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We review the present status of the theoretical evaluation of the anoma-
lous magnetic moment of the muon in the Standard Model. We mainly fo-
cus on the hadronic contributions due to vacuum polarization effects, light-
by-light scattering and higher order electroweak corrections. We discuss
some recent calculations together with their uncertainties and limitations
and point out possible improvements in the future.
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1. Introduction

For a particle with spin 1/2, the relation between its magnetic moment
and its spin reads ~µ = g(e/2m)~s. The Dirac equation predicts for the
gyromagnetic factor g = 2, but radiative corrections to the vertex can shift
the value slightly. The anomalous magnetic moment is then defined as a ≡
(g−2)/2. There has been a fruitful interplay between experiment and theory
over many decades. The electron anomalous magnetic moment ae provides
a stringent test of QED and leads to the most precise determination of the
fine structure constant α. The anomalous magnetic moment of the muon aµ,
on the other hand, allows to test the Standard Model as a whole, since all
sectors contribute. Furthermore, aµ is very sensitive to new physics beyond
the Standard Model. Since al is dimensionless, one expects in general al ∼
(ml/MNP)2, therefore, aµ is about (mµ/me)

2 ∼ 4×104 times more sensitive
to the scale of new physics, MNP, than ae. The current experimental world
average is dominated by the recent measurements of the g− 2 collaboration
at Brookhaven [1]

aexp
µ = 11 659 203(8) × 10−10 . (1)
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The final goal is to reach an experimental precision of 4 × 10−10. Unfor-
tunately, the hadronic contributions lead to a large error in the Standard
Model prediction for aµ, about 8 × 10−10, and they are very difficult to
control theoretically. The problem is that at low energies, relevant for the
muon g − 2, quarks are bound by strong gluonic interactions into hadrons.
In particular for the light quarks u, d, s one cannot use perturbative QCD.
This hinders at present all efforts to extract a clear sign of new physics from
aµ, but the muon g − 2 puts already some strong bounds on potential new
physics contributions. We will not discuss at all here such new contribu-
tions to aµ, e.g. from supersymmetry, but refer instead to the article [2]
and references therein. Constraints from the muon g− 2 on some particular
two-Higgs doublets models were discussed at this conference [3]. For more
details on the subject of g − 2 in general, we refer to the reviews [4].

The Standard Model contributions are usually split into three parts:

aSM
µ = aQED

µ + aEW
µ + ahad

µ . We will now discuss in turn the three types of
contributions, with the main emphasis on the hadronic corrections and their
uncertainties. We will also take into account some important developments
that occurred shortly after this conference.

2. QED and electroweak contributions

A general feature of the QED contribution is that loops with electrons
are enhanced due to logarithms ln(mµ/me) ∼ 5.3. These are short-distance
logarithms from vacuum polarization and infrared logarithms, for instance
in the light-by-light scattering contribution. The latter effect completely
dominates the contribution at order (α/π)3. In contrast, loops with τ -
leptons are suppressed. The result in QED up to 5-loops reads [4] 1

aQED
µ = 0.5 ×

α

π
+ 0.765 857 399(45) ×

(α

π

)2
+ 24.050 509 5(23) ×

(α

π

)3

+124.84(41) ×
(α

π

)4
+ 930(170) ×

(α

π

)5

= 11 658 470.28(28) × 10−10 . (2)

The errors given in the second and third term on the right-hand side are
due to the uncertainty in the experimental values of mµ/me,τ , the one in
the fourth term from the numerical integration and the one in the last term
from a renormalization group estimate of that coefficient. We used the
value [5]

α−1(ae) = 137.035 998 75(52) , (3)

1 Thanks to M. Passera (private communication) for pointing out an additional small
change in the fourth-order coefficient in Eq. (2), that was overlooked in Ref. [5].
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obtained from the electron anomalous magnetic moment. Note that this
value has shifted recently by about 1.6 standard deviations, due to an error
found in the 4-loop QED contribution [6]. Fortunately, this numerical error
has not a very big effect for aµ, changing it by about −0.29×10−10 in total.

The electroweak correction to aµ lies in between the QED and hadronic
contribution. At one loop, the result is reliably calculable [4]

aEW,(1)
µ = 19.5 × 10−10 , (4)

with a Higgs boson contribution that is very small for MH ≥ 114.5 GeV
(LEP 2 bound).

Two-loop corrections, see Fig. 1, are potentially large due to factors

e u,d

γ Z γ Z
µ µ

Fig. 1. Two-loop electroweak corrections to aµ from the first family. The light

quark loop is to be understood symbolically, representing a hadronic “blob”.

ln(MZ/mµ) ∼ 6.8. Furthermore, as noted in Ref. [7], one cannot sepa-
rate leptons and quarks anymore, but must treat each generation together
because of the cancellation of the triangle anomalies. Therefore, earlier
estimates [8] were incomplete. A first full two-loop calculation was done
in Ref. [9] and recently revisited by two groups [10, 11] to improve on
the treatment of the hadronic contributions. Instead of using a simple
constituent quark loop, short-distance constraints from the OPE on the
relevant QCD three-point function 〈V VA〉 have been imposed. There is
still some disagreement in the details, but the numerical values are very
close. Adding the one-loop result from Eq. (4), Ref. [10] obtains aEW

µ =

15.2(0.1)×10−10 . The error reflects hadronic uncertainties and the variation
of MH . No resummation2 has been performed in that reference. Ref. [11]
gets aEW

µ = 15.4(0.1)(0.2) × 10−10, where the first error corresponds to the
hadronic uncertainty and the second to an allowed Higgs boson mass range of
114 GeV ≤ MH ≤ 250 GeV, the current top mass uncertainty, and unknown
three-loop effects. Averaging the two estimates, we obtain

aEW
µ = 15.3(0.2) × 10−10 , (5)

2 The resummation of leading logarithms has been discussed in Ref. [12] and corrected
in Ref. [11]. There are large cancellations in the resummation and the final shift after
the resummation is very small.
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which corresponds to a large two-loop correction of aEW, (2)
µ = −4.2(0.2) ×

10−10. Although not all details have been resolved, the electroweak contri-
bution seems well under control.

3. Hadronic contributions

3.1. Hadronic vacuum polarization

In the hadronic vacuum polarization contribution ahad. v.p.
µ , depicted

in Fig. 2, one cannot simply equate for light quarks the hadronic “blob”
with a quark loop as it is possible for leptons. In the present case there
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Fig. 2. Hadronic vacuum polarization contribution to aµ.

is, however, a way out by using the optical theorem (unitarity) to relate
the imaginary part of the blob to the measurable scattering cross section
σ(e+e− → γ∗ → hadrons). From a dispersion relation one then obtains the
spectral representation [13]

ahad. v.p.
µ =

1

3

(α

π

)2
∞∫

0

ds

s
K(s)R(s) , (6)

R(s) =
σ(e+e− → γ∗ → hadrons)

σ(e+e− → γ∗ → µ+µ−)
. (7)

The kernel K(s)/s is a known, slowly varying, positive function peaked at
low energy. Information on the I = 1 vector part of the spectral func-
tion ImΠ(s) ∼ σ(e+e− → γ∗ → hadrons) in Eq. (6) can also be obtained
from hadronic τ decays, like τ− → ντπ

−π0. One has, however, to apply
corrections due to isospin violations, since mu 6= md and because of elec-
tromagnetic radiative corrections, see Refs. [14,15]. Until very recently, the
major sources of isospin breaking seemed to be identified and well under
control. We will come back to this point shortly.

Recently, the CMD-2 collaboration has found an error in their Monte
Carlo program for Bhabha scattering which was used to determine the lumi-
nosity. As a result, the hadronic cross sections went up by 2–3 % [16]. The

new contribution to aµ from the π+π− intermediate state is aπ+π−

µ (610.50 <

Ec.m. < 961.52 MeV) =
(
378.6 ± 2.7stat ± 2.3syst

)
× 10−10. This value is

confirmed by a preliminary result by the KLOE collaboration [17], using
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the radiative return method [18], aπ+π−

µ (610.50 < Ec.m. < 961.52 MeV) =
(
378.4 ± 0.8stat ± 4.5syst ± 3.0theo ± 3.8FSR

)
× 10−10, although the effect of

final state radiation from the pions still has to be analyzed more thoroughly.
Based on the corrected CMD-2 data, recently several estimates for the

hadronic vacuum polarization contribution to aµ appeared, see Table I. The

TABLE I
Recent evaluations of ahad. v.p.

µ

Authors Contribution to ahad.v.p.

µ
× 1010

Davier et al. [19] (e+e− + τ) 711.0 ±5.0exp ± 0.8rad ± 2.8SU(2)

Davier et al. [19] (e+e−) 696.3 ±6.2exp ± 3.6rad

Jegerlehner [20] (e+e−) 694.8 ±8.6
Teubner [21] (e+e−, inclusive) 691.8 ±5.8exp ± 2.0rad

e+e− based evaluations shifted upwards, by about +11×10−10, compared to
earlier estimates [15,22], 3 i.e. towards the τ -based evaluations. Nevertheless,
there still remains a large discrepancy of about 10 % between the spectral
functions from e+e− and τ data, in particular above the ρ-peak, much larger
than any known isospin violation [14,15]. The puzzle is that the e+e− data
from different experiments, e.g. from CMD-2 and KLOE, are compatible, but
also the different τ -data sets from ALEPH, CLEO and OPAL are consistent
among each other (maybe with the exception of OPAL, which has larger
errors however). However, as pointed out very recently, independently by
Davier and Jegerlehner [24], one can map the corresponding spectral func-
tions into each other, if one assumes that Mρ+ −Mρ0 ∼ 3− 4 MeV, together

with a corresponding change in the width, according to Γρ ∼ M3
ρ/F 2

π . Al-
though there are theoretical arguments which point to a much smaller mass
difference [25], −0.7 MeV < Mρ+ −Mρ0 < 0.4 MeV, one can a priori not rule
out a larger mass difference. In any case, some independent experimental
information on the masses and widths of the neutral and charged ρ-meson
would be very useful and seems even necessary, if one still wants to use the

τ -data for ahad.v.p.
µ .

Averaging the results that use e+e− data only, we obtain

ahad. v.p.
µ (e+e−) = 694.3(7.5) × 10−10 . (8)

Finally, there are higher order vacuum polarization effects, if additional
photonic corrections or fermion loops (leptons and hadrons) are included in
the diagram in Fig. 2. They have been evaluated in Ref. [26] with the result

ah.o.−h.v.p.
µ = −10.0(0.6) × 10−10 . (9)

3 Note that the group of Teubner and collaborators uses another averaging procedure,
described in Ref. [23], therefore, they get a rather different central value, despite the
use of essentially the same input data.
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3.2. Hadronic light-by-light scattering

The present picture of hadronic light-by-light scattering, as reviewed
recently in Ref. [27], is shown in Fig. 3 and the corresponding contributions
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(b)

ρ

π+

(a) (d)

π , η, η0 ,

ρ

Q

(c)

Fig. 3. The hadronic light-by-light scattering contribution to the muon g − 2.

to aµ are listed in Table II, taking into account the corrections made in the
two full evaluations [28, 29], after we had discovered the sign error in the
pion–pole contribution [30, 31].

TABLE II
Contributions to aµ(×1010) according to Fig. 3.

Type Ref. [28] Ref. [29] Ref. [30] No form factors
(b) −0.5(0.8) −1.9(1.3) −4.5
(c) 8.3(0.6) 8.5(1.3) 8.3(1.2) +∞
f0, a1 0.174a −0.4(0.3)
(d) 1.0(1.1) 2.1(0.3) ∼ 6
Total 9.0(1.5) 8.3(3.2) 8(4)b

a Only a1 exchange.
b Our estimate, using Refs. [28–30].

There are three classes of contributions to the hadronic four-point func-
tion [Fig. 3(a)], which can best be understood according to an effective
field theory (EFT) analysis of hadronic light-by-light scattering [31]: (1)
a charged pion loop [Fig. 3(b)], where the coupling to photons is dressed
by some form factor (ρ-meson exchange, e.g. via vector meson dominance
(VMD)), (2) the pseudoscalar pole diagrams [Fig. 3(c)] together with the
exchange of heavier resonances (f0, a1, . . .) and, finally, (3) the irreducible
part of the four-point function which was modeled in Refs. [28,29] by a con-
stituent quark loop dressed again with VMD form factors [Fig. 3(d)]. The
two groups [28,29] used similar, but not identical models which explains the
slightly different results for the dressed charged pion and the dressed con-
stituent quark loop, although their sum seems to cancel to a large extent and
the final result is essentially given by the pseudoscalar exchange diagrams.
We take the difference of the results as indication of the error due to the
model dependence and have added the corresponding errors linearly.



Theory of the Muon g − 2 5203

Pion-pole contribution

The contribution from the neutral pion intermediate state is given by a
two-loop integral that involves the convolution of two pion–photon–photon
transition form factors Fπ0γ∗γ∗(q2

1 , q
2
2), see Fig. 3(c). We refer to Ref. [30]

and references therein for all the details. Since no data on the doubly off-
shell form factor Fπ0γ∗γ∗(q2

1 , q
2
2) is available, one has to resort to models. We

considered a certain class of form factors which includes the ones based on
large-NC QCD that we had studied in Ref. [32]. These form factors include
either one or two narrow vector resonances and are matched at low-energies
with chiral perturbation theory and at high momenta with the operator
product expansion (OPE). Using two vector resonances, one can also repro-
duce, for large space-like momenta Q2 = −q2, the observed 1/Q2 behavior of
Fπ0γ∗γ∗(−Q2,0), when one photon is on-shell. For comparison, we have also
used a VMD form factor and a (unrealistic) constant form factor, derived
from the Wess–Zumino–Witten (WZW) term.

For the form factors discussed above one can perform all angular inte-
grations in the two-loop integral analytically [30]. The pion-exchange con-
tribution can then be written as a two-dimensional integral representation,
where the integration runs over the moduli of the Euclidean momenta

aLbyL;π0

µ =

∞∫

0

dQ1

∞∫

0

dQ2

∑

i

wi(Q1, Q2) fi(Q1, Q2) , (10)

with universal [for the above class of form factors] weight functions wi [30].
The dependence on the form factors resides in fi. In this way we could
separate the generic features of the pion–pole contribution from the model
dependence and thus better control the latter.

The weight functions wi in the main contribution are positive and peaked
around momenta of the order of 0.5 GeV. There is, however, a tail in one
of these functions, which produces for the constant WZW form factor a di-
vergence of the form (α/π)3C ln2Λ for some UV-cutoff Λ, with an universal4

coefficient C = N2
Cm2

µ/(48π2F 2
π ), that can also be derived within an EFT

approach to hadronic light-by-light scattering [31]. Unfortunately, the g − 2
enters in the EFT as a local counterterm and one can therefore not ob-
tain a prediction for aLbyL;had

µ within the pure EFT approach. Furthermore,
for the form factors discussed above, there is a strong cancellation between
the ln2 and the ln term and information about the constant term is needed.
However, the EFT analysis shows for instance that the modeling of hadronic
light-by-light scattering by a constituent quark loop is not a reliable descrip-

4 The behavior, (α/π)3C ln2MV , with the same coefficient C is observed, if one sends
the vector meson mass MV in the form factors to infinity.
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tion of the dominant contribution, since the ln2 term is not reproduced in
this way.

All form factors lead to very similar results (apart from WZW). Judg-
ing from the shape of the weight functions described above, it seems more
important to correctly reproduce the slope of the form factor at the origin
and the available data at intermediate energies. On the other hand, the
asymptotic behavior at large Qi seems not very relevant. The results for
the form factors based on the large-NC QCD framework are rather stable
under the variation of the model parameters. For all pseudoscalars π0, η, η′

together we obtain the estimate

aLbyL;PS
µ = +8.3(1.2) × 10−10 , (11)

where the error includes the variation of the parameters in the form factors
and an estimate of the intrinsic model dependence. An error of 15 % seems
reasonable, since we impose many theoretical constraints from long and short
distances on the form factors. Furthermore, we use experimental information
whenever available.

The analysis within the EFT and large-NC framework, together with
the numerical results for all contributions depicted in Fig. 3 and listed in
Table II leads us to the following (conservative) estimate for the hadronic
light-by-light scattering contribution

aLbyL;had
µ = + 8(4) × 10−10 . (12)

In view of the uncontrolled model dependencies for the dressed charged pion
loop and the dressed constituent quark loop, it will be very difficult to reduce
the error significantly, e.g. to much below of 3 × 10−10.

4. Summary and conclusions

We now collect the results for the different contributions in the Standard
Model from Eqs. (2), (5), Table I, Eqs. (8), (9) and (12):

aSM
µ (e+e−) = (11 659 177.9 ± 7.5 ± 4.0 ± 0.35) × 10−10 , (13)

aSM
µ (τ) = (11 659 194.6 ± 5.8

︸︷︷︸

v.p.

± 4.0
︸︷︷︸

LbyL

± 0.35
︸︷︷︸

EW

) × 10−10 , (14)

where we kept the results based on e+e− and τ data separately. Comparison
with the experimental value from Eq. (1) leads to

aexp
µ − aSM

µ (e+e−) = (25.1 ± 11.7) × 10−10, [2.1 σ] , (15)

aexp
µ − aSM

µ (τ) = (8.4 ± 10.7) × 10−10, [0.8 σ] . (16)
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As mentioned above, the discrepancy between the e+e− and τ -data based
evaluations could perhaps be resolved, if the masses and widths of the
charged and neutral ρ-mesons are different [24]. Although there are ar-
guments [25] for a very small mass difference, one cannot really exclude this
possibility. Independent experimental information on the masses and widths
is therefore needed, if one wants to use both e+e− and τ -data to estimate
the hadronic vacuum polarization contribution in aµ. If the τ -data simply
shift towards the e+e− data, we seem to be back to a 2σ deviation from
the Standard Model. Could this finally be the long-awaited sign of new
physics? Let me just caution that at the level of precision required, some
of the hadronic uncertainties, e.g. connected with modeling of final state
radiation [33], might be underestimated. There still remains a lot of work
to be done to better control these hadronic contributions, if we want to use
the muon g − 2 to search for signs of new physics.

I am grateful to my collaborators Marc Knecht, Michel Perrottet and
Eduardo de Rafael. I would like to thank the organizers of this conference,
in particular, Michał Czakon and Janusz Gluza, for the invitation and for
providing such a pleasant atmosphere.
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