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We derive the first three terms of the e-expansion of the scalar one-loop
Bhabha box function from a representation in terms of three generalized
hypergeometric functions, which is valid in arbitrary dimensions.

PACS numbers: 12.20.Ds

1. Introduction

One of the important problems in perturbative calculations is a precise
determination of the cross section for Bhabha scattering. For this one has
to determine the electroweak one-loop corrections in the Standard Model
and some parametric enhanced contributions plus the complete photonic
corrections to even higher orders. Here we are interested in a determina-
tion of photonic O(a?) corrections for this process in d = 4 — 2¢, ¢ — 0,
dimensions with account of the electron mass m as a regulator of infrared
singularities. These corrections naturally concern the virtual two-loop ma-
trix element, which contributes to the cross section due to its interference
with the Born matrix element. Of the same order is the absolute square of
the one-loop amplitude M;. The corresponding cross section contributions
have been analytically determined recently [1].
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A peculiarity of the contribution from M is the necessity to determine
this amplitude as a function of the parameter € up to terms of order &:
M;i(g) = mq/e+mo+mie. In a series of papers, the possibility was studied
to find some closed analytical expressions for one-loop 2-, 3- and 4-point
functions for arbitrary dimension, external momenta and masses (in princi-
ple also complex ones) in terms of generalized hypergeometric functions with
relatively simple integral representations [2-4|. The results immediately ap-
ply to a deduction of the coefficient m,. Beyond that this representation is
in particular of great importance for the development of efficient algorithms
for the calculation of 5-; 6- and higher point functions since these functions
may be reduced to 4- and lower point functions with “unphysical” external
kinematics.

In this contribution, we explicitely perform the e-expansion of the most
complicated part: The scalar one-loop box function I7111 with two photons
(taken here in the s-channel), as it is needed for the calculation of Bhabha
scattering up to order O(e). Our starting point is the analytical expression
as known from |[3,4]:
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with Z = m @2 =m2 (g1 + q)? = s, (q1 + q2)* = tand s, t, u being the

usual Mandelstam variables. Here I}, Fy are Appell hypergeometric func-
tions
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and the Kampé de Fériet function (KdF) [5] is defined as
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The e-expansion of the generalized hypergeometric functions occurring above
is not quite straight forward. In particular since there stands the factor
r (2 — g) ~ % in front of all of them, one needs their expansion up to order
£2. We have to develop different techniques for each of them.

2. Expansion of F;

We need to know the expansion
d—3 1 d—1
F1< 5 ,1,§,T;x,y>:FP+€F11+€2F12+~- (2.1)
with the kinematics: # = —=i2 < 0,y = 1 — 755 < 0,fy| > 1. In two

steps we obtain a form in which one of the parameters of F} ~ . The
transformations are the following:
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with X =1 -y =% > 1Y = y—}—l >l (X>Y, 1-§ =w)
Here we observe that the argument of the 2F1 as well as those of the Fj
function are larger than 1, i.e. both functions are complex and the imaginary
parts must cancel since the F} on the Lh.s. has arguments less than 0 and
thus is real. For the imaginary part of the F; function we obtain
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Transforming o F} [1, %, 7%d; %] with argument % > 1 to a oF] function

with argument z < 1, one shows that the imaginary parts cancel. Trans-
forming (the real part) further to the argument 1 — z one finally obtains

-3 1 d-1 Y —4
Fl <ﬁ7 , = d—,:L‘,y):(dB)— Re Fl <17d—717;’X7Y>

2 2’ 2 X 2
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To expand up to the required order (~ &2), it is sufficient to set sin (7?%) =
—me and

d—331 1 | 14++1—2
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This simplifies the expansion considerably and the Re F} (1 d24, 1, g,X Y)
we take from [4]. Characteristic variables appearing in the result are

2 Fy [1, ) +0(). (2.6)
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and introducing a = y/1 — %, b= /1 — & we can write (1 >a >b>0)
_ 1 -
A=k B = pdand
Fo= Tl (2.8)
1 — \/_b ) '

yielding the correct %—term of Dy [6]. Keeping only the leading terms, col-
lecting the contributions, yields correspondingly

2 I'(3) - 1
TR g9 (5) e Retnm) +

2¢%n <1A__A§> — e <1 +¢ln (% - 1)) + 0(53)] . (2.9

where the higher order terms in € of Re{ln(B)+---} have to be taken
from [4].
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3. Expansion of Fy

We need to know the expansion

d—3 3d—-2
FQ <T,1,1, §,T,W,Z> = FQO +€F21 +€2F22 + - (31)
with the kinematics: w = m,z = —4m? (% + @) At first we per-

form the following FEuler transformation:
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The factor (1— z)_d%3 will be dropped in what follows and is taken into ac-

count again when collecting the results. Introducing = = w' and

—__Z

=2/, we have
1—=z )
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where 7/ = 1 + 3’ has been used and

« n
W Vo Ratn fe). (39)

S(e, 8,8, 7,0 y) =Y 3
n=1

In order to get rid of the denominator 8’ 4+ n we differentiate S w.r.t. y and
use 7]
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n=0 : n

with § = ¢’. Applying again the Euler relation,
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we finally have (8 =1,y = 2 inserted)

S(a, 3,0, 2) =

with

oS 1 1 3 ! 3
— = - [7 2 F (a,lv—;L> — o <a717_;w/>:|
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1
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To complete the e-expansion, we need (with z = )

1-y
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with the abbreviation u = ié Explicitely u = \/—7‘1:% with w = Vo,
SWF(z,u) = 1 [2Li A 2In (u)In(1 + u) + §1102(%) + C(Q)}
) 2\/5 2 u 2
(3.11)
and
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3.1. Order € of Fy

In this order we have
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and —t > 4m? and sets the scale for the variable u in general. Further we

introduce u; = u(y = 2’) < ug. Thus we can write

where the “scale” ug = u(y = 0) =

ug is large for s > m?
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and S(%,O,w’, 2 = ﬁSo(uo,ul). The integration yields:

So(tug, 1) = 2Lis (%) + Lis (%) ~ Liy <UOLU> 4 9Ly <_uio> @)
“In <u%> [QIH(ul)ln(uoul) —In <1 u%) - %m <u%>] . (3.15)

3.2. Order €2 of Fy

The next order can be written in the form
1
F2 = QP (W uy) — S, <§,o,w’, z’) (3.16)

with

Z/

1 d 1
Sl (570714}/,2/) = Sl(UO,Ul) = / ?y {%hl(l - y) ln(u)
y=0

+0WF (W, u) — dW (W u) + S <%, 0,0, y> } . (3.17)

The curly bracket in the above integrand finally reads

{} =1L <u%> — Lip(1) + Liy <%> — Lip (ui—u> + 2In(u)ln <?_11>
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—2In(up + 1)In <u%> + gln(uou)ln <u£0> —In <u£0>
X [21n(u ~ 1) — ln(ugu — 1) — In <1 _ 1) i %m (g)} 318)

There is no problem to perform the final integration, but the expressions
blow up considerably. Therefore we confine ourselves here to the leading
terms only by considering u (ug) as large and drop the small quantities.
Then the integral can be written in the simplified form (ui0 = v the new

integration variable)
1
Sy (g, 1) = L/[ }{Lig(v)Lig(l)ln2(v)ln(u0)ln(v)

Hn()in(1 —v)} = i [Lig(l ~ 1)+ In(1 — )Lis(r)

+ (In(up) + In(1 — 7)) Lig(1 — ) — In(r)Lia(r) + %lng’(r)

n <%ln(uo)1ﬂ(1r)> n%(r) + In?(1—r)ln(r) ~ ((2)n (1 1)] (3.19)

r

with 0 < r = Z—é < 1. If one wants higher precision, it is easier to expand

in %(uio) instead of performing all integrals analytically, which is possible

nevertheless. Collecting the results, we have

m2 —€
% (1- 2 F(s)% (In(ug) + ) - (3.20)

4. Expansion of the Kampé de Fériet function

We need to know the expansion

121 |52 G 0 1, 252
Fito | a2 io Tyl =K +eK 4" K"+ --- (4.1)
2 - 2
2
with the kinematics: z = —4m? <% + t—im2> yy=1-— 4%. In this case we

begin with the integral representation of the KdF function:
d—3. d=3

3
1,2,1 2 : 2 717 17
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. 2 ’

2
1
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Again we perform a shift such that one of the parameters of the o} ~ &:
d—3 d—2 1 1
2F1 <1,—, ,l‘t) = (1*£L‘t) % 2F1 (6,5,15,1‘t>
= (1-zt)2[1—eS(z 1) (4.3)

with

o0 (1)
Z — Z' )" (4.9)

The e-expansion of S(x t) can again be obtained by first differentiating S:

0o (1
() i e o
n=1 )
= % (%xt — 1) + %S(m t)|e=0 + O(?). (4.5)

In order to obtain S to O(e), we need the following integrals:

Sz t)]oco = i dg (ﬁ - 1) — 9 <1 + %) (4.6)
0

and

1 1
de(l‘ t)]e=o = —2Lia <—;> — 2In? <1 + ;) , (4.7)

where we introduced v = ?F \/—V}z Thus the above integral reads

[t () [ () -3 ()}

(4.8)

w

After a variable transformation we can write
p 1
t t__ 1 1 1
/ o1 = - fafu [
1—tyy/1—-xt Vy—x 1+b1 1—0b1t
0

b2 [1 Tt T —162 t} } / (%) (49)
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. 14+/1— .
with v = ot = 1) = Jﬁ, by = \/11371;1 and by = ,/Z—(l’ with
14,/1-2
Vo= T z vg and vy both being large, results in by < 1 and by < 1 but
Yy

very close to 1. Taking again the attitude to keep only leading contributions,
the bi-contribution can be dropped. The Lis-function in the second order
term can be written as

Li, <—Z—21> =2 [LiQ (z\/%_) + Liy (—z\/%)] (4.10)

so that integration is possible. We do get,however, relatively complicated
complex conjugate contributions. On the other hand since v; > 1 this
contribution is small from the very beginning and can be well approximated
by expanding the Lis-function. Here it is dropped alltogether. Thus we are
left with the following contributions:

d—3

K=
2y/w

In(ug), (4.11)

K' = Z\/S’ [m G*ZE) In (25 + 2 (Lin(bs) - Lig(bg))} (412)

d—3[1 (1+b vz LAWY i
= 52 [om () e () o () o - sy

+4 (Lis(b) — Lig(—bQ))} . (4.13)

Collecting the results we obtain

m2 —&
%p(@% (In(ug) +---) . (4.14)

We see that the %—term cancels against the one from the F5 contribution.

5. Expansion of the scalar box function with Feynman parameters

In order to have an independent check of the above results, we derived a
Feynman parameter integral representation for the e-expansion. We follow
closely [8], where the scalar four-point integral was treated with a finite
photon mass in d = 4 dimensions.
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The function to be calculated is, in LoopTools notations [9]:

J = Do(m?* m? m? m? |t s | m?0,m?0)
- an? k2 (K2 + 2kqa) (k2 — 2kg3)(k + q1 + qa)? '
A constant transforms the normalization of Dy to that of I {‘11)11:
d
Dy = (4m) I, (5.2)

The infrared singularity may be isolated in a 3-point function Cy by redefin-
ing

2
J =S (F+Q), (5-3)
with
Co = Colt, wym® | mi?, i2,0) = ¢ /
0 o(t, u”,m= | m*, u*,0) in2 k2 (k% 4 2kqq) (k% — 2kqs)’

(5.4)

and with

2e d — k2
po 2 / d% (s/4 — k) (5.5)
im? k2 (k2 + 2kqa) (k* — 2kqs)(k + q1 + q4)?

being a finite scalar four point function.
The e-expansions may be easily derived now starting from

1
4 p® ‘
o = 1o [ =[]
203 | P2 (6
0
1 1 1-2 4rp?]°
— 2 5 T
F =TI2+¢) /d:cdydz <§yzs+ 1+€M> [ =) ]
0
= F(2+€)[Io—‘y—€[1+€IL] ey (57)
with
2 _ 2
py = —x(1 —x)t +m* — ie, (5.8)

M? = yly2?pi — (1 —y)(L — 2)s]. (5.9)
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Thus, the four-point function may be represented as follows:

I = —/%m(—A), (5.10)

1

B dx z Az(1 —2) 22

h= s [ e v e ) O

0

with

A= pi%, (5.12)
N(z) = 224+ (1 - 2)A. (5.13)

The last function will be given here in short as a three-fold integral. But
it is evident that the y-integration leads to simple integrals in terms of
dilogarithms or simpler functions:

1

dx Ay y 4P A
I, = | —dzd 1 5.14
g /p% Y [222K(y)2 TR " YK () (514

with

K(y) = y—(l—y)lz;zA- (5.15)
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