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Data on Bose–Einstein correlations yield information about the interac-
tion regions in multiple particle production processes. The conclusions are
model dependent. Several popular models are briefly presented, compared
and discussed.

PACS numbers: 25.75.Gz, 13.65.+i

1. Introduction

An important reason for studying Bose–Einstein correlations (BEC) in
multiple particle production processes is that they yield information about
the interaction regions i.e. about the regions, where the hadrons are pro-
duced. There is much to learn about such regions. Let us consider two
examples. In high energy e+e− annihilations the first stages of the pro-
cess can be described perturbatively. The two primary leptons merge into a
heavy photon, or a Z0, this particle decays into a qq pair, the quark and the
antiquark radiate gluons, the gluons split into qq pairs or into gluons, and so
on. Then, however, something much more complicated happens: the swarm
of parton gets converted into hadrons. This is a nonperturbative process,
known as hadronization, which is poorly understood. One would like to
know the size and shape of the region where the hadrons are produced, the
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time interval between the first annihilation and the end of the hadronization
process, as well as the time interval between the beginning and the end of
hadronization. As a more complicated example let us consider central heavy
ion collisions at high energy. In this case the initial color fields are so strong
that perturbative methods may be unreliable. It is usually assumed that
the initial partons, whatever their production mechanism, rapidly thermal-
ize. From that time on they can be considered as a fluid (a kind of liquid
or a kind of gas), which expands according to the laws of hydrodynamics
or according to some simplified version of the Boltzmann equation. Finally
the hadrons are produced in a hadronization process which may be different
from that in e+e− annihilations. Here, besides the hadronization, one is
interested in the flows of the fluid, in its equation of state, and its phase
transitions if any. The study of Bose–Einstein correlations among the final
hadrons supplies tentative answers to all such questions. The problem is,
however, how reliable these answers are? Till a few years ago the mood was
optimistic (cf. e.g. [1]). The recent results from RHIC, and also some results
from LEP, however, have been so unexpected and so puzzling (references can
be traced e.g. from the recent review [2]) that perhaps some important ideas
are still missing. In the present paper we review some of the most popular
ways of getting from the experimental data to the physical conclusions. It
will be seen that much remains to be clarified there.

The key object in the transition from the experimental data to the phys-
ical conclusions is usually a single particle density matrix ρ(p1,p2). There
are approaches where this is not the case, e.g. the string model (cf. [3] and
references quoted there), but most models can be formulated in terms of
this matrix [4]. In this section we will present its relation to the data. The
discussion is grossly simplified (cf. e.g. [1]), but it contains the main ideas.
The relation between the density matrix and the features of the interaction
region is the main subject of this paper and is discussed in the following
sections. Let us stress that the density matrix ρ(p1,p2) is an auxiliary con-
struct, which does not have to coincide with the actual single particle density
matrix for the mesons of a given type in the final state.

The diagonal elements of the density matrix are related, as usual, to the
single particle momentum distribution

dN

d3p
∼ ρ(p,p) . (1)

The tilde in most models means equality up to a constant factor. Only
in the GGLP model it is a more complicated operation. d3p may denote
the infinitesimal volume in momentum space, or the covariant infinitesimal
volume i.e. the volume in momentum space divided by the corresponding



Inferences from Bose–Einstein Correlations in Multiple Particle . . . 5251

energy E(p). The two-particle distribution for identical bosons is

dN

d3p1d3p2
∼ ρ(p1,p1)ρ(p2,p2) + |ρ(p1,p2)|

2 . (2)

For uncorrelated, distinguishable particles the second term on the right-hand
side would be absent. It results from the symmetrization of the product of
the single particle density matrices of the two particles and thus reflects the
BEC. Usually one considers the correlation function obtained by dividing the
two-particle distribution by the product of the corresponding single particle
distributions

C(p1,p2) ∼ 1 +
|ρ(p1,p2)|

2

ρ(p1,p1)ρ(p2,p2)
. (3)

In practice the procedure is usually much more complicated than presented
here, but the strategy is as described: the data are used to get the correlation
function which is simply related to the single particle density matrix.

2. GGLP approach

The first model of BEC in multiple particle production was proposed by
the Goldhabers Lee and Pais [5] (GGLP). As a realistic description of BEC
in multiple particle production processes this model is outdated, but it is
still the best introduction to the subject. GGLP introduced a density ρ(x)
of particle sources. They considered identical pions and for definiteness also
we will call the identical bosons pions, though the analysis can be applied
to any identical bosons (or even to identical fermions, when the sign be-
tween the two terms in formula (3) is changed from plus to minus). GGLP
made the following two assumptions: firstly, that all the pions are produced
simultaneously and instantaneously; secondly, that the production is com-
pletely incoherent — the pions produced in two different space point do not
interfere. Under these assumptions the single particle density operator is

ρ̂ =

∫

d3x|x〉ρ(x)〈x| . (4)

The corresponding density matrix reads

ρ(p1,p2) = 〈p1|ρ̂|p2〉 ∼

∫

d3xe−iqxρ(x) , (5)

where q = p1 − p2. If this were the density matrix which can be obtained
from formula (3), it would be a very nice result. The density of sources
ρ(x) could then be obtained unambiguously just by inverting the Fourier
transform. E.g. for

ρ(p1,p2) ∼ e−
1

2
R2q2

, (6)
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where R2 > 0 is a constant, one would obtain

ρ(x) ∼ e−x2/2R2

. (7)

Unfortunately, the density matrix (5) is untenable as a density matrix pro-
portional to the true single particle density matrix, because it gives a single
particle momentum distribution constant in all momentum space. GGLP in-
troduced, therefore, a projection on the states allowed by energy-momentum
conservation, i.e. they used the density matrix as calculated here to find
the momentum distribution for all the particles present in the final state,
multiplied it by the delta function of energy-momentum conservation and
integrated over the (covariant) momentum space of all the particles except
two identical pions for the two particle distribution and over all the momenta
except one for the single particle distribution. They got results in qualitative
agreement with experiment. The method, however, was cumbersome — no
one did calculations for more than six particles in the final state — and was
in violent disagreement with experiment at the quantitative level [6].

3. Kopylov and Podgoretskii model

Very significant progress was obtained by Kopylov and Podgoretskii (cf.
[7] and references contained there). In their model the density operator in
the Schrödinger picture is

ρ̂ =

∫

d4xse
iH0(ts−t)|ψs〉ρ(xs)〈ψs|e

−H0(ts−t) , (8)

where
〈x|ψs〉 = ψ(x − xs) ; (9)

or equivalently

〈p|ψs〉 ∼

∫

d3xe−ipxψ(x − xs) = e−ipxsA(p) , (10)

where

A(p) =

∫

d3xe−ipxψ(x) . (11)

In these formulae xs is a point in space-time, as well as a label which de-
fines unambiguously a source. It should be related to the position of the
corresponding source in space-time, but the actual relation is a matter of
choice. E.g. it could be the point where the source got created, or its mean
position in space-time. Each source is labeled by a space-time point, but the
particle produced by a source is not localized in a point. Its wave function
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in space is ψ(x−xs) with an additional time dependent phase which is zero
at t = ts. All these functions are related by shifts in space-time. The wave
function in momentum space is proportional to A(p), thus all the sources
yields particles with the same momentum distribution. H0 is the free parti-
cle Hamiltonian and we are interested in times t larger than the latest time
ts, thus the particle evolves freely.

The corresponding density matrix,

ρ(p1,p2) ∼ A(p1)A
∗(p2)

∫

d4xxeiqsρ(xs) , (12)

yields the single particle distribution,

dN

d3p
∼ |A(p)|2 , (13)

which can be made to agree with any experimental distribution by a suit-
able choice of A(p). Thus, there is no obvious need to introduce the energy-
momentum conservation constraint. Kopylov and Podgoretskii assumed that
for final states with not too few particles, in the interesting momentum re-
gion the energy-momentum conservation does not affect significantly the
one- and two-body distributions, and that consequently their matrix (12)
can be assumed equal, up to a normalizing factor, to the actual single par-
ticle density matrix. This assumption makes it easy to get results for high
multiplicity exclusive channels and for high energy inclusive processes. Both
were beyond the reach of the GGLP method. Besides the satisfactory for-
mula for the single particle distribution given above, the model gives for the
correlation function

C(p1,p2) = 1 +

∫

d4xse
iqxsρ(xs) . (14)

Here the factors A(p) cancel and the result is as for point sources. Note,
however, that because of the four-fold integration this relation cannot be
inverted to give ρ(xs), when the correlation function is known. Moreover,
a priori the correlation function could depend on the vector q and on the
vector K = (p1 +p2)/2, while the right hand side depends only on the four-
vector q. The reason is that the factor A(p) is the same for every source
and cancels. Physically this means that there is no correlation between the
momentum of the pion and the position of the source. Since such correlation
follow from almost every model and since experimentally it is not true, that
the correlation function depends only on q (cf. e.g. [1] and references quoted
there) this is a serious weakness of the model.
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4. Yano and Koonin method

Another attempt to go beyond the GGLP approximations is due to Yano
and Koonin [8]. In our notation their key formula is

|ρ(p1,p2)|
2 = Re

∫

d4x1D(x1,p1)e
iqx1

∫

d4x2D(x2,p2)e
−iqx2 . (15)

Putting
D(x,p) = δ(t)ρ(x) (16)

one recovers the GGLP model. Putting

D(x,p) = |A(p)|2ρ(x) , (17)

which corresponds to the assumptions made in [8], one reproduces the results
of Kopylov and Podgoretskii. It is not clear, whether this approach can
be given sense in the framework of quantum mechanics, when there are
position–momentum correlations, i.e. when theD function does not factorize
into a momentum dependent and a space dependent factor.

5. Covariant current formalism

The covariant current formalism (cf. [9] and references given there) can
be derived from the model of Kopylov and Podgoretskii introducing the
following two generalizations. The label characterizing the source is changed
from xs to xs, ps. Thus, the source is characterized by its position in space-
time and by its four momentum. Correspondingly, the density of sources
ρ(xs) gets replaced by ρ(xs, ps). Such labels are not subject to the Heisenberg
uncertainty principle. E.g. a one-dimensional harmonic oscillator may have
〈x〉 = 0 and 〈p〉 = 0. The universal, momentum dependent function A(p)
gets replaced by the source dependent j(psp

ms
), where ms is the mass and

ps the momentum of the source. In the Kopylov Podgoretskii model all
the sources had the same momentum distribution in some overall reference
frame, e.g. in the center of mass frame of the collision. In the covariant
current formalism each source has the same momentum distribution, when
considered in its rest frame. Another way of formulating this model is to
replace the incoherent sources by incoherent wave packets. Then ps and xs

characterize the wave packet, and since the waves in the packet describe
pions, it is natural to put ms = mπ. In this model, assuming a fixed mass
for all the sources,

ρ(p1, p2) =

∫

d4xs

∫

d3psρ(xs, ps)e
iqssj

(

psp1

ms

)

j∗
(

psp2

ms

)

. (18)
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From the point of view of model builders, a nice feature of this approach is
that one can assume a classical motion of the source, e.g. xs = xs(ts) and
ps = ps(ts), and still have a formula which is consistent with quantum me-
chanics. In the covariant current formalism position–momentum correlations
are naturally included.

6. Emission function method

The method of emission functions is very popular nowadays (cf. e.g. [1]).
The emission function is built by analogy with the Wigner function [10,11].
The Wigner function W is related to the single particle density matrix in
the momentum representation by the formula

ρ(p1,p2) =

∫

d3Xe−iqXW (X,K) , (19)

where X = (x1 + x2)/2, and as usual q = p1 − p2 and K = (p1 + p2)/2.
The Wigner function is well-defined as a Fourier transform of the density
matrix in momentum representation. On the other hand, as a function
of X and K it may play the role of a phase space distribution. When
studying the interactions regions, it is important to combine information
about the space and the momentum distributions. Kopylov, Podgoretskii,
and followers proposed to use the position of the source and the momentum
of the particle. These two vectors can be measured simultaneously and
their joint distribution gives an idea about the phase space distribution of
particles. The Wigner function gives another ersatz phase space distribution.
The trouble is, however, that the Wigner function refers to a given moment
of time, while the hadrons are produced during a time interval. The emission
function S is supposed to improve on that and is related to density matrix
by the formula

ρ(p1,p2) =

∫

d4XeiqXS(X,K) . (20)

The usual strategy is to find from some classical or quasi-classical argument
a phase space distribution as function of time, and then to interpret it as
the emission function. Once this is done, one can, by a four-fold integration,
obtain the density matrix and compare it with experiment. This comparison
may be used to fix the free parameters of the model.

Let us note some difficulties of this approach. Given a density matrix
there is an infinity of very different emission functions, which can reproduce
it. For instance perfect agreement is obtained for

S(X,K) = δ(X0)W (X,K) . (21)
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This, however, corresponds to simultaneous and instant production of all the
hadrons, which is not a very plausible scenario. When particle production
is an incoherent sum of production amplitudes at various moments of time,
the emission function S(X , t,K) can be related to the Wigner function of
the particles produced at time t. In the general case, however, the relation of
the emission function to a Wigner function is hardly visible [12]. Thus, the
formula can be used to eliminate wrong models rather than to prove that a
model is implied by the data. This is not necessarily bad. Eliminating the
unacceptable values of the parameters of a model, one learns which are the
good ones. Nevertheless, one must always keep in mind that a completely
different model can give equally good, or better results. One should also
keep in mind that X and K are not really position and momentum, but
only half sums of the corresponding arguments of the density matrix. When
the contributions of the sources are strongly smeared in coordinate space or
in momentum space, the difference may be very significant.
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