Vol. 34 (2003) ACTA PHYSICA POLONICA B No 11

DIFFERENTIAL EQUATIONS FOR THE 2-LOOP
EQUAL MASS SUNRISE*

E. REMIDDI

Dipartimento di Fisica, Universita di Bologna and INFN, Sezione di Bologna
via Irnerio 46, I-40126 Bologna, Italy
and
Institut fiir Theoretische Teilchen Physik, Universitdt Karslruhe

D-76128 Karslruhe, Germany
(Received October 22, 2003)

The differential equations for the 2-loop sunrise graph, at equal masses
but arbitrary momentum transfer, are used for the analytic evaluation of
the coefficients of its Laurent-expansion in the continuous dimension d.

PACS numbers: 12.15.Lk

1. Introduction

The differential equations in the squared external momentum p? for the
Master Integrals (MIs) of the 2-loop sunrise graph with arbitrary masses
mi, mg, m3 of Fig. 1 were written in [1]. They were used for obtaining
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Fig.1. The 2-loop sunrise graph.

analytically particular values and behaviours at zero and infinite momentum
transfer [1], at pseudothresholds [2] and threshold [3], as well as for direct
numerical integration [4]. In this contribution I will report on some progress
in the anlytic study of the solutions of the equations for arbitrary momentum
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transfer in the equal mass limit m; = 1. A more complete account will be
given elsewhere [5]; while the algebraic burden in the arbitrary mass case
will surely be much heavier, there are indications [6] that the approach can
be extended to the arbitrary mass case as well.

In the equal mass limit the 2-loop sunrise has two MIs, which in the
usual d-continuous regularization scheme can be written as

1 dk dk 1
S(d.p*) = 7 / 1/ 2 —
r2(3—9)) ars ) axs B+ D& + D0 — k1 —k2)? + 1
1 dk dk 1
Sl(d7p2) = 2 d / 1/ 2 2 P} B .
r2(3—-9)J 4ns ) ans (B +12(k3 + D[(p — k1 — k2)? + 1]
(1)

Let us put p?> = z (z is positive when p is Euclidean); the two MIs then
satisfy the following linear system of first order differential equations in z

zdile(d,z) (d—3)S(d, ) +351(d, 2),

2(z + 1)(2+9)%Sl(d,z) = %(d 3)(8 — 3d)(z + 3)S(d, 2)
+ % [(d—4)2* +10(2 — d)z + 9(8 — 3d)] S1(d, 2)
1 z 9
Ty @)

The system can be rewritten as a second order differential equation for

S(d, z) only

d2
2(z4+1)(z+9)-—=S5(d, 2)

dz?
% [(12 — 3d)z* + 10(6 — d)z + 9d] %S(CLZ)
1 3 1
Tod=[d-Dz—d=41S(d,5) = T (3)

As the second MI Si(d, z) can be written in terms of S(d,z) and its first
derivative

Si(d,2) = % [—(d _3)+ zdi} S(d, ) | (@)

z

we can take from now on S(d, z) and its derivative dS(d, z)/dz as the effective
MIs.
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2. From near 4 to near 2 dimensions

We want to expand S(d, z) around d = 4 as Laurent series in (d —4) and
then to obtain analytically the values of the coefficients of the expansion by
solving the relevant differential equations. It was found a posteriori that all
the formuale are much simpler when expanding around d = 2. To give the
relations between the two expansions, let us recall that acting on any scalar
Feynman integral in d dimensions with a suitable differential operator, one
obtains the same integral in (d — 2) dimensions. times a numerical factor
depending on d [7]. Acting on the MIs in d dimensions (or, in our case,
on the two functions S(d, z) and dS(d, z)/dz), one obtains the same MIs in
d — 2 dimensions in terms of mass derivatives of the Mls in d dimensions,
which can be expressed again in terms of MIs in d dimensions; solving the
linear system for the d-dimensional MIs and replacing finally d by d + 2 one
obtains

1
3(d— 1)(3d — 2)(3d — 4)

9 3z — 63
N\ T @—22 " ad—2

+(z+1)(2+9) [1 + (2 — 3);} S(d, z)

S2+d,z) =

z

+(d — 2)(87 + 222 — 22)S(d, z)} . (5)

Quite in general, if
A2+ d) = B(d),

one can set d = 2 + 7 and Laurent-expand in 7; one obtains
Y AP =3 #*BW(2).
2 k

The Laurent expansion in n of S(d, z) for d = 44 n begins with a double
pole in 7 and reads

S(+n,2) = 55 (4,2) + %S‘” (4,2) + SO (4,2) + SN (4,2) + ...

3

while S(2 + 7, z) has no singularities in 7, and its expansion is

S(24n,2)=8592,2) + SV (2,2) +... .
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By inserting the two expansions in Eq. (5), one gets the required coefficients
S(k)(4, z) of the Laurent expansion in n of S(4 + 7, z) around 4 in terms of
the coefficients S*) (2, z) of the expansion of S(24 1, z) around 2. As S(d, z)
is regular at d = 2, the poles in 7 are not hidden in S(d, z) but are explicitly
exhibited by the 1/(d — 2) factors in the r.h.s. of Eq. (5). Working out the
algebra, one finds at once

SC(4,z) = 72 ,

SV, 2) = % + ;—2 .

3. The expansion at d = 2 of the differential equation

By expanding systematically in (d—2) all the terms appearing in Eq. (3),
one obtains a set of chained equations of the form

d2+ 1+ 1 N 1 d
dz? z z4+1 2z49|dz

1 1 1
* [3_,2 A4z 1) 1202+ 9)] }S(k)(ZZ) =N, 0

where the homogeneous part is the same for any order k, and the first few
inhomogeneous terms are

1 3 1 3
NO@ ) = — _ —
22 = o TG D T192G 19 S L9
1 1 1\ dS©(2,z
NO(@2.2) = <Z+z+1+z+9> d,(z )
5 1 11
- _ ) (9
+ <18z 8z + 1) 72(z+9)>5 (2.2)
SR S —
24z 64(z+1) 192(z+9)’
NP2z = ... (8)

Equations (8) are chained, in the sense that the inhomogeneous term of
order k involves lower terms, of order (k — 1) (for k& > 0) and (k — 2) (for
k > 1) in the expansion of S(2,z), as can be seen from Eq. (3) and is shown
explicitly in Eqgs. (8).
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The system Eq. (7) is to be solved bottom up in k, starting from
k = 0 (in which case the inhomogeneous term is completely known) and
then proceeding to higher values increasing k by one, so that at each step
the inhomogeneous term is known from the solution of the previous equa-
tions. The chained equations can then be solved by using Euler’s method of
the variation of the constants. The homogeneous equation is the same for
all the values of k,

e
(i e )
dz? z z+1 2z+49|dz

* [% N 4(z1+ 1) 12(zl+ 9)] }W(Z) =0 ©)

if ¥1(z),¥a(z) are two independent solutions of the homogeneous equation,
W (z) the corresponding Wronskian

dlI/Q (Z)
dz

dl[ll (Z)

W) = (2 -

— Us(2)

(10)

according to Euler’s method the solutions of Egs. (7) are given by the integral
representations

z

5™ (2,2) = wy(2) %(’“)—0 Vﬁ&)wmnw%,w)
r dw
+ W(2) %"“HO W%(w)zv“c)(z,w) . (11)

where Wl(k),WQ(k) are two integration constants.

Eq. (11) at this moment is just a formal representation of the solutions
for the coeffcients S*)(2,2); it becomes a substancial (not just formall)
formula only when all the ingredients — the two solutions of the homogeneous
equation ¥;(z), their Wronskian W (z) and the two integration constants ![/i(k)
are known explicitly.

Although the Wronskian is defined in terms of the ¥;(z), it can be im-
mediately obtained (up to a multiplicative constant) from Eq. (9). An ele-
mentary calculation using the definition Eq. (10) and the value of the second
derivatives of the ¥;(z), as given by Eq. (9) of which they are solutions, leads

to the equation
d 1 1 1
—W(z)=—-|[= w
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which gives at once
9

202+ 1)(z+9) "’

where the multiplicative constant has been fixed anticipating later results.
Finding the two ¥;(z) requires much more work.

W(z) = (12)

4. Solving the homogeneous equation at the singular points

By inspection, the singular points of Eq. (9) are found to be
z=0,-1,-9,00 ;

at each of those points one has two independent solutions, the first regular
and the second with a logarithmic singularity. The expansions of the so-
lutions around each of the singular points is immediately provided by the
differential equation itself.

Around z = 0 the two solutions of Eq. (9) can be written as

v(z) = v”(2),
w0 = mz vVz) + 0 (2), (13)

where the wgo)(z) are power series in z. Imposing wgo) (0) =1, one finds

1 )
1/150)(2) =1—cz4—22+..,
1/150)(2) = ——z+4+ =2+ ..} (14)

the coefficients are given recursively (hence up to any reuired order) by the
equation. The radius of convergence is 1 (the next singularity is at z = —1)
and the two solutions are real for positive z (spacelike momentum transfer).
The continuation to the timelike region is done by giving to z the value
z=—(u+1ie); for 0 <u <1 one has Inz = Inu — i7 and EPQ(O)(Z) develops

an imaginary part fimﬁo)(z).

Similarly, around z = —1 the 2 independent solutions can be written as
1 1
() = 01 (),
i (z) = Iz + Dy () + 98 (2) (15)

with Eq. (9) providing recursively the coefficients of the expansions in powers
of (z+1) of the two 1/},51)(2) once the initial condition is given. If 1/}%1) 0)=1
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one has

z/;f)(z) = 1+1(z+1)+3(z+1)2+... ,

4 32
W,y — 43 33 2
Py ' (2) = +8(z+1)+128(z+1) +... (16)

with radius of convergence 1 (up to the singularity at z = 0) etc.
The other two singular points z = —9 and z = co can be treated in the
same way, the corresponding formualae are not given due to lack of space.

5. The interpolating solutions

Having the solutions piecewise is not sufficient, one must build two solu-
tions in the whole —oo < z < oo range by suitably joining the above expres-
sions of the solutions at the singular points. A hint is provided by the knowl-
edge of the imaginary part of the original Feynman integral S(d, p?) Eq. (1)
at d = 2 dimensions; as already observed in [§8], the Cutkosky—Veltman rule
gives for the imaginary part of S(d,p?) at d = 2 and u = —z > 9 (and up
to a multiplicative constant) the integral representation

(Vu—1)?

db
J(u) = 4/ m ) (17)

where Ry(u,b) stands for the polynomial (of 4th order in b and 2nd order
in u)

Ry(u,0) = b(b—4)(b — (Vu—1)*)(b - (Vu+1)%)

and the b integration runs between two adjacent zeros of Ry(u,b). As the
inhomogeneous part of Eq. (3) cannot develop an imaginary part, the imag-
inary part of the Feynman integral in d = 2 dimensions, J(u) of Eq. (17), is
necessarily a solution of the associated homogeneous equation at d = 2, i.e.
of Eq. (9) — a fact which can also be checked explicitly.

One is then naturally lead to consider all the b-integrals of 1/1/R4(u,b)
between any two adjacent roots for all possible values of u. The details of
the analysis cannot be reported here again for lack of space. As a result,
one finds for instance that when w is in the range 0 < uw < 1 the roots of
Ry(u,b) are ordered as

0<(Wu—-12%<(WVu+1)*<4
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and the associated b-integrals are

(Vu—1)2 Jb

T (w) = —_——

0 —R4(U,b)
(Vu+1)? W
0,1
T () = —
/R4 (u,b)

(Vu-1)2

4
/ db
V/—Ra(u,b)

Vu+1)2

The three integrals are all real (and positive) due to the choice of the sign
in front of R4(u,b) in the square roots; more important, they all satisfy
Eq. (9) — therefore they cannot be all independent. With standard changes
of variables, they can be brought in the form of Legendre’s complete elliptic
integrals of the first kind [8]; in that way one finds for instance

3
IO () = 190 w) = 1 k(e
VO VaG v\ Vape - i)
showing in particular that the first and third integrals are indeed equal. A
similar (but different!) formula holds for the second integral.

Although usually one can not do very much for expressing elliptic inte-
grals in terms of other more familiar functions (such as logarithms or the
like), in the limiting cases u — 0 and v — 1 two of the 4 roots of R4(b,u)
become equal, and the by now elementary b-integrations give

KM w) =
(

1 1
lim Jl(o’l)(u) = <—§lnu+ln3> ,

u—0t

lim JQ(O’I) (u) =

u—0+t

lim Jl(o’l) (u) =

u—1-

lim T () = fgln(l —u)+ %mz . (19)

u—1-

7 (18)

Sl S

)

NS

One has now all the information needed for defining two solutions ¥;(z) of
Eq. (9) in an interval which contains the two singular points z = 0 and
z = —1. Let us start by defining, for z > 0,

Ui(z) = 07(2)
Uy(z) = v (2) .
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That fixes the multiplicative constant in the Wronskian as well, giving the
result already anticipated in Eq. (12). From Egs. (13), (14) we easily read
the behaviours of the ¥;(z) for u = —z small and positive; but in the range
0 < u < 1 the solutions can also be expressed in terms of the Ji(o’l)(u); by
matching the behaviours u — 07 of the Ji(o’l) (u), Egs. (18) to the behaviours
of the ¥;(z), one finds, in the interval 0 < u < 1,

3
V3 o
T

Uy (z —ie) = (u),

Uy(z —ie) = —2v3J Y () +

?(21n3 —im) YWy, (20)

One can now compare Egs. (19) with Eqgs. (15), (16) and express the Ji(o’l) (u)

in terms of the ![/i(l)(z); substituting in Eqgs. (20) one finds for the solutions
U;(z), for z around —1, the values

Uy (2 — i€) = 9f1 2 0 (2 —ie) — %@S)(Z —ie) ,

Wy(z — i€) = ? <

3[

18

1n21n3—27r—191n2> o (2 — e)
T

( 2In3 + Mr)LD(l) (z —ie) .

One can then move to the next interval 1 < u < 9 and so on till the ¥;(z) are

expressed, in the whole range —oo < z < 00, in terms of the Lpi(k)(z), each
known within the convergence radius of the expansions given by Eq. (9), as

well as in terms of the elliptic integrals Ji(k’l)(u).

6. The integration constants

S(d,p?) Eq. (1) is known to be real for u = —p? below the threshold
at u = 9. Take the solution as given by Euler’s formula Eq. (11); in the
region 0 < u < 1, or 0 > z > —1 the argument w of the inhomogeneous
term N*)(w) varies in the interval 0 > w > z > —1, and is therefore
real (N®)(w), Eq. (8) involves either real algebraic fractions or lower order
terms of the expansion in (d—2) of S(d, z), which are real in that region) —
therefore an imaginary part, if any, can come only from the ¥;(z) and the
V;(w). By using the values of the ¥;(z) as given by Eqgs. (20), one finds for
u = —z in the range 0 < u < 1

mS®) (2, z) = —v/3wP 7Y (u)
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implying, for any k,
oM =0

The argument can be repeated in the interval 1 < u < 9 (between
pseudothreshold and threshold), where the ¥;(z), in analogy with Egs. (20),
are expressed in terms of

a2
10w = [
0

/—Ry(u,b)’

5 (w) =

4
/ db
VRa(u,b)
(Vu—1)?
One finds for z in the interval —1 > 2z > =9, e 1 <u <9

-1
V3 (19 k dw (0,1
ImS® (2. 2) — 3Y3 709y [g® 4 o / O W IN® (2.0 -
mS (72) 37TJ1 ( Z) 1 + \/g W(’U})Jl ( w) (7w) ;
0

as the imaginary part must vanish in that interval, the other integration
constant is given by

-1
dw
wk) = 2\/3/—W(w) JOD(—w)N® (2, w) .
0

7. Conclusions

The values of all the quantities entering in Eq. (11), namely the two

Y;(z), W(z) and the two integration constants Ki(k) have been obtained, so
that the previously formal expression given by Eq. (11) became a substancial
formula giving the functions S (k)(2, z) in closed analytic form. Indeed, from
the explicit knowledge of the singularities and the relevant expansions of
the W;(2), the singularities and the relevant expansions of the S*)(2, z) are
immediately obtained — and from the explicit knowledge of the singularities
and the relevant expansions of the S*)(2, z) the fast and precise numerical
routines for their evaluation can in turn be obtained.

The author wants to thank J. Vermaseren for his continuous and kind
assistance in the use of his algebra manipulating program FORM |9], by which
all the calculations were carried out.
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