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Finite Unified Theories (FUTs) are N = 1 supersymmetric Grand Uni-
fied Theories, which can be made all-loop finite, both in the dimension-
less (gauge and Yukawa couplings) and dimensionful (soft supersymmetry
breaking terms) sectors. This remarkable property provides a drastic reduc-
tion in the number of free parameters, which in turn leads to an accurate
prediction of the top quark mass in the dimensionless sector, and predic-
tions for the Higgs boson mass and the s-spectrum in the dimensionful
sector. Here we examine the predictions of two FUTs taking into account
the various theoretical and experimental constraints as well as their re-
stricted parameter space. For the first we present the results of a detailed
scanning concerning the Higgs mass prediction, while for the second we
present a representative prediction of its spectrum.

PACS numbers: 11.10.Hi, 11.30.Pb, 12.10.Kt, 12.60.Jv

1. Introduction

Finite Unified Theories are N = 1 supersymmetric Grand Unified Theo-
ries (GUTs) which can be made finite even to all-loop orders, including the
soft supersymmetry breaking sector. The method to construct GUTs with
reduced independent parameters [2,7] consists of searching for renormalisa-
tion group invariant (RGI) relations holding below the Planck scale, which
in turn are preserved down to the GUT scale. Of particular interest is the
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possibility to find RGI relations among couplings that guarantee finiteness
to all-orders in perturbation theory [8, 9]. In order to achieve the latter it
is enough to study the uniqueness of the solutions to the one-loop finiteness
conditions [8,9]. The constructed finite unified N = 1 supersymmetric SU(5)
GUTs using the above tools, predicted correctly from the dimensionless sec-
tor (Gauge–Yukawa unification), among others, the top quark mass [1]. The
search for RGI relations and finiteness has been extended to the soft su-
persymmetry breaking sector (SSB) of these theories [3, 11], which involves
parameters of dimension one and two. Eventually, the full theories can be
made all-loop finite and their predictive power is extended to the Higgs sec-
tor and the s-spectrum. The purpose of the present article is to start an
exhaustive search of the latter predictions.

2. Reduction of couplings and finiteness in N = 1

SUSY gauge theories

A RGI relation among couplings gi, Φ(g1, · · · , gN ) = 0, has to satisfy the

partial differential equation µ dΦ/dµ =
∑N

i=1 βi ∂Φ/∂gi = 0, where βi is
the β-function of gi. There exist (N − 1) independent Φ’s, and finding the
complete set of these solutions is equivalent to solve the so-called reduction
equations (REs) [7], βg (dgi/dg) = βi , i = 1, · · · , N, where g and βg are the
primary coupling and its β-function. Using all the (N−1)Φ’s to impose RGI
relations, one can in principle express all the couplings in terms of a single
coupling g. The complete reduction, which formally preserves perturbative
renormalizability, can be achieved by demanding a power series solution,
whose uniqueness can be investigated at the one-loop level.

Finiteness can be understood by considering a chiral, anomaly free, N =1
globally supersymmetric gauge theory based on a group G with gauge cou-
pling constant g. The superpotential of the theory is given by

W =
1

2
mij Φi Φj +

1

6
Cijk Φi Φj Φk , (1)

where mij (the mass terms) and Cijk (the Yukawa couplings) are gauge
invariant tensors and the matter field Φi transforms according to the irre-
ducible representation Ri of the gauge group G. All the one-loop β-functions

of the theory vanish if the β-function of the gauge coupling β
(1)
g , and the

anomalous dimensions of the Yukawa couplings γ
j(1)
i , vanish, i.e.

∑

i

ℓ(Ri) = 3C2(G) ,
1

2
CipqC

jpq = 2δj
i g

2C2(Ri) , (2)

where l(Ri) is the Dynkin index of Ri, and C2(G) is the quadratic Casimir
invariant of the adjoint representation of G. There exists a theorem [8] which
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guarantees the vanishing of the β-functions to all-orders in perturbation
theory. This requires that, in addition to the one-loop finiteness conditions
(2), the Yukawa couplings are reduced in favour of the gauge coupling, in the
sense described above. Alternatively, similar results can be obtained [9, 10]
using an analysis of the all-loop NSVZ gauge beta-function [19].

The above described method of reducing the dimensionless couplings has
been extended [3,11] to the soft supersymmetry breaking (SSB) dimension-
ful parameters of N = 1 supersymmetric theories. More recently a very
interesting progress has been made [10-17] concerning the renormalisation
properties of the SSB parameters based conceptually and technically on
the work of Ref. [15]. In this work the powerful supergraph method [16] for
studying supersymmetric theories has been applied to the softly broken ones
by using the “spurion” external space-time independent superfields [17]. In
the latter method a softly broken supersymmetric gauge theory is considered
as a supersymmetric one in which the various parameters such as couplings
and masses have been promoted to external superfields that acquire “vac-
uum expectation values”. Based on this method the relations among the
soft term renormalisation and that of an unbroken supersymmetric theory
have been derived. In particular the β-functions of the parameters of the
softly broken theory are expressed in terms of partial differential operators
involving the dimensionless parameters of the unbroken theory. The key
point in the strategy of Refs. [10–17] in solving the set of coupled differen-
tial equations so as to be able to express all parameters in a RGI way, was
to transform the partial differential operators involved to total derivative
operators [12]. This is indeed possible to be done on the RGI surface which
is defined by the solution of the reduction equations. In addition it was
found that RGI SSB scalar masses in Gauge–Yukawa unified models satisfy
a universal sum rule at one-loop [4]. This result was generalised to two-loops
for finite theories, and then to all-loops for general Gauge–Yukawa and finite
unified theories [13].

In order to obtain a feeling of some of the above results, consider the
superpotential given by (1) along with the Lagrangian for SSB terms

−LSB =
1

6
hijk φiφjφk +

1

2
bij φiφj

+
1

2
(m2)ji φ∗ iφj +

1

2
M λλ + H.c., (3)

where the φi are the scalar parts of the chiral superfields Φi , λ are the
gauginos and M their unified mass. Since only finite theories are considered
here, it is assumed that the gauge group is a simple group and the one-
loop β-function of the gauge coupling g vanishes. It is also assumed that
the reduction equations admit power series solutions of the form Cijk =
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g
∑

n=0 ρijk

(n)g
2n . According to the finiteness theorem [8], the theory is then

finite to all-orders in perturbation theory, if, among others, the one-loop

anomalous dimensions γ
j(1)
i vanish. The one- and two-loop finiteness for

hijk can be achieved by hijk = −MCijk + . . . = −Mρijk

(0) g + O(g5) [18]. To

obtain the two-loop sum rule for soft scalar masses, it is assumed that the

lowest order coefficients ρijk

(0) and also (m2)ij satisfy the diagonality relations

ρipq(0)ρ
jpq

(0) ∝ δj
i for all p and q, and (m2)ij = m2

jδ
i
j , respectively. Then the

following soft scalar-mass sum rule is found [5]

( m2
i + m2

j + m2
k )

MM †
= 1 +

g2

16π2
∆(1) + O(g4) (4)

for i, j, k with ρijk

(0) 6= 0, where ∆(1) is the two-loop correction

∆(1) = −2
∑

l

[

(m2
l /MM †) − (1/3)

]

T (Rl) , (5)

which vanishes for the universal choice, i.e. when all the soft scalar masses
are the same at the unification point.

3. Finite unified theories

In this section we examine two concrete SU(5) finite models, where the
reduction of couplings in the dimensionless and dimensionful sector has been
achieved. A predictive Gauge–Yukawa unified SU(5) model which is finite
to all orders, in addition to the requirements mentioned already, should also
have the following properties:

1. One-loop anomalous dimensions are diagonal, i.e., γ
(1) j
i ∝ δj

i .

2. Three fermion generations, in the irreps 5i,10i (i = 1, 2, 3), which
obviously should not couple to the adjoint 24.

3. The two Higgs doublets of the MSSM should mostly be made out of
a pair of Higgs quintet and anti-quintet, which couple to the third
generation.

In the following we discuss two versions of the all-order finite model.
The model of Ref. [1], which will be labelled A, and a slight variation of
this model (labelled B) , which can also be obtained from the class of the
models suggested by Kazakov et al. [12] with a modification to suppress
non-diagonal anomalous dimensions1.

1 An extension to three families, and the generation of quark mixing angles and masses
in Finite Unified Theories has been addressed in [14], where several realistic examples
are given. These extensions are not considered here.



Higgs mass prediction in Finite Unified Theories 5463

The superpotential which describes the two models takes the form [1,5]

W =

3
∑

i=1

[

1

2
gu
i 10i10iHi + gd

i 10i5i H i

]

+ gu
23 102103H4 (6)

+gd
23 10253 H4 + gd

32 10352 H4 +
4

∑

a=1

gf
a Ha 24Ha +

gλ

3
(24)3 ,

where Ha and Ha (a = 1, . . . , 4) stand for the Higgs quintets and anti-
quintets.

The non-degenerate and isolated solutions to γ
(1)
i = 0 for the models

{A , B} are:

(gu
1 )2 =

{

8

5
,
8

5

}

g2 , (gd
1)2 =

{

6

5
,
6

5

}

g2 , (gu
2 )2 = (gu

3 )2 =

{

8

5
,
4

5

}

g2 , (7)

(gd
2)2 = (gd

3)2 =

{

6

5
,
3

5

}

g2 , (gu
23)

2 =

{

0,
4

5

}

g2 , (gd
23)

2 = (gd
32)

2 =

{

0,
3

5

}

g2 ,

(gλ)2 =
15

7
g2 , (gf

2 )2 = (gf
3 )2 =

{

0,
1

2

}

g2 , (gf
1 )2 = 0 , (gf

4 )2 = {1, 0}g2 .

According to the theorem of Ref. [8] these models are finite to all orders.
After the reduction of couplings the symmetry of W is enhanced [1, 5].

The main difference of the models A and B is that three pairs of Higgs
quintets and anti-quintets couple to the 24 for B so that it is not necessary
to mix them with H4 and H4 in order to achieve the triplet-doublet splitting
after the symmetry breaking of SU(5).

In the dimensionful sector, the sum rule gives us the following boundary
conditions at the GUT scale [5]:

m2
Hu

+ 2m2
10

= m2
Hd

+ m2
5

+ m2
10

= M2 for A , (8)

m2
Hu

+ 2m2
10

= M2 , m2
Hd

− 2m2
10

= −
M2

3
,

m2
5

+ 3m2
10

=
4M2

3
for B, (9)

where we use as free parameters m
5
≡ m

53
and m10 ≡ m103

for the model
A, and m10 for B, in addition to M .

4. Predictions of low energy parameters

Since the gauge symmetry is spontaneously broken below MGUT, the
finiteness conditions do not restrict the renormalisation property at low en-
ergies, and all it remains are boundary conditions on the gauge and Yukawa
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couplings (7), the h = −MC relation, and the soft scalar-mass sum rule
(4) at MGUT, as applied in the various models. So we examine the evolu-
tion of these parameters according to their renormalisation group equations
at two-loop for dimensionless parameters and at one-loop for dimensionful
ones with the relevant boundary conditions. Below MGUT their evolution is
assumed to be governed by the MSSM. We further assume a unique super-
symmetry breaking scale Ms so that below Ms the SM is the correct effective
theory.

The predictions for the top quark mass Mt are ∼ 183 and ∼ 174 GeV
in models A and B, respectively. Comparing these predictions with the
most recent experimental value Mt = (174.3 ± 5.1) GeV [23], and recalling
that the theoretical values for Mt may suffer from a correction of less than
∼ 4% [6], we see that they are consistent with the experimental data. In
addition the value of tan β is obtained as tan β = 54 and 48 for models A

and B, respectively.
In the SSB sector, besides the constraints imposed by finiteness there are

further restrictions imposed by phenomenology. In the case where all the soft
scalar masses are universal at the unification scale, there is no region of Ms =
M below 0 (few TeV) in which m2

τ̃ > m2
χ is satisfied (where mτ̃ is the τ̃ mass,

and mχ the lightest neutralino mass, which is the lightest supersymmetric
particle). But once the universality condition is relaxed this problem can
be solved naturally (provided the sum rule). More specifically, using the
sum rule (4) and imposing the conditions a) successful radiative electroweak
symmetry breaking, b) mτ̃2 > 0 and c) mτ̃2 > mχ2 , a comfortable parameter
space for both models (although model B requires large M ∼ 1 TeV) is
found.

As a final constraint, we also calculate BR(b → sγ) [20]. We do not take
into account any constraints coming from the muon anomalous magnetic
moment (g − 2) in this work. In the graphs we show the results for FUTA

for different values of M for mh (including the large corrections due to
tan β), mχ0 , and mA, for the case when µ < 0 and that the LSP is a

neutralino (χ0). The results for µ > 0 are slightly different: the spectrum
starts around 500 GeV. The main difference, though, is in the value of the
running bottom mass mbot(mbot). In the µ < 0 case, mbot ∼ 3.5− 4.0 GeV
just below the experimental value mbot−exp ∼ 4.0 − 4.5 GeV [23]. In the
µ > 0, mbot ∼ 4.75 − 5.3 GeV, i.e. above the experimental value.

The prediction for the Higgs mass for the models is

mh = 112 − 132 GeV , (10)

where the uncertainty comes from variations of the gaugino mass M and
the soft scalar masses, and from finite (i.e. not logarithmically divergent)
corrections in changing renormalisation scheme. In the analysis we have also
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included a small variation, due to threshold corrections at the GUT scale, of
1− 2% of the FUT boundary conditions. This small variation does not give
a noticeable effect in the results at low energies. From Fig. 1 we already
see that the requirement mh > 113.5 GeV [23] excludes the possibility of
M = 200 GeV for FUTA.
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Fig. 1. mh as function of m5 for different values of M for model FUTA, for µ < 0.
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0 500 1000 1500 2000 2500 3000
m5 [GeV]

0

0.5

1

1.5

2

2.5

3

M
A
 [T

eV
]

LSP = χ0  ,         µ <0

M = 2000 GeV

M = 250 GeV

Fig. 4. MA as function of m5 for different values of M for model FUTA, for µ < 0.

A more detailed numerical analysis, where the results of our program and
of known programs like FeynHiggs and Suspect are combined, is currently
in progress [21].

In Tables I and II we present representative examples of the values ob-
tained for the sparticle spectra in each of the models. The value of the
lightest Higgs physical mass mh has already the one-loop radiative correc-
tions included, evaluated at the appropriate scale [22].
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TABLE I

A representative example of the bottom (running) and top (pole) masses, plus the
supersymmetric spectrum for Model FUTA, with m5 = 697 GeV, m10 = 806 GeV,
Msusy = 1681 GeV, µ < 0. All masses in the Table are in GeV.

Mtop 183 mbot 3.9
tan β = 54.4 αs .118

mχ1
452 mτ̃2

916
mχ2

843 mν̃3
883

mχ3
850 µ −1494

mχ4
1500 B 3543

mχ
±

1

843 mA 555

mχ±
2

1500 mH± 560

mt̃1
1578 mH 555

mt̃2
1776 mh 127.5

mb̃1
1580 M1 452

mb̃2
1766 M2 846

mτ̃1
654 M3 2210

TABLE II

A representative example of the bottom (running) and top (pole) masses, plus the
supersymmetric spectrum for Model FUTB, with m10 = 945 GeV, Msusy = 2278
GeV, µ < 0. All masses in the Table are in GeV.

Mtop 173 mbot 4.2
tan β = 48 αs .116

mχ1
669 mτ̃2

970
mχ2

912 mν̃3
916

mχ3
1289 µ −1900

mχ4
1909 B 4010

mχ
±

1

1289 mA 1106

mχ
±

2

909 mH± 1109

mt̃1
2236 mH 1106

mt̃2
2519 mh 123.5

mb̃1
2163 M1 700

mb̃2
2501 M2 1293

mτ̃1
766 M3 3256

It is a pleasure to thank the Organising Committee for the very warm
hospitality offered to one of us (G.Z.). We acknowledge many useful dis-
cussions with A. Djouadi and S. Heinemeyer. Supported by the projects
PAPIIT-IN116206 and partially by the RTN contract HPRN-CT-2000-00148,
the Greek–German Bilateral Programme IKYDA-2001 and by the NTUA
Programme for Fundamental Research THALES.



5468 M. Mondragón, G. Zoupanos

REFERENCES

[1] D. Kapetanakis, M. Mondragón, G. Zoupanos, Z. Phys. C60, 181 (1993);
M. Mondragón, G. Zoupanos, Nucl. Phys. B (Proc. Suppl.) 37C, 98 (1995).

[2] J. Kubo, M. Mondragón„ G. Zoupanos, Nucl. Phys. B424, 291 (1994).
[3] J. Kubo, M. Mondragón„ G. Zoupanos, Phys. Lett. B389, 523 (1996).
[4] T. Kawamura, T. Kobayashi, J. Kubo, Phys. Lett. B405, 64 (1997).
[5] T. Kobayashi, J. Kubo, M. Mondragón, G. Zoupanos, Nucl. Phys. B511, 45

(1998); in proc. of ICHEP, Vancouver 1998, vol. 2, p. 1597 ; Acta Phys. Pol.
B 30, 2013 (1999); in proc. of HEP99, Tampere 1999, p. 804.

[6] For an extended discussion and a complete list of references see: J. Kubo,
M. Mondragón, G. Zoupanos, Acta Phys. Pol. B 27, 3911 (1997).

[7] W. Zimmermann, Com. Math. Phys. 97, 211 (1985); R. Oehme, W. Zimmer-
mann, Commun. Math. Phys. 97, 569 (1985); E. Ma, Phys. Rev. D17, 623
(1978); D31, 1143 (1985).

[8] C. Lucchesi, O. Piguet, K. Sibold, Helv. Phys. Acta 61, 321 (1988); O. Piguet,
K. Sibold, Int. J. Mod. Phys. A1, 913 (1986); Phys. Lett. B177, 373 (1986);
see also C. Lucchesi, G. Zoupanos, Fortschr. Phys. 45, 129 (1997).

[9] A.Z. Ermushev, D.I. Kazakov, O.V. Tarasov, Nucl. Phys. 281, 72 (1987);
D.I. Kazakov, Mod. Phys. Lett. A9, 663 (1987).

[10] R.G. Leigh, M.J. Strassler, Nucl. Phys. B447, 95 (1995).
[11] I. Jack, D.R.T. Jones, Phys. Lett. B349, 294 (1995).
[12] L.V. Avdeev, D.I. Kazakov, I.N. Kondrashuk, Nucl. Phys. B510, 289 (1998);

D.I. Kazakov, Phys. Lett. B449, 201 (1999).
[13] T. Kobayashi, J. Kubo, G. Zoupanos, Phys. Lett. B427, 291 (1998);

T. Kobayashi et al., in proc. of “Supersymmetry, Supergravity and Super-
strings”, Seoul, 1999, pp. 242–268; T. Kobayashi et al., Surv. High Energ.
Phys. 16, 87 (2001).

[14] K.S. Babu, T. Enkhbat, I. Gogoladze Phys. Lett. B555, 238 (2003).
[15] Y. Yamada, Phys. Rev. D50, 3537 (1994).
[16] R. Delbourgo, Nuovo Cim. 25A, 646 (1975); A. Salam, J. Strathdee,

Nucl. Phys. B86, 142 (1975); K. Fujikawa, W. Lang, Nucl. Phys. B88, 61
(1975); M.T. Grisaru, M. Rocek, W. Siegel, Nucl. Phys. B59, 429 (1979).

[17] L. Girardello, M.T. Grisaru, Nucl. Phys. B194, 65 (1982); J.A. Helayel-Neto,
Phys. Lett. B135, 78 (1984); F. Feruglio, J.A. Helayel-Neto, F. Legovini,
Nucl. Phys. B249, 533 (1985); M. Scholl, Z. Phys. C28, 545 (1985).

[18] I. Jack, D.R.T. Jones, Phys. Lett. B333, 372 (1994).
[19] V. Novikov, M. Shifman, A. Vainstein, V. Zakharov, Nucl. Phys. B229, 381

(1983); Phys. Lett. B166, 329 (1986); M. Shifman, Int. J. Mod. Phys. A11,
5761 (1996), and references therein.

[20] S. Bertolini, F. Borzumati, A. Masiero, G. Ridolfi, Nucl. Phys. B353, 591
(1991).

[21] A. Djouadi, S. Heinemeyer, M. Mondragón, G. Zoupanos, work in progress.
[22] A.V. Gladyshev, D.I. Kazakov, W. de Boer, G. Burkart, R. Ehret, Nucl.

Phys. B498, 3 (1997); M. Carena, et al., Phys. Lett. B355, 209 (1995).
[23] K. Hagiwara et al., Phys. Rev. D66, 010001 (2002).


