 ,

δ̄Φµ = 0 ,

δω = iε+ξ− ,
δξ− = 0 ,
δξ+ = −ε+Ω ,
δΩ = 0 ,
δ̄ω = iε−ξ+ ,
δ̄ξ− = ε−Ω ,
δ̄ξ+ = 0 ,
δ̄Ω = 0 .

(61)

The algebra of these fermionic symmetries is nilpotent and is very similar
to BRST transformations

δεδέ(H) = δ̄εδ̄έ(H) = 0 , (δεδ̄έ − δ̄έδε)(H) = 0 , (62)

where H is any of the fields (X,Ψ , F,Π , η,Φ, ω, ξ,Ω).
From (62) it follows that the action is invariant under fermionic sym-

metries (61). We can compute the current corresponding to this fermion
symmetry. The variation of the action is

δS =
2

π

∫

d2ζ
{

− 2iε+η
µ
−∂+∂−X

µ − iε+Φ
µ∂−Ψ

µ
+ + iηµ

−∂+(−2ε+∂−X
µ)

− 1

2
(−2iε+∂−Ψ

µ
+)Φµ

}

= −2i

π

∫

d2ζ G− ∂+(ε+) (63)

and supercurrent G− = 2ηµ
−∂−X

µ coincides with the one which appeared
in the previous section. The important fact now is that the Lagrangian is a
variation of the super-potentials W and W̄

W = Π
µ ∂+Ψ

µ
− +

1

2
ηµ
+ Fµ, W̄ = Π

µ ∂−Ψ
µ
+ − 1

2
ηµ
− Fµ, (64)

so that
δW = ε+L , δ̄ W̄ = ε−L . (65)

It is also true that there exists a potential V such that

δV = −iε+W̄ , δ̄V = iε−W , V =
1

2
Π

µFµ, (66)

thus
iδδ̄V = ε+ε−L , iδ̄δV = ε+ε−L .
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The constrains (II) can also be represented by the δ̄δ transformation and
therefore the full Lagrangian in (29) can be represented as

2ε+ε−Ltot = iδ̄δ
(

Π
µFµ + ω(Π 2 −m2)

)

. (67)

Thus the action can be represented as BRST commutator L = {G+,W} =
{G−, W̄}. The above fermion symmetry allows to express some important
operators as variation of others. In particular the energy momentum tensor
is a variation of second supercurrent Q, but only up to the total derivative
of U(1) current Ja

δ̄ Q+ = −2ε−T++ + 2iε−∂+J+ ,

δ Q− = −2ε+T−− + 2iε+∂−J− . (68)

Instead, the supercurrent G introduced above is total variation of the vector
va = Π µ∂aX

µ

δ̄ v+ = iε−G+, v+ = 2Π µ∂+X
µ ,

δ v− = iε+G−, v− = 2Π µ∂−X
µ . (69)

Let us consider the second fermion symmetry of the action

δXµ = −iε−Ψ
µ
+ ,

δΨµ
− = −ε−Fµ ,

δΨµ
+ = 0 ,

δFµ = 0 ,
δΠ µ = 0 ,
δηµ

− = 0 ,
δηµ

+ = 2ε−∂+Π µ ,
δΦµ = −2iε−∂+η

µ
− ,

δ̄Xµ = −iε+Ψ
µ
− ,

δ̄Ψµ
− = 0 ,

δ̄Ψµ
+ = ε+F

µ ,
δ̄Fµ = 0 ,
δ̄Π µ = 0 ,
δ̄ηµ

− = 2ε+∂−Π µ ,
δ̄ηµ

+ = 0 ,
δ̄Φµ = 2iε+∂−η

µ
+ ,

δω = 0 ,
δξ− = −ε−ω ,
δξ+ = 0 ,
δΩ = iε−ξ+ ,
δ̄ω = 0 ,
δ̄ξ− = 0 ,
δ̄ξ+ = ε+ω ,
δ̄Ω = iε+ξ− .

(70)

The algebra of these fermionic symmetries is nilpotent and is very similar
to BRST transformations

δεδέ(H) = δ̄εδ̄έ(H) = 0 , (δεδ̄έ − δ̄έδε)(H) = 0 , (71)

where H is any of the fields (X,Ψ , F,Π , η,Φ, ω, ξ,Ω). Let us compute the
corresponding current. The variation of the action is

δS =
2

π

∫

d2ζ
{

− 2Π µ∂+∂−(−iε−Ψ
µ
+) + 2iε−∂+Π

µ∂−Ψ
µ
+

+iηµ
−∂+(−ε−Fµ) − 1

2
Fµ(−2iε−∂+η

µ
−)

}

= −2i

π

∫

d2ζQ+(∂−ε−)

(72)
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and Q+ = 2∂+Π µΨ
µ
+ also appeared in the previous section. The important

fact now is that the energy momentum tensor is BRST commutator with
respect to the second fermion symmetry

δG+ = δ(2ηµ
+∂+X

µ) = 2ε−T++ ,

δG− = δ (2ηµ
−∂−X

µ) = 2ε+T−− , (73)

and supercurrent Q is a variation of U(1) current Ja

δJ+ = δ(−ηµ
+Ψ

µ
+) = −ε−Q+ ,

δJ− = δ(−ηµ
−Ψ

µ
−) = −ε+Q− . (74)

Thus the energy momentum tensor is a BRST commutator T++ = {Q+, G+}
and its central charge vanishes, the model transforms into topological theory.
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REFERENCES

[1] J.M. Maldacena, Adv. Theor. Math. Phys. 2, 231 (1998); Int. J. Theor. Phys.
38, 1113 (1999).

[2] S.S. Gubser, I.R. Klebanov, A.M. Polyakov, Phys. Lett. B428, 105 (1998).

[3] E. Witten, Adv. Theor. Math. Phys. 2, 253 (1998).

[4] O. Aharony, S.S. Gubser, J.M. Maldacena, H. Ooguri, Y. Oz, Phys. Rep. 323,
183 (2000).

[5] A.M. Polyakov, Int. J. Mod. Phys. A17S1, 119 (2002).

[6] D. Berenstein, J.M. Maldacena, H. Nastase, J. High Energy Phys. 0204, 013
(2002).

[7] S.S. Gubser, I.R. Klebanov, A.M. Polyakov, Nucl. Phys. B636, 99 (2002).

[8] P. Haggi-Mani, B. Sundborg, J. High Energy Phys. 0004, 031 (2000).

[9] B. Sundborg, Nucl. Phys. Proc. Suppl. 102, 113 (2001).

[10] E. Witten, Talk at the John Schwarz 60-th Birthday Symposium,
http://theory.caltech.edu/jhs60/witten/1.html

[11] D. Gross, Phys. Rev. Lett. 60, 1229 (1988).

[12] G.W. Moore, hep-th/9310026.

[13] J. Isberg, U. Lindstrom, B. Sundborg, G. Theodoridis, Nucl. Phys. B411, 122
(1994).



Gauge Fields-Strings Duality and Tensionless Superstrings 5083

[14] S. Ferrara, C. Fronsdal, Phys. Lett. B433, 19 (1998).

[15] A.K. Bengtsson, I. Bengtsson, L. Brink, Nucl. Phys. B227, 41 (1983).

[16] A.K. Bengtsson, I. Bengtsson, L. Brink, Nucl. Phys. B227, 31 (1983).

[17] M.A. Vasiliev, hep-th/9910096.

[18] G.K. Savvidy, Phys. Lett. B438, 69 (1998).

[19] E. Sezgin, P. Sundell, J. High Energy Phys. 0109, 036 (2001).

[20] A. Mikhailov, hep-th/0201019.

[21] I.R. Klebanov, A.M. Polyakov, Phys. Lett. B550, 213 (2002).

[22] D. Francia, A. Sagnotti, Phys. Lett. B543, 303 (2002).

[23] G.K.Savvidy, K.G.Savvidy, Mod. Phys. Lett. A8, 2963 (1993); G.K. Savvidy,
J.High Energy Phys. 0009, 044 (2000); R.V. Ambartzumian et al., Phys. Lett.
B275, 99 (1992); G.K. Savvidy, K.G. Savvidy, Int. J. Mod. Phys. A8, 3993
(1993); R. Manvelian, G. Savvidy, Phys. Lett. B533, 138 (2002).

[24] E. Witten, Comm. Math. Phys. 117, 353 (1988); E. Witten, Comm. Math.
Phys. 118, 411 (1988).

[25] J.M. Labastida, M. Pernici, E. Witten, Nucl. Phys. B310, 611 (1988).

[26] D. Montano, J. Sonnenschein, Nucl. Phys. B313, 258 (1989).

[27] T. Eguchi, S.-K. Yang, Mod. Phys. Lett. A5, 1693 (1990).

[28] A.M. Polyakov, Nucl. Phys. B268, 406 (1986); H. Kleinert, Phys. Lett. 174B,
335 (1986); T. Curtright, P. van Nieuwenhuizen, Nucl. Phys. B294, 125
(1987); U. Lindström, M. Roc̆ek, P. van Nieuwenhuizen, Phys. Lett. B199,
219 (1987); U. Lindström, M. Roc̆ek, Phys. Lett. B201, 63 (1988).

[29] G.K. Savvidy, Phys. Lett. B552, 72 (2003).

[30] H.J. De Vega, A. Nicolaidis, Phys. Lett. B295, 214 (1992).

[31] A. Clark, A. Karch, P. Kovtun, D. Yamada, hep-th/0304107.

[32] P. Ramond, Phys. Rev. D3, 2415 (1971).

[33] A. Neveu, J. Schwarz, Nucl. Phys. B31, 86 (1971).

[34] J.L. Gervais, B. Sakita, Nucl. Phys. B34, 632 (1971); Y. Iwasaki, K. Kikkawa,
Phys. Rev. D8, 440 (1973); B. Zumino, in Renormalisation and Invariance in
QFT, ed. E. Caianiello, Plenum Press, 1974, pp. 367–381; L. Brink, P. Di Vec-
chia, P. Howe, Phys. Lett. 65B, 471 (1976); S. Deser, B. Zumino, Phys. Lett.
65B, 369 (1976); A.M. Polyakov, Phys. Lett. 103B, 207 (1981); Phys. Lett.
103B, 211 (1981).

[35] A. Nichols, R. Manvelyan, G.K. Savvidy, hep-th/0212324.

[36] M. Ademollo, A. D’Adda, R. D’Auria, E. Napolitano, P. Di Vecchia, F. Gliozzi,
S. Sciuto, Nucl. Phys. B77, 189 (1974); Nucl. Phys. B114, 297 (1976); Phys.
Lett. 62B, 105 (1976); L. Brink, J.H. Schwarz, Nucl. Phys. B121, 285 (1977).

[37] A. D’Adda, F. Lizzi, Phys. Lett. 191B, 85 (1987).

[38] H. Ooguri, C. Vafa, Mod. Phys. Lett. A5, 1389 (1990).

[39] H. Ooguri, C. Vafa, Nucl. Phys. B361, 469 (1991).



5084 G. Savvidy

[40] M. Bershadsky, S. Cecotti, H. Ooguri, C. Vafa, Commun. Math. Phys. 165,
311 (1994).

[41] M. Bershadsky, S. Cecotti, H. Ooguri, C. Vafa, Nucl. Phys. B405, 279 (1993).

[42] H. Ooguri, C. Vafa, Nucl. Phys. B451, 121 (1995).

[43] M.B. Green, J.H. Schwarz, E. Witten, Superstring Theory Vol. 1,2, Cambridge
University Press, Cambridge 1997.

[44] J. Polchinski, String Theory Vol.1,2, Cambridge University Press, Cambridge
1998.

[45] M. Fierz, W. Pauli, Proc. Roy. Soc. A173, 211 (1939); W. Rarita,
J. Schwinger, Phys. Rev. 60, 61 (1941).


