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O(ααs) RELATION BETWEEN POLE- AND MS-MASS
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The O(ααs) contribution to the relationship between the MS- and the
pole-mass of the t-quark propagator within the Standard Model is reviewed.
At the same order also the corrections to the top-Yukawa coupling is dis-
cussed. We furthermore present the exact analytic expression for the gauge-
less limit.

PACS numbers: 12.15.Lk, 14.65.Ha, 12.38.Bx, 11.10.Gh

1. Introduction

The Standard Model (SM) belongs to the class of renormalizable quan-
tum field theories [1] which means, in particular, that a restricted number of
input parameters suffice for theoretical predictions of any process. The con-
crete choice of input parameters defines a specific renormalization scheme.
The given set of independent parameters has to be extracted from an appro-
priate set of experimentally measured quantities. If we were able to perform
perturbative calculations to all orders, all renormalization schemes would be
equivalent. However, in practice, only the first few coefficients are known,
so the predictions depend on the choice of the scheme. Such dependence
on the truncation of the perturbative series is known as scheme dependence.
In general, the difference between two schemes is of the next higher order
in the perturbation expansion. For higher order calculations those schemes
are preferable for which the uncalculated higher order corrections are small.
Of course, to find such a preferred scheme requires to perform calculations
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in different schemes [2]. Another possibility is to find the scheme transition
relations by calculating the input parameters in one scheme in terms of the
input parameters of another scheme order by order in perturbation theory.
For electroweak calculations a natural and generally accepted scheme is the
so called on-shell scheme [3–8], where, in addition to the fine structure con-
stant (and/or the Fermi constant), the pole masses of particles serve as in-
put parameters. However, for quarks the pole mass suffers from renormalon
contributions [9] which affect seriously the convergence of the perturbation
expansion. This is one of the main reasons why for quarks the MS-mass
appears to be a better input parameter. A good illustration of this point
is the behavior of the QCD corrections to the ρ-parameter, which are large
when ∆ρ is expressed in terms of the pole-mass. In contrast, in terms of the
MS-mass the expansion coefficients are much smaller [10, 11].

The relation between pole- and MS-mass of quarks has been calculated
including one-, two- and leading three-loop corrections. The one-loop results
at O(αs) and O(α) have been presented in [12] and e.g. in [7]1, respectively.
The two-loop O(α2

s ) correction is given in [13], and the same result was
obtained via regularization by dimensional reduction in [14]. The renormal-
ized off-shell fermion propagator of order O(α2

s ) has been worked out in [15].
Only recently, in [16], the three-loop O(α3

s ) correction has been published.
Finally, the two-loop O(ααs) and O(α2) corrections have been calculated in
the approximation of vanishing electroweak gauge couplings [17]. Our re-
cent calculation [18], extends previous two-loop O(ααs) calculations of the
gauge boson self-energies [19] and the SM O(α2) corrections to the relation
between the pole- and the MS-mass of the gauge bosons Z and W , presented
in [20, 21].

2. Definitions

The definition of the top-quark pole mass has been discussed in [22]. In
general, the position of the pole of a fermion propagator, which defines the
pole-mass, is given by the formal solution for the momentum p̂ = iM̃ , at
which the inverse of the connected full propagator equals zero

ip̂ + m − Σ̃ (p,m, . . .) = 0 . (1)

The “mass” M̃ is a complex number, i.e., M̃ ≡ M ′ − i
2 Γ

′. The latter
parameters are related to the pole mass M and the on-shell width Γ , which
are parametrizing the pole of the squared transition matrix element |T |2
analogous to the boson case, by (see [18])

M̃2 = M2 − iMΓ = M
′2 − Γ

′2

4
− iM ′

Γ
′ , (2)

1 See also Eq. (B.5) in Appendix B of [21].
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such that

M =

√

M ′2 − Γ
′2

4
, Γ =

M ′

M
Γ

′ . (3)

Since M = M ′+O(α2) and Γ = Γ
′+O(α2) for the O(ααs) terms considered

in this paper we can identify M = M ′ and Γ = Γ
′ in the following.

For the remainder of the paper we will adopt the following notation:
capital M ≃ Re M̃ always denotes the pole mass; lower case m stands for
the renormalized mass in the MS scheme, while m0 denotes the bare mass.
The on-shell width is given by Γ ≃ −2 Im M̃ . In addition we use e, g and
gs to denote the U(1)em, SU(2)L and SU(3)c couplings of the SM in the MS
scheme.

In perturbation theory (1) is to be solved order by order. For this aim
we expand the self-energy function about the lowest order solution p̂ = im0:

Σ̃ (p,m, . . .) = Σ̃ |p̂=im0
+(ip̂+m0)

[

Σ̃
′
]∣

∣

∣

p̂=im0

+· · · = Σ+(ip̂+m0)Σ
′+· · · .

To two loops we then have the solution

M̃

m
= 1 + Σ1 + Σ2 + Σ1Σ

′

1 , (4)

where ΣL is the bare (m = m0) or MS-renormalized (m the MS-mass)
L-loop contribution to the amplitude. According to Eq. (4) we need to
calculate propagator-type diagrams up to two loops on-shell. In order to
get manifestly gauge invariant results the Higgs tadpole diagrams must be
included [4]. As we have elaborated in [21] the inclusion of the tadpoles is
mandatory also for the self-consistency of the renormalization group (RG).

For our calculation all diagrams have been generated with the help of
QGRAF [24]. The C-program DIANA [25] then was used together with the
set of Feynman rules extracted from the package TLAMM [26] to produce the
FORM input which is suitable for the package ONSHELL2 [27] and/or for
another package based on Tarasov’s recurrence relations [28]. The relevant
master-integrals have been calculated analytically2 with the help of tech-
niques developed recently in [30].

3. The gaugeless limit

The complete O(ααs) result of the calculation within the SM is given
in our recent publication [18]. Here we present some details concerning the
renormalization and present the complete O(ααs) answer for the so called

2 Of course, another possibility is to apply directly numerical programs, some of which
are discussed in [29].
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“gaugeless limit” approximation of the SM. This limit corresponds to the
case MH ,mt ≫ MW and can be deduced from the Lagrangian of the SM
in the approximation g, g′ → 0, v2 6= 0. It allows us a simplified calculation
of the leading top-quark mass corrections to physical observables, like the
ρ-parameter or corrections to Z → bb decay [10, 17].

The mass renormalization constant Zt in the MS scheme at two loops
may be written in the form

mt,0 = mt(µ
2) Zt = mt(µ

2)

(

1 +
g2(µ2)

16π2

m2
t

m2
W

1

ε
Z(1,1)

α +
αs(µ

2)

4π

1

ε
Z(1)

αs

+
αs(µ

2)

4π

g2(µ2)

16π2

m2
t

m2
W

(

1

ε
Z(2,1)

ααs
+

1

ε2
Z(2,2)

ααs

)

+ O(g4, α2
s )

)

, (5)

where αs = g2
s /4π and

Z(1,1)
α = −3

8

m2
H

m2
t

+
3

8
+ Nc

m2
t

m2
H

, Z(1)
αs

= −3Cf . (6)

In our calculation we obtained the two-loop renormalization constants Z
(2,1)
ααs

and Z
(2,2)
ααs

Z(2,2)
ααs

= Cf

[

−9Nc
m2

t

m2
H

+
9

8

m2
H

m2
t

− 9

4

]

, Z(2,1)
ααs

= Cf

[

2Nc
m2

t

m2
H

+
3

2

]

, (7)

where, in the SM, Cf = 4/3, Nc = 3. We may use the SM renormalization
group equations to cross-check the 1/ε2- and 1/ε-terms [21, 23]. The coef-

ficient Z
(2,2)
ααs

may be calculated from the RG relations which allow one to
predict the leading higher order poles in terms of the RG coefficients (see
Eq. (4.39) in [18]). The terms proportional to 1/ε may be deduced from the
RG equations calculated in the unbroken phase. It has been shown [21, 23]
that in the MS scheme we may write

m2
t (µ

2) =
1

2

Y 2
t (µ2)

λ(µ2)
m2(µ2) , (8)

where m2 and λ are the parameters of the symmetric scalar potential V

V =
µ2

2
φ2 +

λ

24
φ4

and Yt is the top-quark Yukawa coupling. As a consequence we get the
following relation for the anomalous dimension γt of the mass of the top-
quark

γt = γY +
1

2
γm2 − 1

2

βλ

λ
, (9)
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where the relevant RG results in the gaugeless limit up to O(g4) are [31]

γm2 ≡ 1

m2
µ2 d

dµ2
m2 =

1

16π2

[

λ + 3Y 2
t

]

+ 20
g2
s Y

2
t

(16π2)2
,

βλ ≡ µ2 d

dµ2
λ =

1

16π2

[

2λ2 + 6λY 2
t − 18Y 4

t

]

+
g2
s Y

2
t

(16π2)2

[

40λ − 96Y 2
t

]

,

γY ≡ 1

Yt
µ2 d

dµ2
Yt =

1

16π2

[

9

4
Y 2

t − 4g2
s

]

+ 18
g2
s Y

2
t

(16π2)2
. (10)

At the same time, the anomalous dimension γt can be related with the
renormalization constant (see [20] for details). In our case we get

γt =
m2

t

m2
W

[

g2

16π2
Z(1,1)

α +
g2g2

s

(16π2)2
2Z(2,1)

ααs

]

+
g2
s

16π2
Z(1)

αs
.

Finally, the parameter relations Y 2
t =

2m2
t

v2 , λ =
3m2

H

v2 , g2 =
4m2

W

v2 , provide
the bridge between Eqs. (9) and (10) and our Eqs. (6) and (7).

After performing the UV renormalization the MS renormalized ampli-
tudes are finite. The relation between the top-propagator pole M̃ and the
MS mass mt can be written as

M̃

mt
= 1 + Σ1,MS +

{

Σ2 + Σ1Σ
′

1

}

MS

+ O(g4, α2
s ) , (11)

where

Σ1,MS =
αs

4π
Cf

[

4 − 3 ln
m2

t

µ2

]

+
g2

16π2

m2
t

m2
W

[

Z(1,1)
α ln

m2
t

µ2
+

(1 + y2)

2y

−Nc
m2

t

m2
H

− m4
t

8m4
H

ln(1 + y) +
m2

t

8m2
H

(3 + y2)

(1 + y)
ln y − iπ

1

8

]

, (12)

{

Σ2 + Σ1Σ
′

1

}

MS

= Cf
αs

4π

g2

16π2

m2
t

m2
W

(

ln2 m2
t

µ2

[

9

8

m2
H

m2
t

− 9Nc
m2

t

m2
H

− 9

4

]

+ ln
m2

t

µ2

[

9+11Nc
m2

t

m2
H

− 3m4
t

8m4
H

ln(1+y)+
3m2

t

8m2
H

(y2+6y−3)

(1+y)
ln y+iπ

9

8

]

+ζ2

{

3

2y
+

9

2
y +

3

4
y2

}

− y

(1 + y)2

{

11(1 + y2)(1 + y)2

8y2
+ 8Nc

}
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+
(1 − y)2

y2
ln y

[

ln(1 − y) +
1

2
ln(1 + y)

][

(1 − y2) − 1

2
(1 + y2) ln y

]

−1

8

2 + 8y − 10y2 − 3y3

y
ln2 y +

1

8

(1 + y)(6 − 63y + 5y2)

y
ln y

−1

8

(1 + y)2(5 − 62y + 5y2)

y2
ln(1 + y) − 3

2
ζ2 ln(1 + y)

(1 − y)2(1 + y2)

y2

+
(1 − y)(1 + y)

y2

{

(5 − 28y + 5y2)

4
Li2 (−y) + (1 − y)2Li2 (y)

}

+
(1 − y)2(1 + y2)

y2

{

3

2

[

2Li3 (y) + Li3 (−y)

]

− ln y

[

2Li2 (y) + Li2 (−y)

]}

−259

16
− 15

4
ζ2 −

3

2
ζ3 − iπ

[

17

8
− ζ2

]

)

, (13)

where

y =

1 −
√

1 − 4m2
t

m2

H

1 +

√

1 − 4m2
t

m2

H

≡
1 −

√

1 − 6Y 2
t

λ

1 +

√

1 − 6Y 2
t

λ

.

As the top is an unstable particle the pole of the propagator has an imaginary
part which is related up to a sign to the width Γt divided by two. In the
gaugeless limit approximation it is equal to

Γt

Mt
=

α

2 sin2 θOS
W

1

8

M2
t

M2
W

[

1 +
αs

4π
Cf (5 − 8ζ2)

]

. (14)

Very often the inverse of the relation (11) is required. To that end we have to
solve the real part of (4) iteratively for mt and to express all MS parameters
in terms of on-shell ones. The O(ααs) solution to two loops reads

mt

Mt
=1−ReΣ1,MS−Re

{

Σ2+Σ1Σ
′

1

}

MS

+
2αsα

(4π)2 sin2 θOS
W

{

Z(1)
αs

Re Σ
α
1,MS

+Σ
αs

1,MS

(

M2
t

M2
W

[

∆X(1)
α +Z(1,1)

α +ln
M2

t

µ2

(

3

8
+2Nc

M2
t

M2
H

)

]

+ReΣα
1,MS

)}

,(15)

where Σ
j

1,MS
(j = α,αs) means that only the “j” part of the one-loop MS

renormalized amplitude is to be taken into account and ∆X
(1)
α denotes the
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real part of the derivative of the one-loop amplitude with respect to the
top-mass:

∆X(1)
α =

M4
H

8M4
t

ln(1 + Y ) − 2Nc
M2

t

M2
H

− (1+Y )(3+Y )

8
ln Y +

(1−Y )2

4Y
,

with Y =
1−

√

1−
4M2

t

M2
H

1+

√

1−
4M

2
t

M2
H

. It is interesting to compare the result (15) calculated

at µ = Mt with a similar relation calculated in the full SM (see Eq. (5.57)
in [18]). The difference can be written in the following form

mSM
t (Mt)−mGL

t (Mt)

Mt
=

α

4π sin2 θOS
W

M2
t

M2
W

[

a
M2

t

M2
H

(

1−4
αs

4π
Cf

)

+b+c
αs

4π
Cf

]

,

(16)
where the constants a, b, c depend only on the values of the masses of the
gauge bosons W,Z and the top-quark. Numerically, taking the input pa-
rameter values MW = 80.419 GeV, MZ = 91.188 GeV and Mt = 174.3 GeV,
we obtain

a = −1

2

M4
W

M4
t

(

1 − 3 ln
M2

W

M2
t

)

− 1

4

M4
Z

M4
t

(

1 − 3 ln
M2

Z

M2
t

)

∼ −0.21934 ,

b = −0.07978 , c = −0.429164 . (17)

4. O(ααs) correction to the top-Yukawa coupling

In general, the concept of a quark mass is convention dependent. In elec-
troweak theory we have the possibility to consider instead of the mass of the
top-quark, for example, the top-Yukawa coupling. The one-loop electroweak
corrections O(α) to the relation between the Yukawa coupling and the pole
parameters has been calculated first in [32]. Our result [18] allows us to ex-
tract the O(ααs) correction to the top-Yukawa coupling. The starting point
is the relation between the Fermi constant GF and the pole parameters of
the SM, which may be written in the following form [3]:

sin2 θW M2
W (1 − ∆r) =

πα(MZ)√
2GF

, ∆r ≡ ∆r − ∆α ,

where for ∆r we use parametrization proposed in [33]. Using the transition
from the on-shell to the MS parameters of the SM (see [23] for details) we
get the following expression for v2

MS(µ
2) ≡ 1/

√
2GF(µ2):

v2
MS(µ

2) =
1√
2GF

1

1 − ∆r

[

m2
W (µ2)

M2
W

][

α(MZ)

αMS(µ2)

][

sin2 θMS
W (µ2)

sin2 θOS
W

]

, (18)
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such that we have

yt(µ
2)

Mt23/4G
1/2
F

=
mt(µ

2)

Mt

√

(1 − ∆r)
αMS(µ2)

α(MZ)

M2
W

m2
W (µ2)

sin2 θOS
W

sin2 θMS
W (µ2)

. (19)

This is our basic expression. Expanding each relation in powers of the cou-
pling constants α and αs the correction to the top-Yukawa coupling can be
extracted at the given order. Let us introduce the following decomposition
of the renormalization constants

mt(µ
2)

Mt
− 1 = δα + δαs + δααs + · · · ,

αMS(µ
2)

α(MZ)
− 1 = Zα

e + Zααs

e + · · · ,

sin2 θMS
W (µ2)

sin2 θOS
W

− 1 = Zα
θ + Zααs

θ + · · · ,
m2

W (µ2)

M2
W

− 1 = Zα
W + Zααs

W + · · · ,

∆r = ∆rα + ∆rααs + · · · (20)

and shortly describe each term. The first relation corresponds to (5.57)
in [18]. The relation between MS and on-shell values of the electric charge,
Ze, includes besides the perturbative corrections also the nonperturbative
contribution from the hadrons [34]. So, in our notation, the factor Zααs

e

includes only the perturbative contribution from the massive top-quark, at
the same time the factor Zα

e includes the contribution from five massless
quarks, the massive leptons and the nonperturbative contribution (a re-
cent numerical value is given in [35]). The renormalization constant of the
Weinberg angle θW is related with the renormalization of the masses of the
Z- and W -bosons via

Zα
θ + Zααs

θ ≡ −cos2 θOS
W

sin2 θOS
W

[

Zα
W − Zα

Z + Zααs

W − Zααs

Z

]

,

where the perturbative contributions to Zααs

W , Zααs

Z can be extracted from
[19] (see also [21]) and nonperturbative effect is given in [36]. The O(α) and
O(ααs) corrections to ∆r are given in [3] and [19], respectively, and ∆rααs

includes only the perturbative contribution from the quarks.
Using the decomposition (20) we deduce

yt(µ
2)

Mt23/4G
1/2
F

− 1 = δα + δαs +
1

2

[

Zα
e − Zα

W − Zα
θ − ∆rα

]

+δααs +
1

2
δαs

[

Zα
e − Zα

W − Zα
θ − ∆rα

]

+
1

2

[

Zααs

e − Zααs

W − Zααs

θ − ∆rααs

]

. (21)
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The first line of the relation (21) corresponds to Eq. (2.13) of [32]. In
the second line, the first term is our recent result (see Eq. (5.57) in [18]),
the second term is simply the product of the one-loop QCD correction δαs

=

16/3 − 4 ln
m2

t

µ2 and the one-loop electroweak corrections and the last terms

can be extracted from [19]. The result is relatively lengthy and will be
presented in a forthcoming publication.
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