
Vol. 34 (2003) ACTA PHYSICA POLONICA B No 11
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In this talk I review the conditions under which heavy physics virtual
effects are naturally suppressed without requiring a large scale for new
physics.

PACS numbers: 11.15.Bt, 12.15.Lk, 12.60.–i

1. The prophecies

Though there are no clear indications of a deficiency in the Standard
Model, it is generally believed that this theory does not represent the most
fundamental description of nature. This belief is supported by a variety of
arguments; for example, (i) the unexplained origin and enormous range of
Yukawa couplings (within the pure Standard Model with the addition of
right-handed neutrinos they range over almost 12 orders of magnitude [1]);
(ii) the unexplained origin of the gauge group and the rationale for its par-
ticular structure; (iii) possible stability and triviality problems [2] within
the scalar sector suggest that there is an upper scale Λ beyond which the
Standard Model must be modified (though the theoretical constraints on
this scale depend on the details of the scalar sector and, in particular, are
sensitive to the masses of the physical scalars); (iv) the unexplained ori-
gin of discrete symmetries, such as lepton and baryon number conservation,
that are respected within the Standard Model (up to non-perturbative ef-
fects, [3]), or almost conserved, such as CP. In addition (v) the Standard
Model has a relatively large number of unknown constants which is per-
ceived as undesirable

The above arguments suggest that the Standard Model is in fact an
effective theory, obtained from a more fundamental one in the limit where
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all external particles have energies below ∼ 1 TeV. This idea has led to an
intense study of the possible physics underlying the Standard Model . These
investigations can be divided into two groups: (i) those that are based on
specific models [4]; and (ii) those using an effective Lagrangian to describe
new physics at low energies [5].

The second possibility attempts to constrain the heavy physics using
the existing experimental data and is relatively model-independent. It does,
however, assume that the underlying physics respects the Standard Model
local symmetry and that underlying physics becomes manifest at a scale Λ

which is significantly above the Fermi scale: Λ
2GF ≫ 1 [5]. In addition the

underlying dynamics might be strongly or weakly coupled.
In this talk I will consider the second possibility and attempt to describe

the constraints on the heavy physics that can reconcile the absence of any
deviation from the Standard Model predictions with the possibility of a
relatively small value of Λ < O(10 TeV). I will assume that the heavy
physics is weakly coupled and it decouples [6].

2. Effective Lagrangians and small effects

The decoupling assumption implies that all observable heavy-physics ef-
fects vanish as Λ → ∞ and this suggests one simple way of suppressing the
effects generated by the heavy particles: Λ is very large. This sometimes
puts the heavy physics out of LHC’s reach. For example, the experimen-
tal constraints on the eLeLuLuL 4-Fermi interaction generated by a heavy
vector-boson exchange of mass Λ, leads to Λ > 25 TeV [1].

There is, however, a second option, assuming first that Λ is large enough
to avoid direct particle production, and second, that all leading virtual
effects are absent. The first condition leads to limit on Λ derived form
the absence of direct observation of the heavy particles and correspond to
Λ∼> CM collider energy. The second condition requires appropriate particle
content and symmetries to insure the absence of the leading graphs contain-
ing virtual heavy particles. In this talk I will consider this possibility.

2.1. Hierarchy of virtual effects

Adopting the above assumptions it follows that at low energies (small
compared to Λ) all virtual effects generated by the heavy physics can be
reproduced by an effective Lagrangian that consists of a linear combination
of an infinite series of local effective operators involving only the Standard
Model fields, and which respect all the local symmetries of the Standard
Model [5]. The coefficients of these operators are calculable if the heavy
physics action is known; if this is not the case these coefficients are left free
and parameterize any type of new physics satisfying the above conditions.
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The weak-coupling requirement insures that all the anomalous dimen-
sions will be small and so one can classify the operators according to their
naive mass dimension: an operator O of dimension n will appear with a
coefficient f/Λn−4 in the effective Lagrangian. The constant f is given by
a product of coupling constants when O is tree-level-generated, while for
operators that are generated via loops, f receives an additional suppression
factor ∼ 1/(4π)2. Leading heavy physics effects are then produced by the
lowest dimensional tree-level generated operators.

For example, operators of dimension 6 will generate percentile corrections
of order 1/(GFΛ

2) to Standard Model processes if they are generated at
tree-level, or of order 1/(16π2GFΛ

2) if loop generated. In this last case the
heavy physics corrections are of the order of the Standard Model radiative
corrections suppressed by an additional factor of 1/(GFΛ

2). For Λ > 1 TeV
the observation of the effects of loop-generated operators requires a precision
of ∼ 0.02%.

The above arguments single out tree-level generated operators as being
phenomenologically interesting. These operators can be characterized as
follows. Imagine a vertex of in the full theory that has hn heavy particle
legs and ℓk light legs. If a graph has Vn vertices of this type, I heavy
internal lines and no light internal lines, then it will contain no loops provided
∑

Vn = I + 1; also, since there are no heavy external lines,
∑

hnVn = 2I.
Then

∑

(hn − 2)Vn = −2 < 0 , (1)

from which it follows that all tree-level generated operators are generated
by graphs containing a vertex with hn = 1.

3. Eliminating tree-level generated operators

In the following I will denote heavy fermions, scalars and gauge bosons
by Ψ , Φ and X, respectively, while ψ, φ, and A will represent their light
counterparts.

Using the previous characterization it is easy to see that all tree-level
generated operators will contain one of the following vertices

ψψΦ , φφΦ , φφφΦ , ψφΨ , ψψX , ψAΨ , φφX . (2)

The vertices AAΦ AAX φAX AAAX φφAX are not included in
this list since they are necessarily absent: AAX, AAAX ∝ flight,light,heavy =0
since the unbroken generators form an algebra; AAΦ ∝ TlightV , where V de-
notes an O(Λ) vacuum expectation value, and these vanish since the light
generators remain unbroken; φAX ∝ φTlightTheavyV = 0 since the light
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scalars are orthogonal to the broken directions; and φφAX is absent when-
ever φφX is, due to the structure of the kinetic-energy terms. A particular
consequence of these observations is that all triple vector–boson vertices are
loop-generated [7] 1.

For example, the dimension 5 operator [8]
(

ℓ̄φ̃
)

(

φ†ℓc
)

(where ℓ denotes

a left-handed lepton doublet and φ the Standard Model scalar doublet and
the superscript c denotes the charge conjugate field) is generated by the
exchange of a scalar iso-triplet or a fermion iso-triplet or iso-singlet:

Similarly, the operator (ν̄νc)
(

φ†φ
)

(where ν denotes a right-handed neu-
trino singlet) is generated by the exchange of a scalar iso-singlet or a fermion
iso-triplet. Aside from these operators there is only one more dimension 5
operator, namely, ν̄σαβν

cBαβ where Bαβ denotes the U(1) field strength.
Operators of dimension 6 are much more numerous: there are 82 of them

(for 1 family) [9], of which 45 are tree-level generated operators [7]. These
take the generic forms

φ6 , D2φ2 , ψ2φ3 , Dψ2φ2 ,
(

ψ̄ψ
)2
,

(

ψ̄γψ
)2
. (3)

Note that there are no tree-level generated operators of dimension 6
containing only vectors and fermions. For example the operator

(

ℓ̄σIγµDνℓ
)

W I
µν =

(

ℓ̄σIγµ∂νℓ
) (

∂µW I
ν − ∂µW I

ν

)

+ · · · .

where W denotes the SU(2) gauge field, cannot be generated at tree level
since its first term contains 3 external legs, and any graph with zero loops
and three external lines has no internal lines. Because of this the vertex
ΨψA is irrelevant when considering only operators of dimension ≤ 6. The
graphs associated with the surviving operators [7] are given in Fig. 1

1 In addition it is worth remarking that no vertices of dimension > 4 in the heavy theory

are included since they would be suppressed by inverse powers of a scale Λ
′
≫ Λ.
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Fig. 1. Graphs responsible for the dimension 6 tree-level generated operators.

4. Eliminating tree-level generated operators

In this section I will describe a simple set of conditions that guarantee
the absence of tree-level generated operators and, therefore of all leading
new physics virtual effects.

4.1. Discreet symmetry

Since all tree-level generated operators operators contain at least one
vertex with a single heavy leg one can eliminate them by requiring that the
Lagrangian of the full theory be invariant under a Z2 symmetry where all
heavy fields are odd and all light fields are even. This is what occurs in
the MSSM [10] where all s-fermions and bosinos are odd while the Standard
Model (including both scalar doublets) are even [11].
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4.2. Space-time symmetry

An alternative way of eliminating all tree-level generated operators is
realized in models with universal extra dimensions [12]. In these theories
space is assumed to be 4 + d-dimensional, and compactified into R4 ×M,
where M compact of size ∼ R; all fields are assumed to propagate in all the
4 + d dimensions. In a mode expansion a generic field χ can be expanded in
terms of the spherical harmonics for M, namely,

χ =
∑

n

χn(x)qn(y) , ∇2
Mqn = cnqn , q0 = 1 ,

where x and y denote, respectively, the coordinates of R4 and M, and where
the eigenvalues cn ∼ 1/R2 for n 6= 0. In this case only χ0 is light while χn 6=0

have masses ∼ 1/R.
Because of this expansion any vertex containing a single heavy field will

be proportional to one of the qn with n 6= 0. Its contribution to the action
then vanishes because

∫

M

qn 6=0 = 0

(which can be interpreted as momentum conservation along M when this
manifold has translation symmetry).

4.3. Gauge symmetry

It is also possible to eliminate all tree-level generated operators in a
gauge theory by appropriately choosing the particle content and couplings.
Here I will only consider a toy model where (i) all scalars s are assumed
to get a vacuum expectation value 〈s〉 = O(Λ); (ii) all fermion and vector
masses are generated through spontaneous symmetry breaking; and (iii) all
physical scalars are are heavy.

With these assumptions and using generic properties of spontaneously
broken gauge theories (such as the fact that the unbroken generators close
into an algebra, and that they annihilate the vacuum expectation values),
it is easy to see that all undesirable vertices are eliminated except ΨψA
and ψψX. The first, however is irrelevant for dimension 6 operators, as
mentioned earlier; the second is more problematic and can be eliminated
only though appropriate choice of fermion representations. For example if
the left-handed fermions (in the underlying theory) carry the adjoint rep-
resentation, while right-handed fermions and scalars carry the fundamental
representation ad the full gauge group is SU(N) (broken to SU(N−1)), then
all vertices of the form ψψX are disallowed. This type of model will not
contain tree-level generated operators, but it is rather trivial having only
massless fermions and gauge bosons in the light sector.
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4.4. Standard Model gauge symmetry

The vertices we need to eliminate, ψ2
Φ, φ2

Φ, φ3
Φ, ψφΨ , ψ2X, ψAΨ ,

φ2X can be used to determine the SU(2)L ×U(1)Y representations that the
heavy fields would carry:

heavy particle weak isospin |hypercharge|

X,Φ 0, 1 n/3, 0 ≤ n ≤ 5
Φ 1/2, 3/2 1/2, 3/2
ΨL 0, 1 n/3, 0 ≤ n ≤ 3
ΨR 1/2 1/6, 1/2

If we now use this to forbid such representations, the vertices would not
occur and there would be no tree-level generated operators.

Note however, that these conditions forbid the presence of heavy
SU(2)L × U(1)Y singlet vector-bosons. In this case the underlying group
must be of rank 2 (ignoring color), so either the Standard Model gauge
group is the group for the full theory, or else the underlying group is SU(3)
(though this last possibility suffers from serious problems — e.g. anomalies)

5. Comments and conclusions

There are sensible models which would exhibit no significant deviations
from the Standard Model through radiative corrections. If such models are
realized in nature it is quite possible for the LHC to uncover new physics
without any premonition from LEP or the Tevatron. The above arguments
indicate that, at least partly, the phenomenological success of the MSSM
and the universal-extra-dimensions theories due to the absence of tree-level
generated operators in these theories.

In the absence of tree-level generated operators the the relationship be-
tween the experimental limits and the physical value of Λ would change.
For example, a limit Λ > Mexp obtained for a tree-level generated operator,
becomes Λ > Mexp/(4π) if all tree-level generated operators are absent. In
particular the limit derived for the scale at which (ψ̄γµψ)2 is generated drops
to Λ > 360 GeV, with similar results for non-Standard Model Z couplings.

Finally, it is worth noting that the elimination of tree-level generated
operators can be done selectively in sectors distinguished by some global
symmetries. For example one can require that all baryon and lepton num-
ber conserving tree-level generated operators be absent, while allowing lep-
ton number violating tree-level generated operators (whose effects are small
presumably because they are generated at a scale Λ that is very large).
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