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We review the last year progress in understanding supersymmetric
SU(2) Yang-Mills quantum mechanics in the D = 4 and 10 space-time
dimensions. The four dimensional system is now well under control and
the precise spectrum is obtained in all channels. In D = 10 some new
results are also available.
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1. Introduction

Supersymmetric Yang—Mills quantum mechanics (SYMQM) shares many
properties of advanced field theories thereby it provides a useful laboratory
to study explicitly some of their properties [1,2]. It emerges from the di-
mensional reduction (in space) of the full supersymmetric Yang—Mills field
theory defined in the D dimensional space-time. Depending on D it covers
a wide range of interesting phenomena. DD = 2 system is exactly soluble
with manifestly supersymmetric continuous spectrum and analytically cal-
culable Witten index [1,3]. For D = 4 the model is nontrivial and posesses
both localized and non localized eigenstates, which have been constructed
only recently in all fermionic sectors. On the other hand in the zero fermion
sector it reduces to the zero volume limit of the pure Yang—Mills theory
well studied in the context of lattice field theory [4-6]. Finally the D = 10,
SU(oc0) system, with its threshold bound state and the continuum of scat-
tering states, is considered as a model of M-theory [7| and has attracted a
lot of interest (for recent review see e.g. [8]).

* Presented at the Workshop on Random Geometry, Krakow, Poland, May 15-17, 2003.
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In this talk I would like to review the current status of the programme
which attempts to solve these models in various dimensions and for various
gauge groups [9]. The four dimensional (D = 4) system with the SU(2)
gauge group, where the main progress has been achieved, will be discussed
in the next Section. In Section 3, a new approach to the D = 10, SU(2)
model, together with some preliminary results for the purely bosonic sector
will be presented.

2. D = 4 supersymmetric Yang—Mills quantum mechanics

Reduction of the D dimensional supersymmetric SU(2) Yang-Mills field
theory to a single point in the d = D — 1 dimensional space leads to the
quantum mechanical system which for D = 4 is described by nine bosonic
coordinates z%(t), i = 1,2,3;a = 1,2, 3 and six independent fermionic coor-
dinates contained in the Majorana spinor ¥$(t), o = 1,...,4. Equivalently
(in D = 4) one could impose the Weyl condition and work with Weyl spinors.
Hamiltonian reads [2]

H = HBJrHF,
L 92 I
HB — §papa+Z€abC€ad6$bxcxdxev (1)

g
HF = 5€abcwgpk¢b$§7

where 97 is the transpose of the real Majorana spinor, and I" in D = 4 are
just the standard Dirac o matrices.

After the reduction of the three dimensional space to a single point,
the rotational symmetry of the original theory becomes the internal spin(3)
symmetry. It is generated by the angular momentum

L A 1 A
7= e (ko = o5, ) @)

with

ik = 27 k. (3)

L
4
The model has also a gauge invariance with the generators
i
Ga = €abc <x§pl§ - §¢bT¢c> ) (4)

and is invariant under the supersymmetry transformations generated by

Qo = (kaa)ap’; =+ ig€abc(2jk1/)a)a$i$’§. (5)
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The bosonic potential (written in the vector notation in the color space)

2
g —j o kN2
V= L@ x 2P (6)
exhibits the famous flat directions responsible for a rich structure of the
spectrum.

2.1. Original approach

We shall now review a simple way to calculate automatically algebraic
expressions for matrix elements of a wide class of quantum observables and
to construct numerically the complete spectrum of a given system [9]. The
method implements literarily in the computer the rules which govern the
quantum world.

Quantum mechanics inside a PC

For a moment consider a single bosonic degree of freedom. Generalization
to fermions and to more variables readily follows. Action of any polynomial
observable can be easily implemented in an algebraic program if we use the
discrete eigenbasis of the occupation number operator afa

1 n
{In)}, WZﬁ(aT) 0) - (7)

Since the bosonic coordinate and momentum operators are

1 1
J::—a—&—aT, p:—a—aT, 8
Tt p=—s(a—d) (
a typical quantum observable can be represented as the multiple actions of
the basic creation and annihilation operators!.
A quantum state is a superposition of arbitrary number, ng, of elemen-
tary states |n)

Ist) = Z7eaz|n D), (9)

and will be represented as a Mathematica list

st = {ns, {ai,...,an,}, {n(l)}, {n(Q)}, . {n(”s)}} , (10)

with ngs + 2 elements. The first element specifies the number of elementary
states entering the linear combination, Eq. (9). The second element is the list
itself and contains all complex amplitudes a;,I = 1,...,ns. Remaining ng

! The method can be also extended to non polynomial potentials.
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sublists give the occupation numbers of elementary, basis states. According
to this convention an elementary state |n) is represented by {1, {1}, {n}}.

Next, we implement basic operations defined on states: addition, multi-
plication by a number and the scalar product. They are simply programmed
as definite operations on Mathematica lists transforming them in accord with
the principles of quantum mechanics. Creation and annihilation operators
are then defined as a list-valued functions on above lists. According to Eq. (8)
the action of the position and momentum operators becomes also defined.
Then we define any quantum observable: Hamiltonian, angular momentum,
generators of gauge transformations, supersymmetry generators, etc.

Further procedure is now clear: given a particular system, define the
list corresponding to the empty state, then generate a finite basis of Ncyt
vectors and calculate matrix representations of the Hamiltonian and other
operators using above rules. Next, the complete spectrum and its various
symmetry properties is obtained by the numerical diagonalization.

By studying the cutoff dependence of the spectrum one can estimate the
systematic errors induced by restricting the Hilbert space. In many systems
studied so far convergent results were obtained before the basis grew too
large.

Creation and annihilation operators for SYMQM

Supersymmetric Hamiltonian (1) is polynomial in momenta and coordinates,
hence above idea can be readily applied. To this end rewrite bosonic and
fermionic variables in terms of the creation and annihilation operators of
simple, normalized harmonic oscillators

1 k 1 o ol
lab,apT] = 8%, {f0, £} =6, p,o=1,2, (11)

such that the canonical (anti)commutation relations

[ f) = i6% 0, {0504} = 03 (12)
are preserved. Standard extensions of Eq. (8) for bosonic variables read
o= Sl i), = —=(ah — i) (13)
V2 iv/2

For fermions, the following representation for a quantum Hermitean Majo-
rana spinor was used

RN
L | ift -2 i
T o2 | iz apdt - g
—ifl = f2 4 fal ifd!

Ya (14)
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The basis and the cutoff

The complete Hilbert space is spanned by all independent polynomials of
creation operators aZT and f7 f acting on the empty state

‘(07 07 0)7 (07 O? 0)7 (07 07 0)7 (07 07 0)7 (07 07 0)>7 (15)
which in the Mathematica “representation” reads

{1,{1},{{0,0,0}, {0,0,0},{0,0,0},{0,0,0},{0,0,0}} }. (16)

By construction, the first three vectors (in color) specify bosonic, and the
last two fermionic, occupation numbers. In practical applications we shall
work in the restricted Hilbert space containing at most B bosonic quanta in
total. Hence the gauge and rotationally invariant cutoff Ny is defined as

Ei,ba;‘)ai-r = B < Buax = Neut- (17)

Since the Pauli principle admits only six Majorana fermions in this system,
there is no need to restrict the fermion number F.

Local gauge invariance is taken into account by constructing only the
physical, i.e. gauge invariant basis. To create all independent, gauge invari-
ant states at fixed F' and B consider all possible contractions of color indices
in a creator of (F, B) order

aif. it ol ot (18)

for all values of the spatial indices ¢ and o. All color contractions fall nat-
urally into different gauge invariant classes. Creators from different classes
differ by color contractions between bosonic and fermionic operators. For
example

1 i+ kT o1

aifaffay all fo1 pot (19)
and

aifalfay all £ pf7 (20)

are in different gauge invariant classes. Creators of odd order are constructed
with one triple contraction. For example

1 i+ kT 1 o
ccdeariadlay ol at £77 o1 (21)

and
ok
ccaeal adtaytallalt fot Lt (22)
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also belong to different gauge invariant classes. To select linearly indepen-
dent states we used again the rules of “quantum algebra”. Therefore, at fixed
F and B the final procedure is as follows: (i) identify all gauge invariant
classes of creators, (ii) loop over all values of spatial indices and for each
i1,...,iB,01, ..., 0 create corresponding state from the empty state, Eq. (15),
(i4i) identify and reject linearly dependent vectors, (iv) orthonormalize the
remaining set of states.

Given the basis it was then a simple matter to calculate automatically
matrix representation of the Hamiltonian and other observables.

FEarly results
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Fig. 1. Spectrum of supersymmetric Yang—Mills quantum mechanics.

In Fig. 1 we quote the spectrum obtained in Ref. [9] in all four indepen-
dent fermionic sectors?. The cutoff in this calculation was varying between
Bpax = 8 for F =0 and Bpax = 5 for the largest (i.e. most difficult) F' =3
sector. The angular momentum of a sample of states is also shown. It was
deduced from the degeneracy of the SO(3) multiplets and independently
from the explicit representation of the angular momentum in our basis.

Later on this results were upgraded, with the considerable numerical
effort, to Bpax = 8 in all sectors [10]. Fig. 2 is the outcome of the latter cal-
culations which took a couple of months of a 600 MHz ALPHA workstation.
The cutoff dependence displayed in this Figure confirmed and quantified the
general expectation that the system has both continuous and discrete spec-

2 The Hamiltonian has also the particle-hole symmetry.
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Fig.2. Cutoff dependence of the first few eigenenergies of the Hamiltonian (1).

trum. Discrete, localized states (which manifest themselves here as quickly
convergent levels) appear for F' = 0 and F' = 1 while the non localized
states, with substantially slower convergence, are seen in the “fermion rich”
sectors with F' = 2 and 3. This was expected from the flat valley nature
of the potential, Eq. (6), combined with the supersymmetry [11]. A series
of other results about the supersymmetric structure of the system, Witten
index, etc. was also obtained.

Further progress was achieved recently by exploiting analytically the
symmetries of the system.

2.2. New developments
Separation of variables

Above results have been beautifully confirmed and extended with the aid of
the “almost analytical” approach pioneered by Savvidy [12] and developed by
van Baal in slightly different context [13|. Decomposing solution of the nine
dimensional Schréodinger equation, in the F = 0,J =0and F =2,J =0
channels into covariant tensors, he reduced the problem to a numerically
tractable set of coupled ordinary differential equations. When adapted to
our case his method can push the cutoff as high as Byax = 39 in these two
channels, see Fig. 3. Now the discrete, localized, and quickly convergent with
the cutoff states with F' = 0 are clearly seen, their energy determined with
a very high precision. Moreover, the intricate nature of the solutions with
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two fermions is also evident. The flat lines signal again the localized bound
states of two gluinos, while slowly falling with the cutoff levels correspond to
the non localized states from the continuous spectrum. Some of the bound
states in F' = 0 and F' = 2 sectors have degenerate energies as required by
supersymmetry. Other supersymmetric partners must then be located in
fully fermionic (F' = 1,3) sectors for which the method has not been yet
generalized.

F=0 J=0 F=2 J=0
0 20 40 0

0 20 40 0 20 40
B

©
ol

Fig. 3. High cutoff results from van Baal approach.

High cutoff solutions in all channels

Similar high precision results are now available for all angular momenta
and in all fermionic sectors [14]. To this end we have extended the recursive
approach first applied to the D = 2 system [3]. In the two dimensional case
recursions, which relate the matrix elements in a bigger basis with those
in the smaller basis, were simple enough to be solved analytically. For the
D = 4 this is not the case any more. However they speed up dramatically
computations allowing to reach high precision spectra in all fermionic sectors
and all angular momentum channels. Second, rotational invariance is now
fully employed, by projecting into channels of given angular momentum.
Consequently there is no need to diagonalize very large matrices. Both these
improvements result not only in the more precise spectra, but in much more
satisfactory understanding of the supersymmetric structure of the D = 4
system, including complete classification of all supermultiplets.
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Analytical study of continuous spectra in cut systems

Finally, in a recent development a new scaling in the continuous spectra of
a cut quantum systems was found [15]. This provides an important tool for
studying the continuum limit of non localized states and their interactions.

To summarize this section, the technology to study quantitatively D = 4,
SU(2), SYMOM is now available and one can readily attack more subtle
problems like scattering [18] or thermodynamics of this system [19].

We now turn to, much more difficult, D = 10 model whose quantitative
study with presently discussed methods is just beginning (see [2,16] for other
attempts).

3. TWS scheme

In higher dimensions only the original approach is available and the
spectrum of lowest zero-volume glueballs was obtained for all 4 < D < 10
in the F' = 0 sector [17]. The number of states grows rapidly with D and
consequently at D = 10 only B < 4 were reached in practice. In fermionic
sectors situation is yet worse. The difficulties are two-fold: (a) bases become
too large to store, and (b) time required for calculating the full Hamiltonian
matrix grows prohibitively large. The TWS scheme, presented below, offers
substantial reduction of both parameters.

Consider the (B, F') sector of the Hilbert space, i.e. the one with B
bosons and F' fermions. The basis vectors before orthonormalization can be
uniquely characterized by the compound index

I={c,i',. .. i% o' .. o}, (23)

since given I the actual state can be readily created by the compound creator
from the gauge invariant class C (cf. (19)-(22)). Many properties of the
mixing matrix and of the Hamiltonian matrix can be deduced from the
index I alone without need to create the actual state. Therefore we shall
abandon where possible the lengthy Mathematica representation of states
and use instead much more compact indices (23) . This virtually eliminates
the first problem. Second difficulty is also reduced by observing that for
polynomial Hamiltonians most of the matrix elements are zero and many of
non-zero ones are actually the same. We shall therefore expose the sparse
nature of the Hamiltonian matrix and identify equal matrix elements. This
can be done using indices (23) only, and will lead to the new classification
of basis states.

We begin with the properties of the mixing matrix M;x = (I|K), also
referred to as the norm matrix.
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3.1. Norm matriz and new classification of states

For the sake of simplicity we restrict the analysis to the F' = 0 sector.
Generalization for fermions is possible. Consider the generic element of the
mixing matrix

Mk = (I|K) = (Cyr,it, ..., i%T|Ck kY, .. KPR, (24)
Obviously only states which contain the same quanta can mix, therefore

Mg #0 if By = Bx = B, {i',..., i} ~ {k,... KB}, (25)
where the “~” means that the values of all { i } and { k } indices coincide up
to a permutation. On the other hand states from different gauge invariant
classes can mix in general.

Words

This simple observation suggests to group all states with given B into words.
A word W is defined as a set of all states which contain the same quanta.
For example in a B = 4 sector states {C,1,2,2,5} and {D,1,2,5,2} be-
long to the same word while states {C’,4,3,3,8} and {D’,1,2,3,5} are
from different words. All gauge invariant classes, which can be constructed
for particular set of spatial indices, are included in a given word by defi-
nition. Hence a word is uniquely labelled by an ordered set of B integers,
e.g. W = (1225) defines the word considered above. How many states are in
a word? As many as there are inequivalent permutations of spatial indices
which give linearly independent states in all contributing gauge invariant
classes. Now Eq. (25) can be stated as the following

THOREM 1: Only states in the same word mix.

Hence the whole mixing matrix splits into blocks of small (Ny x Ny)
mixing matrices for each word W with Ny being the number of states in a
word W.

Types

Words come in different types. A type T characterizes the pattern of indices
irrespectively of their actual value. For example words (1225) and (3448)
belong to the same type which we denote as [211], and (1234) or (2227)
belong to the two different types [1111] and [31] respectively. The number
of words in a given type, Np is equal to the number of realizations of the
pattern by different values of the indices. For our first example (d = D — 1)

Noii =d(d —1)(d - 2)/2, (26)
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and similarly for other types. Types can be identified with the partitions
of B. Therefore the total number of types in a given bosonic sector is just
equal to the number of partitions, Pg, of B.

Since neither the number of states in a word nor the number of types in a
sector depend on the dimensionality of the problem, the main complexity lies
in the number of words in a given type, e.g. Eq. (26) which grows rapidly with
d for larger B. However the big simplification occurs due to the following
consequence of the Wick theorem.

THEOREM II: All mixing matrices in the same type are equal.

To see this rewrite Mg as the sum over all contractions
Mk = (I|K) = (0la™ ...a'Paf ...a} |0) = Deontractions T0ik.,  (27)

where the product on the right hand side denotes symbolically given con-
traction. It is evident, even from this schematic expression, that Mjx does
not depend on the particular values of the indices, but depends only on
their con figurations or patterns. Hence the theorem follows.

Therefore the calculation of the full mixing matrix is simply reduced
to calculating Pp small matrices and using the same copy for all words
in a given type. Moreover, the tedious orthonormalizaton procedure also
decouples into small blocks, corresponding to words, and has to be done
only for one word in a type with the rest being the exact copies of the
results from the first word. This simplification prompts us to introduce the
new scheme of organizing states in a basis — the TWS scheme which groups
states according to the following hierarchy:

S(tates) — W(ords) — T (ypes) — Sectors. (28)
With this organization any state in a basis is labelled by four integers
|I) = |b,t,w,s), (29)

with b, ¢, w, s enumerating sectors, types, words and states respectively.
It turns out that the structure of the Hamiltonian is also much more
transparent in this representation as discussed below.

3.2. SYMQM Hamiltonian

As above we shall consider only bosonic sectors (B, F') = (B,0) where
only Hp of Eq. (1) contributes. Since Hp contains terms of the second and
fourth order in bosonic creation and annihilation operators, it can only in-
duce transitions with AB = 0,2,4. Each transition can be interpreted as
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TABLE 1
Effective transitions induced by the bosonic Hamiltonian (1) in nine space dimen-
sions.

AB rule action
diagonal
2 — 2 new
2 —2 old
add 2 new
add 2 old
add 2 X 2 new-new
add 2 x 2 new-old
add 2 x 2 old-old

0

[\
CO J O[T x| N —

the effective operator creating/annihilating 0,2 or 4 indices in our TWS rep-
resentation. They are listed in Table I and will be referred to as rules since
each transition implies a rule how to generate from the initial type/word
the final type/word with nonzero matrix element. For example AB = 0

TABLE 11

Structure of the bosonic Hamiltonian in the TWS representation, b and ¢ are defined
in Table III.

b 1 2 3 4
t|1|1 21 2 3 4 5|12 3 45 6 7 8 9 10 11
1 1 (1|4 6
11412 5 4 7 6
2 2 1 5 4 8 7
1 5 1 2 5 4
2 5 13 2 5) ) 4
3 31|6|4 2 12 5 4
4 4 2 12 5 5 4
5 1 5 4
1 5 1 2
2 5 1 3 2
3 7 4 5 2 123 2
4 8 5 3 1 2
5 5 1 3 2
4 6 7 4 5 2 2 3 123 2
7 6 4 2 12
8 5 13 2
9 4 2 2 12
10 4 2 12
11 1
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transition, labelled as rule 2, annihilates two indices in the initial state and
creates 2 indices with a common value which is new, i.e. does not exist in
the initial state. Rule 3 has similar action but the common value of the
created pair coincides with one of the values already existing in the initial
state. Rule 7 adds two pairs of identical indices one being new and one al-
ready existing, etc. It follows from Eq. (6) that we cannot create/annihilate
a pair of different indices. Similarly there are no terms creating four the
same indices.

We emphasize that above classification should be used only to identify
all nonzero matrix elements of the Hamiltonian. The actual values of matrix
elements will be calculated within the original approach.

TABLE III
Labelling of sectors and types in Table II.

b
1

B partition
0

2
2 1
4
31
4 22
211
1111
6
51
42
33
411
6 321
222
3111
2211
21111
111111

2

= R [ R I NSt e I e N e

Table II shows the resulting structure of the Hamiltonian in the TWS
representation for the first four sectors. Labelling of rows and columns is
explained in Table III. The Hamiltonian is block tri-diagonal in bosonic sec-
tors (odd and even sectors are decoupled bacuse of the parity conservation).
Each nontrivial sector-to-sector block is again sparse with only few nonzero
subblocks connecting initial and final types according to the rules listed in
Table I. For simplicity they are labelled by these rules. Each such type-to-
type subblock is again a N7 X Np; matrix with entries connecting different
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words of the initial and final types. Again this matrix is in general sparse
— from given initial word one can reach, with a given rule, only few final
words. This is not the end, the entries of this matrix are again matrices
labelled by the individual states belonging to initial and final words. Only
at this level the orthogonalization of basis states enters. Since elementary
states in a single word are not orthogonal, the word-to-word blocks must be
corrected by the square roots of the corresponding norm matrices. This is,
however, much less time consuming than the global orthonormalization.

Moreover one can show that the word-to-word subblocks in a given type-
to-type block are independent of the initial word. Similarly to the mixing
matrix case, it suffices to calculate transitions from one initial word in each
type and substitute them for other initial words. The proof is more technical
and will not be given here.

The whole structure, even though little involved at first glance, can be
readily formalized and leads to much faster calculations of the whole matrix.

3.8. Preliminary results

The complexity of the problem is summarized in Table IV where dimen-
sions of the Hilbert space for various D and B are displayed. All bases were
generated and orthogonalized with the original approach (cf. Section 4.1).
Mathematica programs took about 2 days to produce the last entry, thereby
the cutoff B = 7-8 seems to be a practical maximum for the brute force
method at D = 10. Calculation and diagonalization of the Hamiltonian
is yet more demanding — for D=10 one can reach only B = 4 within the
reasonable computing time [17].

TABLE IV
Sizes of bases in the F' = 0 sector for space-time dimensions 4 < D < 10. Ny is the
number of basis vectors with given number of bosonic quanta, B.

4 5 6 7 8 9 10
N
1 1 1 1 1 1 1
6 10 15 21 28 36 45
1 4 10 20 35 56 84

21 55 120 231 406 666 1035
6 36 126 336 756 1512 2772
56 220 680 1771 4060 8436 16215
21 180 855 2976 8478 20952

126 714 3045 10521

ootk w oy
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The TWS approach allows to reach one to two orders of magnitude bigger
bases, which at D = 10 translates for By,ax = 6-8. This rather modest, in
terms of B, improvement is nevertheless quite relevant for the precision of
the energy levels. Fig. 4 shows the first five eigenenergies as a function of
the cutoff. Solid lines are drawn just to guide the eye. Levels are labelled by
corresponding SO(9) representations. Since our cutoff respects the rotational
invariance, resulting spectrum of a cut Hamiltonian should have full SO(9)
symmetry 3, and indeed we observe first few SO(9) multiplets as indicated
in the figure 4. The ordering of the levels (singlet, tensor, singlet) turns out
to be the same as in the well known D = 4 case [5] and in fact remains
unchanged for all 4 < D < 10 [17] . The energy of the lowest singlet state
has already converged within 3%. For second and third state the relative
change with B dropped from 13% to 7% and from 17% to 10% respectively.
Cutoff Bpax = 8 can be reached with the reasonable computing effort.

120
100;
807 \N“
1
1
40} 1
20¢
2 3 4 5 6 7

B

Fig. 4. Lower levels of the spectrum of the pure Yang—Mills D=10 system.

4. Summary and outlook

In the last year there has been a substantial progress in solving super-
symmetric Yang-Mills quantum mechanics with the SU(2) gauge group. In
four dimensions we can reach such high cutoffs that the restriction of the
Hilbert space becomes irrelevant for most purposes. Precise spectrum in
all channels has been obtained and the intricate pattern of continuous and
discrete states found and clarified. Supersymmetric structure of the system
can be now studied in detail. In particular the complete classification of
supersymmetric multiplets is now available.

3 Only in the purely bosonic sector.
* Incidentally this provides one of the tests of the whole TWS scheme.
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In the ten dimensional system developments are obviously slower but
neverheless steady. In the bosonic sector one can now reach the cutoffs
(hence the precision) comparable to the D = 4 model studied with the orig-
inal technique. The new TSW scheme is yet to be generalized to fermionic
sectors. The ongoing puzzle of nonconserved massless Majorana fermions
calls for further study. On the other hand reported here progress in the four
dimensional case opens some new possibilities also for the ten dimensional
system.
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