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We show that perturbation theory may give reasonable numbers for the
decays of the bottomonium and charmonium ground states to e+e− and to
γγ. To reach this conclusion it is important to perform the resummation of
logs. In particular, we obtain the value Γ (ηb(1S) → γγ) = 0.35±0.1(th.)±
0.05(ΛQCD) keV.

PACS numbers: 11.10.St, 12.38.Cy, 13.40.Hq, 14.40.Gx

1. Introduction

In Ref. [1], the decays of Heavy Quarkonium to e+e− and γγ were com-
puted with next to leading log (NLL) accuracy within perturbation theory.
When presenting these results in this conference, one (reasonable) complaint
was the complete absence of numbers. We would like to fill this gap by doing
the phenomenological analysis of these results that we quote here for ease
of reference.

We first quote the matching coefficients at the hard scale [2, 3]:
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c − 1)/(2Nc), whereas the renormalization group improved

matching coefficients at NLL (for the vector and pseudo-scalar), see [1, 4]
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By setting νp ∼ mCfαs/n, Bs(νp) includes all the large logs at NLL order
in any (inclusive enough) S-wave heavy-quarkonium production observable
we can think of. For instance, the decays to e+e− and to two photons at
NLL order read
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where V and P stand for the vector and pseudo-scalar heavy quarkonium,

αs = αs(νp), and (Ψn(z) = dn lnΓ (z)
dzn and Γ (z) is the Euler Γ -function)
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(7)
which has been read from Ref. [5].

It is not our aim to perform here a full fledge analysis of Eqs. (5) and (6)
but rather to see what are the general trends obtained by the introduction of
the resumation of logs, as well as to give some predictions when the results
appear to be reliable enough.

2. Phenomenological analysis

In this section we perform the phenomenological analysis of the above
results for the bottomonium and charmonium systems.

2.1. b-b̄ 1S states

We first consider the b-b̄ 1S states and their decays Γ (Υ (1S) → e+e−)
and Γ (ηb(1S) → γγ). For the first decay we will be able to compare our
results with experiment whereas our numbers for the second one can be
considered to be a prediction.

We plot Γ (Υ (1S) → e+e−) in Fig. 1 versus the renormalization scale ν.
We consider the LO/LL result (they are equal), the NLO result and the
NLL result. We can see that the LO/LL result can match the experimental
figure for a reasonable value of ν, close to the soft scale. This agreement
is destroyed once the NLO is considered. The best value we can obtain is
0.667 keV. The reason seems to be the fact that we now have two scales in
the problem: the hard (∼ m) and the soft (∼ mαs) scale. The final outcome
is that perturbation theory breaks down before the normalization scale ν
can reach the typical soft scale of the problem. The standard solution to
this problem is a renormalization group analysis, summing up all the large
logs that appear in the problem. Actually, in our case, we are going to
have large logs produced by the ratio of the hard and soft scale and by
the ratio of the soft and ultrasoft scale (∼ mα2

s ). We can see that the
use of the NLL expressions improves the agreement with the experimental
result (the best value now becomes 0.837 keV) and enlarges the range of
applicability of perturbation theory. Moreover, the expansion seems to be
convergent, being the NLL result, a correction of order one with respect to
the LL. Nevertheless, perturbation theory still seems to break down before
the renormalization scale ν can reach the typical soft scale (although getting
closer to it than in the NLO calculation) and the optimal result is off the
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experimental value by around 50%. This is a large effect. Therefore, in
order to confirm this picture, a full NNLL result should be obtained. This
is a difficult computation but were the convergent pattern confirmed the
outcomes would be important. One could then start quantifying the size of
the non-perturbative effects in a reliable manner.
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Fig. 1. Plot of Γ (Υ (1S) → e+e−) with LO/LL (dashed line), NLO (dot-dashed line)

and NLL (dotted line) accuracy versus the renormalization scale ν. The horizontal

line and its band give the experimental value and its errors: Γ (Υ (1S) → e+e−) =

1.314 ± 0.029 keV [6].

We now perform a similar analysis for Γ (ηb(1S) → γγ). For this decay
no experimental figure exists. Therefore, we will be able to give a prediction
for it. The picture is completely analogous to the Γ (Υ (1S) → e+e−) case.
Actually the scale of minimal sensitivity is a little bit smaller than in the
previous case, which makes us more confident about the result. This con-
fidence will be further boosted when we consider the charmonium case for
which experimental numbers exist. We anticipate that very good agreement
is reached in that case. We then give a prediction for this decay:

Γ (ηb(1S) → γγ) = 0.35 ± 0.1(th) ± 0.05(ΛQCD)keV , (8)

where “ΛQCD” stands for the error due to the variation of αs (αs(MZ) =
0.118 ± 0.003) and “th” for the theoretical errors. The latter are difficult
to obtain and here we only roughly estimate their size. We consider the
variation of the decay if we increase ν by two GeV with respect to the op-
timal scale. This gives the theoretical error quoted in Eq. (8). We consider
this estimate conservative in view of the good agreement with data ob-
tained for the ηc case. Note that to have larger errors would be inconsistent
with the assumption that the remaining corrections (perturbative and non-
perturbative) are smaller, or at least of the same order, than the difference
between the LL and NLL result.
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Fig. 2. Plot of Γ (ηb(1S) → γγ) with LO/LL (dashed line), NLO (dot-dashed line)

and NLL (dotted line) accuracy versus the renormalization scale ν.

For the above states one may consider reasonable to believe that a per-
turbative approach is a good starting point for these systems, since the
soft scale is clearly in the perturbative regime. Nevertheless, one should be
careful since the ultrasoft scale also enters the game through the matching
coefficient (ultrasoft effects first appear at O(α3

s ln2 αs)). This means that
for ν . 1.5 GeV, αs(ν

2/mb) starts to blow up. Obviously, the situation
is even worse for the n = 2 bottomonium states, since the soft scale goes
divided by 1/n2 (actually, we anticipate that a bad behavior is found in
this case). Surprisingly, however, for the charmonium system we are in a
situation quite similar to the n = 1 bottomonium states since, although the
typical soft scale is smaller than the n = 1 bottomonium soft scale, this is
compensated by the fact that the charm mass is smaller than the bottom
one, so that we can run down ν to scales quite close to the typical soft scales
of the problem before the break down of perturbation theory takes place.
With all these qualifications let us consider the n = 1 charmonium or n = 2
bottomonium states and see whether reasonable numbers are obtained.

2.2. n = 1 charmonium states

We study Γ (J/Ψ(1S) → e+e−) in Fig. 3. Surprisingly a pretty similar
picture appears in the Γ (Υ (1S) → e+e−). Actually, the difference with
experiment is of the same order, around 50 %.

We now consider Γ (ηc(1S) → γγ) in Fig. 4. In this case we have experi-
mental data to compare with, unlike the ηb case. A similar pattern to the ηB

case is found and, moreover, we get agreement with experiment. This is quite
shocking since, at the scale of minimal sensitivity, the perturbative result hits
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Fig. 3. Plot of Γ (J/Ψ(1S) → e+e−) with LO/LL (dashed line), NLO (dot-

dashed line) and NLL (dotted line) accuracy versus the renormalization scale

ν. The horizontal line and its band give the experimental value and its errors:

Γ (J/Ψ(1S) → e+e−) = 5.14 ± 0.31 keV [6].
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Fig. 4. Plot of Γ (ηc(1S) → γγ) with LO/LL (dashed line), NLO (dot-dashed line)

and NLL (solid line) accuracy versus the renormalization scale ν. The horizontal

line and its band give the experimental value and its errors: Γ (ηc(1S) → γγ) =

7.2 ± 1.2 keV [6].

the experimental one just in the middle. Note that to get this agreement the
resummation of logs is necessary. The scale of minimal sensitivity is around
850 MeV, of the same order as the typical soft scale of the state. However,
these numbers should be taken with caution at this stage, since the running
involves the ultrasoft scale, which has been run down to very low scales
∼ 500 MeV in a correlated way.
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2.3. n = 2 bottomonium states

We now turn to the n = 2 bottomonium states. We show our results in
Figs. 5 and 6. In principle, this is the most problematic case since the soft
scale of the Υ (2S) is ∼ 1/n2(= 1/4) × the soft scale of the Υ (1S) (even
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Fig. 5. Plot of Γ (Υ (2S) → e+e−) with LO/LL (dashed line), NLO (dot-dashed line)

and NLL (dotted line) accuracy versus the renormalization scale ν. The horizontal

line and its band give the experimental value and its errors: Γ (Υ (2S) → e+e−) =

0.576 ± 0.024 keV [6].
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Fig. 6. Plot of Γ (ηb(2S) → γγ) with LO/LL (dashed line), NLO (dot-dashed line)

and NLL (dotted line) accuracy versus the renormalization scale ν.

if partially corrected by the fact that αs would be larger for the 2S state
than for the 1S state). Actually for Γ (Υ (2S) → e+e−) we can compare with
experiment and our result is a factor of two smaller than the experimental
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number. We note that, even for the leading order result, we have to go
to very small scales to get the agreement with experiment (∼ 600 MeV).
This raises doubts about our perturbative analysis for the n = 2 bottomo-
nium states. Somewhat, even if the resummation of logs helps, perturbation
theory still breaks down before one can reach the typical soft scale of the
problem (which is very small).

2.4. Final discussion

Even if one should wait for the complete NNLL result, now we can see
some trends. The uncalculated (perturbative or non-perturbative) terms
seems to be larger for the decays into e+e− than for the decays into two
photons. One could then start to speculate about the size of the non-
perturbative effects in each case. Good enough, the agreement obtained
with the experimental figure of Γ (ηc(1S) → γγ) makes us quite confident
that the result we have obtained for Γ (ηb(1S) → γγ) will be quite close to
the experimental number.

3. Conclusions

We have performed a phenomenological analysis of the NLL results ob-
tained in Ref. [1] for the heavy quarkonium decays to e+e− and to two
photons.

For Γ (Υ (1S) → e+e−), we find that the resummation of logs signifi-
cantly improves the agreement of the perturbative result with experiment
in relation with a pure NLO evaluation, such that, at the place of minimal
sensitivity, the theoretical number is off the experimental one by around
50%. Moreover, overall convergence is found with the NLL order result
being a correction with respect to the LL order one. Note that in order
to be so, we have to take ν of the order of the soft scale such that the
large logs are resummed. Surprisingly, the very same picture holds also for
Γ (J/Ψ(1S) → e+e−). It would certainly be challenging to have the complete
NNLL result to check whether this pattern of convergence survives, since the
difference with experiment is still large in both cases. If this is so, one could
start to reliably estimate the non-perturbative effects in heavy quarkonium
(and its relation with the ultrasoft cutoff) and, for the charmonium case,
support the view that one can actually use perturbation theory as a starting
point for its study (see [7]). On the other hand, for Γ (Υ (2S) → e+e−),
we find a strong discrepancy with the experimental figure, rasing doubts
that one can actually use perturbation theory there. This could make sense
since, for Coulomb-type bound states, the soft scale of the Υ (2S) would be
∼ 1/n2(= 1/4) × the soft scale of the Υ (1S) (partially corrected by the
fact that αs would be larger for the 2S state than for the 1S one). Even if
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the resummation of logs helps, perturbation theory still breaks down before
the renormalization scale ν can reach the typical soft scale of the problem.
Somehow we feel that something similar still happens for the Υ (1S) and the
J/Ψ(1S) in a less severe way, since in these last cases one can get much
closer to what we believe are the typical soft scales of the problem. In any
case, we would not like to draw definite conclusions just from this analysis.

For the decay of the heavy quarkonium to two photons we only have
experimental data for the charmonium case. In this case perfect agreement
with experiment is obtained. This boosts our confidence that our number for
Γ (ηb(1S) → γγ) will be reliable, which we take as one of the major results
of this paper.

For Γ (ηb(2S) → γγ), we prefer not to draw any conclusion in view of
the failure of the results obtained for Γ (Υ (2S) → e+e−).

It is a general trend that the resummation of logs improves the agreement
with the experimental result (when available). This can be explained by the
fact that the perturbation theory is stable up to smaller scales.

We can also see that the picture is quite similar to the one obtained in
Ref. [8] for the hyperfine of the heavy quarkonium, which has recently been
computed with NLL accuracy.

The fact that we obtain reasonable numbers for the charmonium system
can be considered a surprise. One could have thought that in this case very
low scales of the ultrasoft scale limit have been achieved. Actually, at the
numerical level, the ultrasoft scales for the ground states of the bottomonium
and charmonium seem to be similar. The reason is that even if the soft scale
of charmonium is smaller than of bottomonium, this is compensated by the
fact that the charm mass is smaller than the bottom mass. This explains
the similar behavior found for both systems with errors of the same size. For
the n = 2 bottomonium states, the behavior seems to be different, with a
major breakdown of perturbation theory, making the results not trustworthy
(actually the disagreement with experimenta is by factor of two). In any
case, even for the bottomonium and charmonium ground state, the ultrasoft
scale has been run down to very low scales. This is a potential problem of
the whole analysis. The issue will certainly be clarified when a complete
NNLL computation for the decays is available. In case a convergent pattern
is observed for the perturbative series, it would certainly be considered an
indication that perturbation theory can be applied for these systems. One
can then start considering a quantitative study of non-perturbative effects
and its relation with the ultrasoft cutoff. In particular one may start to
consider what the ratio between ΛQCD and mv2 exactly is and try to apply
the results obtained in Ref. [9] to the non-perturbative corrections.
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