
Vol. 34 (2003) ACTA PHYSICA POLONICA B No 12

MINIMAL FLAVOUR VIOLATION
∗

Andrzej J. Buras

Technische Universität München, Physik Department

D-85748 Garching, Germany

(Received October 16, 2003)

These lectures give a description of models with minimal flavour vio-
lation (MFV) that can be tested in B and K meson decays. This class
of models can be formulated to a very good approximation in terms of 11
parameters: 4 parameters of the CKM matrix and 7 values of the universal
master functions Fr that parametrize the short distance contributions. In
a given MFV model, Fr can be calculated in perturbation theory and are
generally correlated with each other but in a model independent analysis
they must be considered as free parameters. We conjecture that only 5
or even only 4 of these functions receive significant new physics contribu-
tions. We summarize the status of the CKM matrix, outline strategies for
the determination of the values of Fr and present a number of relations
between physical observables that do not depend on Fr at all. We empha-
size that the formulation of MFV in terms of master functions allows to
study transparently correlations between B and K decays which is very
difficult if Wilson coefficients normalized at low energy scales are used in-
stead. We discuss briefly a specific MFV model: the Standard Model with
one universal large extra dimension.

PACS numbers: 13.20.Eb, 13.20.He

1. Introduction

The understanding of flavour dynamics is one of the most important
goals of elementary particle physics. Because this understanding will likely
come from very short distance scales, the loop induced processes like flavour
changing neutral current (FCNC) transitions will for some time continue to
play a crucial role in achieving this goal. They can be studied most efficiently
in K and B decays but D decays and hyperon decays can also offer useful
information in this respect.
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Within the Standard Model (SM), the FCNC processes are governed by

• the unitary Cabibbo–Kobayashi–Maskawa (CKM) matrix [1, 2] that
parametrizes the weak charged current interactions of quarks,

• the Glashow–Iliopoulos–Maiani (GIM) mechanism [3] that forbids the
appearance of FCNC processes at the tree level with the size of its
violation at the one loop level depending sensitively on the CKM pa-
rameters and the masses of exchanged particles,

• the asymptotic freedom of QCD [4] that allows to calculate the im-
pact of strong interactions on weak decays at sufficiently short distance
scales within the framework of renormalization group improved per-
turbation theory,

• the operator product expansion (OPE) [5] with local operators hav-
ing a specific Dirac structure and their matrix elements calculated by
means of non-perturbative methods or in certain cases extracted from
experimental data on leading decays with the help of flavour symme-
tries.

The present data on rare and CP violating K and B decays are consistent
with this structure but as only a handful of FCNC processes have been
measured, it is to be seen whether some modification of this picture will be
required in the future when the data improve.

In order to appreciate the simplicity of the structure of FCNC processes
within the SM, let us realize that although the CKM matrix is introduced in
connection with charged current interactions of quarks, its departure from
the unit matrix is the origin of all flavour violating and CP-violating transi-
tions in this model. Out there, at very short distance scales, the picture could
still be very different. In particular, new complex phases could be present in
both charged and neutral tree level interactions, the GIM mechanism could
be violated already at the tree level, the number of parameters describing
flavour violations could be significantly larger than the four present in the
CKM matrix and the number of operators governing the decays could also be
larger. We know all this through extensive studies of complicated extensions
of the SM.

In these lectures we will discuss a class of models in which the general
structure of FCNC processes present in the SM is preserved. In particular
all flavour violating and CP-violating transitions are governed by the CKM
matrix and the only relevant local operators are the ones that are relevant in
the SM. We will call this scenario “Minimal Flavour Violation” (MFV) [6] be-
ing aware of the fact that for some authors [7,8] MFV means a more general
framework in which also new operators can give significant contributions.
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In the MFV models, as defined in [6], the decay amplitudes for any decay
of interest can be written as follows [9, 10]

A(decay) = Pc(decay) +
∑

r

Pr(decay)Fr(v), (1.1)

with Fr(v) being real. Pc summarizes contributions stemming from light
internal quarks, in particular the charm quark, and the sum incorporates
the remaining contributions.

The objects Pc, Pr and Fr have the following general properties:

1. Fr(v) are process independent universal “master functions” that in the
SM reduce to the so-called Inami–Lim functions [11]. The master func-
tions result from the calculations of various box and penguin diagrams.
In the SM they depend only on the ratio m2

t/M
2
W but in other models

new parameters enter, like the masses of charginos, squarks, charged
Higgs particles and tan β in the MSSM and the compactification ra-
dius R in models with large extra dimensions. We will collectively
denote these parameters by v. Up to some reservations to be made
in the next section, there are seven master functions [9, 10] that in a
given MFV model can be calculated as functions of v. As in some
extensions of the SM the number of free parameters in Fr is smaller
than seven, the functions Fr are not always independent of each other.
However, in a general model independent analysis of MFV we have to
deal with seven parameters, the values of the master functions, that
can be in principle determined experimentally. Now, there are several
decays to which a single master function contributes. These decays
are particularly suited for the determination of the value of this single
function. Equally important, by taking ratios of branching ratios for
different decays, it is possible to obtain relations between observables
that do not depend on Fr(v) at all. These relations can be regarded
as “sum rules” of MFV. Their violation by experimental data would
indicate the presence of new complex phases beyond the CKM phase
and/or new local operators and generally new sources of flavour and
CP violation. Finally, explicit calculations indicate that the number of
relevant master functions can be reduced to five or even four in which
case the system becomes more constrained. We will discuss all this
below.

2. The coefficients Pc and Pr are process dependent but within the class
of MFV models they are model independent. Pc and Pr depend on
hadronic matrix elements of local operators Qi that usually are para-
metrized by Bi factors. The latter can be calculated in QCD by means
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of non-perturbative methods. For instance in the case of K0–K̄0 mix-
ing, the matrix element of the operator s̄γµ(1− γ5)d⊗ s̄γµ(1− γ5)d is

represented by the parameter B̂K . There are other non-perturbative
parameters in the MFV that represent matrix elements of operators Qi
with different colour and Dirac structures. The important property of
Pc and Pr is their manifest independence of the choice of the operator
basis in the effective weak Hamiltonian [9]. Pc and Pr include also

QCD factors ηQCD
i that summarize the renormalization group effects

at scales below µ = O(MW ,mt). Similar to the Bi factors, ηQCD
i do

not depend on a particular MFV model and can be simply calculated

within the SM. This universality of ηQCD
i requires a careful treatment

of QCD corrections at scales µ = O(MW ,mt) as discussed in Section 2.
Finally, Pc and Pr depend on the four parameters of the CKM ma-
trix. As the l.h.s. of (1.1) can be extracted from experiment and is
v independent, while the r.h.s. involves v that are specific to a given
MFV model, the values of the CKM parameters extracted from the
data must in principle be v dependent in order to cancel the v depen-
dence of the master functions. On the other hand, as stated in the
first item, it is possible to consider ratios of branching ratios in which
the functions Fi cancel out. Such ratios are particularly suited for the
determination of the true universal CKM parameters corresponding to
the full class of MFV models. With such an approach, the coefficients
Pc and Pr become indeed model independent and the predictions for
A(decay) must depend on v. Consequently, only certain values for
Fr(v), corresponding to a particular MFV model, will describe the
data correctly.

To summarize:

• A model independent analysis of MFV involves eleven parameters: the
real values of the seven master functions Fr, and four CKM parame-
ters, that can be determined independently of Fr.

• There exist relations between branching ratios that do not involve the
functions Fr at all. They can be used to test the general concept of
MFV in a model independent manner.

• Explicit calculations indicate that the number of the relevant master
functions can likely be reduced.

These lecture notes provide a rather non-technical description of MFV.
In Section 2 we discuss briefly the basic theoretical concepts leading to the
master MFV formula (1.1), recall the CKM matrix and the unitarity triangle
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and discuss the origin of the seven master functions in question. We also
argue that only five (even only four) functions Fr are phenomenologically
relevant. Section 3 is devoted to the determination of the CKM matrix
and of the unitarity triangle both within the SM and in a general MFV
model. In Section 4 we list most interesting MFV relations between various
observables. In Section 5 we outline procedures for the determination of the
values of the seven (five) master functions from the present and forthcoming
data. In Section 6 we present the results in a specific MFV model: the
SM with one universal large extra dimension. We give a brief summary in
Section 7.

These lectures are complementary to my recent Schladming lectures [12].
The discussion of various types of CP violation, the detailed presentation
of the methods for the determination of the angles of the unitarity triangle
and detailed treatment of ε′/ε and K → πνν̄ can be found there, in my
Erice lectures [13] and [14]. More technical aspects of the field are given in
my Les Houches lectures [15], in the review [16] and in a very recent TASI
lectures on effective field theories [17]. Finally, I would like to recommend
the working group reports [18–21] and most recent reviews [22]. A lot of
material, but an exciting one.

2. Theory of MFV

2.1. Preface

The MFV models have already been investigated in the 1980’s and in
the first half of the 1990’s. However, their precise formulation has been
given only recently, first in [23] in the context of the MSSM with minimal
flavour violation and subsequently in a model independent manner in [6].
This particular formulation is very simple. It collects in one class models in
which

• all flavour changing transitions are governed by the CKM matrix with
the CKM phase being the only source of CP violation, in particular
there are no FCNC processes at the tree level,

• the only relevant operators in the effective Hamiltonian below the weak
scale are those that are also relevant in the SM.

The SM, the Two Higgs Doublet Models I and II, the MSSM with min-
imal flavour violation, all with not too large tan β, and the SM with one
extra universal large dimension belong to this class.

Another formulation, a profound one, that uses flavour symmetries has
been presented in [7]. Similar ideas in the context of specific new physics
scenarios can be found in [24–26]. While there is a considerable overlap of the
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approach in [7] with [6] there are differences between these two approaches
that are phenomenologically relevant. In short: in this formulation new
operators that are strongly suppressed in the SM are admitted, modifying
in certain cases the phenomenology of weak decays in a significant manner.
This is in particular the case of the MSSM with minimal flavour violation but
large tan β, where scalar operators originating from Higgs penguins become
important. Similar comments apply to [8]. In these lectures we will only
discuss the MFV models defined, as in [6], by the two items above.

The first model independent analysis of the MFV models appeared to
my knowledge already in [27] with the restriction to B decays. However,
the approach of [27] differs from the one presented here in that the basic
phenomenological quantities in [27] are the values of Wilson coefficients of
the relevant operators evaluated at µ = O(mb) and not the values of the
master functions. The most recent analysis of this type can be found in [28].

If one assumes in accordance with the experimental findings that all new
particles have masses larger than MW,Z it is more useful to describe the
MFV models directly in terms of the master functions Fr(v) rather than
with the help of the Wilson coefficients normalized at low energy scales. We
will emphasize this in more detail below.

The formulation of decay amplitudes in terms of seven master functions
has been proposed for the first time in [9,10] in the context of the SM. The
correlations between various functions and decays within the SM have been
first presented in [10]. Subsequent analyses of this type, still within the
SM, can be found in [29, 30]. These lectures discuss the general aspects of
MFV models in terms of the master functions, reviewing the results in the
literature and presenting new ones.

2.2. The basis

The master formula (1.1), obtained first within the SM a long time
ago [9], is based on the operator product expansion (OPE) [5] that allows
to separate short (µSD) and long (µLD) distance contributions to weak am-
plitudes and on the renormalization group (RG) methods that allow to sum
large logarithms log µSD/µLD to all orders in perturbation theory. The full
exposition of these methods can be found in [15, 16].

The OPE allows to write the effective weak Hamiltonian simply as fol-
lows:

Heff =
GF√

2

∑

i

V i
CKMCi(µ)Qi . (2.1)

Here GF is the Fermi constant and Qi are the relevant local operators which
govern the decays in question. They are built out of quark and lepton fields.
The CKM factors V i

CKM [1,2] and the Wilson coefficients Ci(µ) describe the
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strength with which a given operator enters the Hamiltonian. The Wilson
coefficients can be considered as scale dependent “couplings” related to “ver-
tices” Qi and can be calculated using perturbative methods as long as µ is
not too small.

An amplitude for a decay of a given meson M = K,B, . . . into a final
state F = πνν̄, ππ, DK is then simply given by

A(M → F ) = 〈F |Heff |M〉 =
GF√

2

∑

i

V i
CKMCi(µ)〈F |Qi(µ)|M〉, (2.2)

where 〈F |Qi(µ)|M〉 are the matrix elements of Qi between M and F , eval-
uated at the renormalization scale µ.

The essential virtue of OPE is that it allows to separate the problem
of calculating the amplitude A(M → F ) into two distinct parts: the short
distance (perturbative) calculation of the coefficients Ci(µ) and the long-
distance (generally non-perturbative) calculation of the matrix elements
〈Qi(µ)〉. The scale µ separates, roughly speaking, the physics contributions
into short distance contributions contained in Ci(µ) and the long distance
contributions contained in 〈Qi(µ)〉. Thus Ci include the top quark contri-
butions and contributions from other heavy particles such as W -, Z-bosons,
charged Higgs particles, supersymmetric particles and Kaluza–Klein modes
in models with large extra dimensions. Consequently, Ci(µ) depend gener-
ally on mt and also on the masses of new particles if extensions of the SM
are considered. This dependence can be found by evaluating so-called box
and penguin diagrams with full W -, Z-, top- and new particle exchanges
and properly including short distance QCD effects. The latter govern the
µ-dependence of Ci(µ).

The value of µ can be chosen arbitrarily but the final result must be
µ-independent. Therefore the µ-dependence of Ci(µ) has to cancel the µ-
dependence of 〈Qi(µ)〉. The same comments apply to the renormalization
scheme dependence of Ci(µ) and 〈Qi(µ)〉.

Now due to the fact that for low energy processes the appropriate scale
µ is much smaller than MW,Z , mt, large logarithms lnMW/µ compensate in
the evaluation of Ci(µ) the smallness of the QCD coupling constant αs and
terms αns (lnMW/µ)n, αns (lnMW/µ)n−1 etc. have to be resumed to all orders
in αs before a reliable result for Ci can be obtained. This can be done very
efficiently by means of the renormalization group methods. The resulting
renormalization group improved perturbative expansion for Ci(µ) in terms of
the effective coupling constant αs(µ) does not involve large logarithms and
is more reliable. The related technical issues are discussed in detail in [15]
and [16]. It should be emphasized that by 2003 the next-to-leading (NLO)
QCD and QED corrections to all relevant weak decay processes in the SM
and to a large extent in the MSSM are known. But this is another story.
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Clearly, in order to calculate the amplitude A(M → F ) the matrix ele-
ments 〈Qi(µ)〉 have to be evaluated. Since they involve long distance contri-
butions one is forced in this case to use non-perturbative methods such as
lattice calculations, the 1/N expansion (N is the number of colours), QCD
sum rules, hadronic sum rules and chiral perturbation theory. In the case of
B meson decays, the Heavy Quark Effective Theory (HQET), Heavy Quark
Expansions (HQE) and in the case of nonleptonic decays QCD factorization
(QCDF) and PQCD approach also turn out to be useful tools. However,
all these non-perturbative methods have some limitations. Consequently
the dominant theoretical uncertainties in the decay amplitudes reside in the
matrix elements 〈Qi(µ)〉 and non-perturbative parameters present in HQET,
HQE, QCDF and PQCD. These issues are reviewed in [18], where the ref-
erences to the original literature can be found.

The fact that in many cases the matrix elements 〈Qi(µ)〉 cannot be reli-
ably calculated at present, is very unfortunate. The main goals of the experi-
mental studies of weak decays is the determination of the CKM factors VCKM

and the search for the physics beyond the SM. Without a reliable estimate of
〈Qi(µ)〉 these goals cannot be achieved unless these matrix elements can be
determined experimentally or removed from the final measurable quantities
by taking suitable ratios and combinations of decay amplitudes or branching
ratios. Flavour symmetries like SU(2)f and SU(3)f relating various matrix
elements can be useful in this respect, provided flavour symmetry breaking
effects can be reliably calculated.

2.3. The basic idea

By now all this is standard. It is also standard to choose µ in (2.2) of
O(mb) and O(1–2 GeV) for B and K decays, respectively. But this is cer-
tainly not what we want to do here. If we want to expose the short distance
structure of flavour physics and in particular the new physics contributions,
it is much more useful to choose µ as high as possible but still low enough
so that below this µ the physics is fully described by the SM [9]. We will
denote this scale by µ0. This scale is O(MW ,mt).

We are now in a position to demonstrate that indeed the formula (2.2)
with a low µ can be cast into the master formula (1.1). To this end we first
express Ci(µ) in terms of Ck(µ0):

Ci(µ) =
∑

k

Uik(µ, µ0)Ck(µ0) , (2.3)

where Uik(µ, µ0) are the elements of the renormalization group evolution
matrix (from the high scale µ0 to a low scale µ) that depends on the anoma-
lous dimensions of the operators Qi and on the β function that governs
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the evolution of the QCD coupling constant. Ck(µ0) can be found in the
process of the matching of the full and the effective theory or equivalently
integrating out the heavy fields with masses larger than µ0. They are lin-
ear combinations of the master functions Fr(v) mentioned in the opening
section, so that we have

Ck(µ0) = gk +
∑

r

hkrFr(v) , (2.4)

where gk and hkr are v-independent. Inserting (2.3) and (2.4) into (2.2), we
easily obtain (1.1) with gk and hkr absorbed into Pc and Pr, respectively. The

QCD factors ηQCD
i mentioned in Section 1 are constructed from Uik(µ, µ0)

and are fully calculable in the SM. Explicitly we have

Pc(decay) =
GF√

2

∑

i,k

V i
c 〈Qi(µ)〉U cik(µ, µ0)gk , (2.5)

Pr(decay) =
GF√

2

∑

i,k

V i
t 〈Qi(µ)〉U tik(µ, µ0)hkr , (2.6)

where the additional indices c and t indicate that the CKM parameters V i
c,t

and QCD corrections in Pc and Pr differ generally from each other. In
practice it is convenient to factor out the CKM dependence from Pc and Pr
and we will do it later on, but at this stage it is not necessary. It is more
important to realize already here that

• 〈Qi(µ)〉 and Uik(µ, µ0) can be calculated fully within the SM as func-
tions of αs, αQED and the masses of light quarks,

• Pc and Pr are µ independent as the µ dependence cancels between
〈Qi(µ)〉 and Uik(µ, µ0),

• the coefficients gk and hkr are process independent (the basic prop-
erty of Wilson coefficients) and can always be chosen so that they are
universal within the MFV models considered here.

This discussion shows that the only “unknowns” in the master formula
(1.1) are the CKM parameters, hidden in Pr and Pc, and the master func-
tions Fr(v). The CKM parameters cannot be calculated within the SM and
to my knowledge in any MFV model on the market. Consequently they have
to be extracted from experiment. The functions Fr, on the other hand, are
calculable in a given MFV model in perturbation theory as αs(µ0) is small
and if necessary in a renormalization group improved perturbation theory
in the presence of vastly different scales. But if we want to be fully model



5624 A.J. Buras

independent within the class of different MFV models, the values of the
functions Fr should be directly extracted from experiment.

While the derivation above is given explicitly for exclusive ∆F = 1 de-
cays, it is straightforward to generalize it to ∆F = 2 transitions and inclusive
decays. Indeed, the effective Hamiltonian in (2.1) is also the fundamental
object in inclusive decays.

Let us next compare our formulation of FCNC processes with the one
in [27,28]. We have emphasized here the parametrization of MFV models in
terms of master functions, rather than Wilson coefficients of certain local op-
erators as done in [27]. While the latter formulation involves scales as low as
O(mb) and O(1GeV), the former one exhibits more transparently the short
distance contributions at scales O(MW ,mt) and higher. The formulation
presented here has also the advantage that it allows to formulate the B and
K decays in terms of the same building blocks, the master functions. This
allows to study transparently the correlations between not only different B
or K decays but also between B and K decays. This clearly is much harder
when working directly with the Wilson coefficients evaluated at low energy
scales. In particular the study of the correlations between K and B decays
is very difficult as the Wilson coefficients in K and B decays, with a few
exceptions, involve different renormalization scales.

Let us finally compare our definition of MFV with the one of [7]. In
this paper the CKM matrix still remains to be the only origin of flavour
violation but new local operators with new Dirac structures are admitted
to contribute significantly. This is in particular the case of MSSM with
large tan β in which Higgs penguins, very strongly suppressed in our version
of MFV, contribute in a very important manner (see reviews in [31, 32]).
For instance the branching ratios for B0

s,d → µ+µ− can be enhanced at

tan β = O(50) up to three orders of magnitude with respect to the SM and
MFV models defined here. I find it difficult to put in the same class models
whose predictions for certain observables differ by orders of magnitude.

Moreover, in the framework of [7], the new physics contributions can-
not be always taken into account by simply modifying the master functions
as done in our approach. As a result this formulation involves more inde-
pendent parameters and some very useful relations discussed in Section 4
that are valid in MFV models discussed here can be violated in the class
of models considered in [7] even for a low tan β and in models with a sin-
gle Higgs doublet. In particular the correlations between semileptonic and
nonleptonic decays present in our approach are essentially absent there. All
these relations and correlations are important phenomenologically because
their violation would immediately signal the presence of new phases and/or
new local operators that are irrelevant in the SM. Only time will show which
of these two frameworks is closer to the data.
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These comments should not be considered by any means as a critique of
the formulation in [7], that I find very elegant, but as the first step beyond
the SM, the definition of MFV given in [6] and used in these lectures appears
more useful to me. On the other hand the authors in [7], similarly to [9,10]
and us here, use as free parameters quantities normalized at a high scale µ0

so that in their formulation certain correlations between K and B decays
can also be transparently seen.

After this general discussion let us have a closer look at the CKM matrix
and subsequently the functions Fr(v).

2.4. CKM matrix and the unitarity triangle (UT)

The unitary CKM matrix [1, 2] connects the weak eigenstates (d ′, s′, b′)
and the corresponding mass eigenstates d, s, b:





d ′

s′

b′



 =





Vud Vus Vub
Vcd Vcs Vcb
Vtd Vts Vtb









d
s
b



 ≡ V̂CKM





d
s
b



 . (2.7)

Many parametrizations of the CKM matrix have been proposed in the
literature. The classification of different parametrizations can be found in
[33]. While the so called standard parametrization [34]

V̂CKM =





c12c13 s12c13 s13e
−iδ

−s12c23 − c12s23s13e
iδ c12c23 − s12s23s13e

iδ s23c13
s12s23 − c12c23s13e

iδ −s23c12 − s12c23s13e
iδ c23c13



 ,

(2.8)
with cij = cos θij and sij = sin θij (i, j = 1, 2, 3) and the complex phase δ
necessary for CP violation, should be recommended [35] for any numerical
analysis, a generalization of the Wolfenstein parametrization [36] as pre-
sented in [37] is more suitable for these lectures. On the one hand it is more
transparent than the standard parametrization and on the other hand it sat-
isfies the unitarity of the CKM matrix to higher accuracy than the original
parametrization in [36].

To this end we make the following change of variables in the standard
parametrization (2.8) [37, 38]

s12 = λ , s23 = Aλ2 , s13e
−iδ = Aλ3(̺− iη) , (2.9)

where

λ, A, ̺, η (2.10)
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are the Wolfenstein parameters with λ ≈ 0.22 being an expansion parameter.
We find then

Vud = 1 − 1
2λ

2 − 1
8λ

4 , Vcs = 1 − 1
2λ

2 − 1
8λ

4(1 + 4A2) , (2.11)

Vtb = 1 − 1
2A

2λ4 , Vcd = −λ+ 1
2A

2λ5[1 − 2(̺+ iη)] , (2.12)

Vus = λ+ O(λ7) , Vub = Aλ3(̺− iη) , Vcb = Aλ2 + O(λ8) , (2.13)

Vts = −Aλ2 + 1
2Aλ

4[1 − 2(̺+ iη)] , Vtd = Aλ3(1 − ¯̺− iη̄) , (2.14)

where terms O(λ6) and higher order terms have been neglected. A non-
vanishing η is responsible for CP violation in the MFV models. It plays the
role of δ in the standard parametrization. Finally, the barred variables in
(2.14) are given by [37]

¯̺ = ̺

(

1 − λ2

2

)

, η̄ = η

(

1 − λ2

2

)

. (2.15)

Now, the unitarity of the CKM-matrix implies various relations between
its elements. In particular, we have

VudV
∗

ub + VcdV
∗

cb + VtdV
∗

tb = 0. (2.16)

The relation (2.16) can be represented as a “unitarity” triangle in the com-
plex (¯̺, η̄) plane. One can construct five additional unitarity triangles [39]
corresponding to other unitarity relations.

Noting that to an excellent accuracy VcdV
∗

cb is real with |VcdV ∗

cb| = Aλ3 +
O(λ7) and rescaling all terms in (2.16) by Aλ3 we indeed find that the
relation (2.16) can be represented as a triangle in the complex (¯̺, η̄) plane
as shown in Fig. 1. Let us collect useful formulae related to this triangle:

b
t

βγ

α

C=(0,0) B=(1,0)

R
R

A=(ρ,η)

Fig. 1. Unitarity triangle.

• We can express sin(2β) in terms of (¯̺, η̄):

sin(2β) =
2η̄(1 − ¯̺)

(1 − ¯̺)2 + η̄2
. (2.17)
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• The lengths CA and BA are given respectively by [10, 37]

Rb ≡
|VudV ∗

ub|
|VcdV ∗

cb|
=

√

¯̺2 + η̄2 = (1 − λ2

2
)
1

λ

∣

∣

∣

∣

Vub
Vcb

∣

∣

∣

∣

, (2.18)

Rt ≡
|VtdV ∗

tb|
|VcdV ∗

cb|
=

√

(1 − ¯̺)2 + η̄2 =
1

λ

∣

∣

∣

∣

Vtd
Vcb

∣

∣

∣

∣

. (2.19)

• The angles β and γ = δ of the unitarity triangle are related directly
to the complex phases of the CKM elements Vtd and Vub, respectively,
through

Vtd = |Vtd|e−iβ , Vub = |Vub|e−iγ . (2.20)

• The unitarity relation (2.16) can be rewritten as

Rbe
iγ +Rte

−iβ = 1 . (2.21)

• The angle α can be obtained through the relation

α+ β + γ = 180◦ . (2.22)

Formula (2.21) shows transparently that the knowledge of (Rt, β) allows
to determine (Rb, γ) through

Rb =
√

1 +R2
t − 2Rt cos β , cot γ =

1 −Rt cos β

Rt sin β
. (2.23)

Similarly, (Rt, β) can be expressed through (Rb, γ):

Rt =
√

1 +R2
b − 2Rb cos γ , cot β =

1 −Rb cos γ

Rb sin γ
. (2.24)

These relations are remarkable. They imply that the knowledge of the cou-
pling Vtd between t and d quarks allows to deduce the strength of the corre-
sponding coupling Vub between u and b quarks and vice versa.

The triangle depicted in Fig. 1, |Vus| and |Vcb| give the full description of
the CKM matrix. Looking at the expressions for Rb and Rt, we observe that
within the MFV models the measurements of four CP conserving decays
sensitive to |Vus|, |Vub|, |Vcb| and |Vtd| can tell us whether CP violation
(η̄ 6= 0 or γ 6= 0, π) is predicted in the MFV models. This fact is often
used to determine the angles of the unitarity triangle without the study of
CP-violating quantities.
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2.5. Master functions

The master functions Fr(v) originate from various penguin and box dia-
grams. Some examples relevant for the SM are shown in Fig. 2. Analogous
diagrams are present in the extensions of the SM.

In order to find the master functions Fr(v), we first express the penguin
vertices (including electroweak counter terms) in terms of the functions C
(Z0 penguin), D (γ penguin), E (gluon penguin), D′ (γ-magnetic penguin)
and E′ (chromomagnetic penguin). In the ’t Hooft–Feynman gauge for the
W± propagator they are given as follows:

t

b c

c s

W

(a)

b c

c s

Wg

W

g

(b)

b s

q q

u,c,t u,c,t

W

γ,Z

(c)

b s

q q

u,c,t u,c,t

u,c,t

γ,Z

b s

q q

W W

W

g,γ

(d)

b s

t t

W

W

(e)

d b,s

b,s d

u,c,t u,c,t

W

γ,Z

(f)

b s

l l

t

Fig. 2. Typical penguin and box diagrams in the SM.
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s̄Zd = iλt
GF√

2

g2
2π2

M2
W

cos θw
C(v)s̄γµ(1 − γ5)d , (2.25)

s̄γd = −iλt
GF√

2

e

8π2
D(v)s̄(q2γµ − qµ 6q)(1 − γ5)d , (2.26)

s̄Gad = −iλt
GF√

2

gs
8π2

E(v)s̄α(q2γµ − qµ 6q)(1 − γ5)T
a
αβdβ , (2.27)

s̄γ′b = iλ̄t
GF√

2

e

8π2
D′(v)s̄[iσµλq

λ[mb(1 + γ5)]]b , (2.28)

s̄G′ab = iλ̄t
GF√

2

gs
8π2

E′(v)s̄α[iσµλq
λ[mb(1 + γ5)]]T

a
αβbβ , (2.29)

where GF is the Fermi constant, θw is the weak mixing angle and

λt = V ∗

tsVtd, λ̄t = V ∗

tsVtb . (2.30)

In these vertices qµ is the outgoing gluon or photon momentum and T a are
colour matrices. The last two vertices involve an on-shell photon and an
on-shell gluon, respectively. We have set ms = 0 in these vertices.

Similarly we can define the box function S (∆F = 2 transitions), as well
as ∆F = 1 box functions Bνν̄ and Bµµ̄ relevant for decays with νν̄ and µµ̄
in the final state, respectively. Explicitly:

box(∆S = 2) = λ2
i

G2
F

16π2
M2
WS(v)(s̄d)V −A(s̄d)V −A , (2.31)

box(T3 = 1/2) = λi
GF√

2

α

2π sin2 θw
Bνν̄(v)(s̄d)V−A(ν̄ν)V−A , (2.32)

box(T3 = −1/2) = −λi
GF√

2

α

2π sin2 θw
Bµµ̄(v)(s̄d)V −A(µ̄µ)V−A , (2.33)

where T3 is the weak isospin of the final lepton. In the case of ∆F = 1
box diagrams with uū and dd̄ in the final state we have to an excellent
approximation

Buū(v) = Bνν̄(v), Bdd̄(v) = Bµµ̄(v), (2.34)

simply because these relations are perfect in the SM and the contributions
of new physics to ∆F = 1 box diagrams turn out to be very small in the
MFV models. In case of questions related to “i” factors and signs in the
formulae above, the interested reader is asked to consult [13, 15].

While the ∆F = 2 box function S and the penguin functions E, D′ and
E′ are gauge independent, this is not the case for C, D and the ∆F = 1 box
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diagram functions Bνν̄ and Bµµ̄. In the phenomenological applications it is
more convenient to work with gauge independent functions [9]

X(v) = C(v) +Bνν̄(v) , Y (v) = C(v) +Bµµ̄(v) , Z(v) = C(v) +
1

4
D(v) .

(2.35)
Indeed, the box diagrams have the Dirac structure (V −A)⊗(V −A), the Z0

penguin diagram has the (V −A) ⊗ (V −A) and (V −A) ⊗ V components
and the γ penguin is pure (V − A) ⊗ V . The X and Y correspond then
to linear combinations of the (V − A) ⊗ (V − A) component of the Z0

penguin diagram and box diagrams with final quarks and leptons having
weak isospin T3 = 1/2 and T3 = −1/2, respectively. Z corresponds to the
linear combination of the (V −A)⊗V component of the Z0 penguin diagram
and the γ penguin.

Then the set of seven gauge independent master functions which govern
the FCNC processes in the MFV models is given by:

S(v), X(v), Y (v), Z(v), E(v), D′(v), E′(v) . (2.36)

In the SM we have to a very good approximation (xt = m2
t /M

2
W ):

S0(xt) = 2.40
( mt

167GeV

)1.52
, (2.37)

X0(xt) = 1.53
( mt

167GeV

)1.15
, Y0(xt) = 0.98

( mt

167GeV

)1.56
, (2.38)

Z0(xt) = 0.68
( mt

167GeV

)1.86
, E0(xt) = 0.27

( mt

167GeV

)−1.02
, (2.39)

D′

0(xt) = 0.38
( mt

167GeV

)0.60
, E′

0(xt) = 0.19
( mt

167GeV

)0.38
. (2.40)

The subscript “0” indicates that these functions do not include QCD correc-
tions to the relevant penguin and box diagrams. Exact expressions for all
functions can be found in [15]. Let us also recall that in the SM

Bνν̄(v) = −4 B0(xt), Bµµ̄(v) = −B0(xt) (2.41)

with B0(xt) = −0.182 for mt = 167GeV.

Generally, several master functions contribute to a given decay, although
decays exist which depend only on a single function. We have the follow-
ing correspondence between the most interesting FCNC processes and the
master functions in the MFV models [10]:
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K0–K̄0-mixing (εK) S(v)
B0
d,s–B̄

0
d,s-mixing (∆Ms,d) S(v)

K → πνν̄, B → Xd,sνν̄ X(v)
KL → µµ̄, Bd,s → ll̄ Y (v)
KL → π0e+e− Y (v), Z(v), E(v)
ε′, Nonleptonic ∆B = 1, ∆S = 1 X(v), Y (v), Z(v), E(v)
B → Xsγ D′(v), E′(v)
B → Xs gluon E′(v)
B → Xsl

+l− Y (v), Z(v), E(v), D′(v), E′(v)

This table shows that the observables like branching ratios, mass differ-
ences ∆Md,s in B0

d,s − B̄0
d,s-mixing and the CP violation parameters ε and

ε′, all can be to a very good approximation (see below) entirely expressed in
terms of the corresponding master functions and the relevant CKM factors.
The remaining entries in the relevant formulae for these observables are low
energy parameters present in Pc and Pr that can be calculated within the
SM.

2.6. A guide to the literature

The formulae for the processes listed above in the SM, given in terms of
the master functions and CKM factors can be found in many papers. We will
recall the main structure of these formulae in Section 4. The full list using the
same notation is given in [16]. An update of these formulae with additional
references is given in two papers on universal extra dimensions [40,41], where
one has to replace Fr(xt, 1/R) by Fr(v) to obtain the formulae in a general
MFV model. The supersymmetric contributions to the functions S, X, Y , Z
and E within the MSSM with minimal flavour violation are compiled in [42].
See also [23, 27, 43, 44], where the remaining functions can be found. The
QCD corrections to these functions can be found in [45–52]. The full set of
Fr(v) in the SM with one extra universal dimension is given in [40, 41].

2.7. Comments on QCD corrections

Let us next clarify the issue of QCD corrections in this formulation. To
this end let us consider ∆Md that parametrizes the B0

d–B̄
0
d mixing. Only

one master function, S(v), contributes to ∆Md in the models considered
here. Within the SM we can write

∆Md = a〈Q(µb)〉U(µb, µ0)CQ(µ0) , (2.42)

where µb = O(mb) and the coefficient a includes G2
F, the relevant CKM

factor and some known numerical constants. 〈Q(µb)〉 is the matrix element of
the relevant local operator and U(µb, µ0) the corresponding renormalization
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group factor. Calculating the known box diagrams with W and top quark
exchanges and including O(αs) corrections one finds [45]

CQ(µ0) = S0(xt) [1 + αs(µ0)∆(µ0)] . (2.43)

As discussed in detail in [15, 16, 45] and in Section 8 of [9], the correction
∆(µ0) contains, in addition to a complicated mt dependence, three terms
that separately cancel the operator renormalization scheme dependence of
U(µb, µ0) at the upper end of this renormalization group evolution, the µ0

dependence of U(µb, µ0) and the dependence on the scale µt in mt(µt) that
could in principle differ from µ0. Here, in order to simplify the presentation
we will not discuss these three corrections separately and will proceed as
follows.

Noticing [45] that for µ0 = µt = mt, the correction factor ∆(µ0) is
essentially independent of mt, it is convenient, in the spirit of our master
formula (1.1), to rewrite (2.42) as follows:

∆Md = PSS0(xt), PS = a〈Q(µb)〉U(µb, µ0) [1 + αs(µ0)∆(µ0)] . (2.44)

The internal charm contributions to ∆Md are negligible and Pc ≈ 0 in this
case. We should keep in mind that in writing (2.44) we have chosen a special
definition of Pr and generally only the product PrFr is independent of this
definition.

Beyond the SM we can generalize (2.44) to

∆Md = PSS(v) (2.45)

with S(v) found by calculating the relevant diagrams contributing to ∆Md

in a given MFV extension of the SM. If in this model

CQ(µ0) = S̃0(v)
[

1 + αs(µ0)∆̃(µ0)
]

, (2.46)

then
S(v) = S̃0(v)

[

1 + αs(µ0)(∆̃(µ0) − ∆(µ0))
]

(2.47)

with S̃0(v) obtained from the relevant diagrams in this model without the
QCD corrections. In a model independent analysis this discussion is un-
necessary but if one wants to compare the determined S(v) with the result
obtained in a given model, the difference between the QCD corrections in
the SM and in the considered extension at scales O(µ0) has to be taken into
account as outlined above. There is no difference between these corrections
at lower energy scales.

The second issue is the breakdown of the universality of the master
functions by QCD corrections. Let us consider the Z0 penguin diagrams
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with qq̄ and ll̄ coupled to the lower end of the Z0 propagator in Fig. 2(c) and
Fig. 2(f), where in the case of ll̄ only the first diagram has been shown. These
diagrams contribute to nonleptonic and semileptonic decays, respectively.
The one-loop b̄Z0s vertex in diagrams with top quark exchanges and other
heavy particles is the same in both cases even after the inclusion of QCD
corrections and consequently the inclusion of these corrections does not spoil
the universality of C(v). However, the inclusion of all QCD corrections to
the Z0 penguin diagrams breaks the universality in question because in
nonleptonic decays there are diagrams with gluons connecting the one-loop
b̄Z0s vertex with the qq̄ line that are clearly absent in the semileptonic case.
Similar comments apply to ∆F = 1 box diagrams with ll̄ and qq̄ on the r.h.s
of the box diagram.

In ∆F = 1 box diagrams the breaking of universality can also take place
in principle even in the absence of QCD corrections because the internal
fermion propagators on the r.h.s of ∆F = 1 box diagrams in nonleptonic
decays differ from the ones in semileptonic decays. These diagrams can be
obtained from the diagram (e) in Fig. 2.

The studies of these universality breaking corrections in the SM [46,49],
MSSM [42,50] and the SM with one universal extra dimension [40,41] show
that these corrections are very small. In particular, they are substantially
smaller than the universal O(αs) corrections to the one loop Z0 vertex. We
expect that this is also the case in other MFV models and we will assume it
in what follows. In the future when the accuracy of data improves, one could
consider the inclusion of these corrections into our formalism. While this is
straightforward, we think it is an unnecessary complication at present.

The third issue is the correspondence between the decays and the master
functions given above. In more complicated decays, in which the mixing
between various operators takes place, it can happen that at NLO and higher
orders additional functions not listed above could contribute. But they
are generally suppressed by α(µ0) and constitute only small corrections.
Moreover they can be absorbed in most cases into the seven master functions.

2.8. A useful conjecture: reduced set of master functions

We know from the study of FCNC processes that not all master func-
tions are important in a given decay. In particular the contributions of the
function E(v) to all semileptonic decays are negligible as it is always mul-
tiplied by a small coefficient PE . It is slightly more important in ε′/ε but
also here it can be neglected to first approximation unless one expects order
of magnitude enhancements of this function by new physics contributions.
The dominant contribution from the gluon penguin to ε′/ε comes from the
relevant Pc term.
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While the ∆F = 1 box diagram contributions Bνν̄ and Bµµ̄ are rele-
vant in the SM, in all MFV models I know, the corresponding new physics
contributions to these functions have been found to be very small. Conse-
quently these functions are given to an excellent approximation by (2.34)
and (2.41). Similar comments apply to the D function for which the SM
value is D0 = −0.48. This means that the new physics contributions to the
functions X, Y and Z enter dominantly through the function C. Now, the
function C depends on the gauge of the W propagator, but this dependence
enters only in the subleading terms in m2

t/M
2
W and is cancelled by the one

of the box diagrams and photon penguin diagrams. Plausible general argu-
ments for the dominance of the C function and small new physics effects in
the ∆F = 1 box diagrams have been given in [53, 54, 104,110].

Finally, as we will see below, the contributions of E′(v) to B → Xsγ
and B → Xsl

+l− are strongly suppressed by small values of PE′ and to first
approximation one can set E′(v) to its SM value in these decays.

On the basis of this discussion we conjecture that the set of the inde-
pendent master functions in (2.36) can be reduced to five, possibly four,
functions

S(v), C(v), (Z(v)), D′(v), E′(v) . (2.48)

if one does not aim at a high precision. In this case the table given in
Section 2.5 can be simplified significantly :

K0–K̄0-mixing (εK) S(v)
B0
d,s–B̄

0
d,s-mixing (∆Ms,d) S(v)

K → πνν̄, B → Xd,sνν̄ C(v)
KL → µµ̄, B → ll̄ C(v)
KL → π0e+e− C(v), (Z(v))
ε′, Nonleptonic ∆B = 1, ∆S = 1 C(v), (Z(v))
B → Xsγ D′(v)
B → Xs gluon E′(v)
B → Xsl

+l− C(v), D′(v), (Z(v))

where it is understood that ∆F = 1 box functions, the functions D and E
and E′ in B → Xsγ, B → Xsl

+l− and ε′/ε are set to their SM values. In
parentheses we give also the full contributions of the Z(v) function in case
the new physics contributions to D(v) turned out to be more important than
anticipated above.

2.9. Summary

We have presented the general structure of the MFV models. In addition
to the nonperturbative parameters Bi, that can be calculated in QCD, the
basic ingredients in our formulation are the CKM parameters and the master
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functions Fr. We will now proceed to discuss the determination of the CKM
parameters. The procedures for the model independent determination of the
master functions will be outlined in Section 5.

3. Determination of the CKM parameters

3.1. The determination of |Vus|, |Vub| and |Vcb|
These elements are determined in tree level semileptonicK and B decays.

The present situation can be summarized by [18]

|Vus| = λ = 0.2240 ± 0.0036 , |Vcb| = (41.5 ± 0.8) × 10−3, (3.1)

|Vub|
|Vcb|

= 0.086 ± 0.008, |Vub| = (3.57 ± 0.31) × 10−3 (3.2)

implying
Rb = 0.37 ± 0.04 . (3.3)

There is an impressive work done by theorists and experimentalists hidden
behind these numbers. We refer to [18] for details. See also [35].

The information given above determines only the length Rb of the side
AC in the UT. While this information appears at first sight to be rather
limited, it is very important for the following reason. As |Vus|, |Vcb|, |Vub|
and consequently Rb are determined here from tree level decays, their values
given above are to an excellent accuracy independent of any new physics con-
tributions. They are universal fundamental constants valid in any extension
of the SM. Therefore their precise determinations are of utmost importance.

3.2. Completing the determination of the CKM matrix

We have thus determined three out of four parameters of the CKM ma-
trix. The special feature of this determination was its independence of new
physics contributions. There are many ways to determine the fourth param-
eter and in particular to construct the UT. Most promising in this respect
are the FCNC processes, both CP-violating and CP-conserving. These de-
cays are sensitive to the angles β and γ as well as to the length Rt and
measuring only one of these three quantities allows to find the unitarity
triangle provided the universal Rb is known.

Now, we can ask which is the “best” set of four parameters in the CKM
matrix. The most popular at present are the Wolfenstein parameters but
in the future other sets could turn out to be more useful [55]. Let us then
briefly discuss this issue. I think there is no doubt that |Vus| and |Vcb| have
to belong to this set. Also Rb could in principle be put on this list because
of its independence of new physics contributions. But the measurement of
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|Vub/Vcb| and consequently of Rb is still subject to significant experimental
and theoretical uncertainties and for the time being I do not think it should
be put on this list.

A much better third candidate is the angle β in the unitarity triangle,
the phase of Vtd. It has been measured essentially without any hadronic
uncertainty through the mixing induced CP asymmetry in Bd → ψKS

[56, 57] and moreover within the MFV models this measurement is inde-
pendent of any new physics contributions. The master functions Fr do not
enter the expression for this asymmetry.

The best candidates for the fourth parameter are the absolute value
of |Vtd| or Rt, the angle γ and the height η̄ of the UT. These three are
generally sensitive to new physics contributions but in the MFV models
there are ways to extract Rt and γ and consequently also η̄ independently
of new physics contributions. The angle γ can be extracted from strategies
involving charged tree level B decays that are insensitive to possible new
physics effects in the particle-antiparticle mixing but this extraction will
only be available in the second half of this decade. Other strategies for γ
are discussed in [12, 22]. Certainly the popular B → Kπ decays cannot be
used here as the determination of γ in these decays depends sensitively on
the size of electroweak penguins [58], even in MFV models, and moreover
the hadronic uncertainties are substantial.

It appears then that for the near future the fourth useful parameter
is Rt which within the MFV models could soon be determined from the
ratio ∆Md/∆Ms (B0

d,s–B̄
0
d,s mixing) independently of the size of the master

function S(v). The corresponding expression will be given below.
To summarize, the best set of four parameters of the CKM matrix ap-

pears at present to be [55]

|Vus|, |Vcb|, Rt, β (3.4)

with Rt determined from ∆Md/∆Ms. The elements of the CKM matrix are
then given as follows [55]:

Vud = 1 − 1

2
λ2 − 1

8
λ4 + O(λ6) , Vub =

λ

1 − λ2/2
|Vcb|

[

1 −Rte
iβ

]

, (3.5)

Vcd = −λ+
1

2
λ|Vcb|2 − λ|Vcb|2

[

1 −Rte
iβ

]

+ O(λ7) , (3.6)

Vus = λ+ O(λ7) , Vcs = 1 − 1

2
λ2 − 1

8
λ4 − 1

2
|Vcb|2 + O(λ6) , (3.7)

Vtb = 1 − 1

2
|Vcb|2 + O(λ6) , Vtd = λ|Vcb|Rte−iβ + O(λ7) , (3.8)

Vts = −|Vcb| +
1

2
λ2|Vcb| − λ2|Vcb|

[

1 −Rte
iβ

]

+ O(λ6) , (3.9)

where in order to simplify the notation we used λ instead of |Vus|.
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The CKM matrix determined in this manner and the corresponding uni-
tarity triangle with

¯̺ = 1 −Rt cosβ, η̄ = Rt sin β (3.10)

are universal in the class of MFV models. We will determine the universal
unitarity triangle (UUT) below.

3.3. General procedure in the SM

After these general discussion let us concentrate first on the standard
analysis of the UT within the SM. A very detailed description of this analysis
with the participation of the leading experimentalists and theorists in this
field can be found in [18]. The relevant background can be found in [12,13].

Setting λ = |Vus| = 0.224, the analysis proceeds in the following five
steps:

Step 1:

From b→ c transition in inclusive and exclusive leading B meson decays
one finds |Vcb| as given in (3.1) and consequently the scale of the UT:

|Vcb| =⇒ λ|Vcb| = λ3A , (A = 0.83 ± 0.02) . (3.11)

Step 2:

From b → u transition in inclusive and exclusive B meson decays one
finds |Vub/Vcb| as given in (3.2) and consequently using (2.18) the side CA =
Rb of the UT:

∣

∣

∣

∣

Vub
Vcb

∣

∣

∣

∣

=⇒ Rb =
√

¯̺2 + η̄2 = 4.35

∣

∣

∣

∣

Vub
Vcb

∣

∣

∣

∣

=⇒ Rb = 0.37 ± 0.04 .

(3.12)
Step 3:

From the experimental value of the CP-violating parameter εK that de-
scribes the indirect CP violation in K → ππ and the standard expression
for box diagrams one derives the constraint on (¯̺, η̄) [59]

η̄
[

(1 − ¯̺)A2ηQCD
2 S0(xt) + Pc(ε)

]

A2B̂K = 0.187 , (3.13)

where Pc(ε) = 0.29±0.07 [60] summarizes the contributions of box diagrams
with two charm quark exchanges and the mixed charm-top exchanges. The

dominant term involving ηQCD
2 = 0.57± 0.01 [45] represents the box contri-

butions with two top quark exchanges. B̂K is a non-perturbative parameter
for which the value is given below. As seen in Fig. 3, equation (3.13) specifies
a hyperbola in the (¯̺, η̄) plane.
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Fig. 3. Schematic determination of the Unitarity Triangle.

Step 4:

From the measured ∆Md that represents the B0
d − B̄0

d mixing and the
box diagrams with two top quark exchanges the side AB = Rt of the UT
can be determined:

Rt =
1

λ

|Vtd|
|Vcb|

= 0.85

[ |Vtd|
7.8 × 10−3

] [

0.041

|Vcb|

]

, (3.14)

|Vtd| = 7.8 × 10−3





230MeV
√

B̂Bd
FBd





[

∆Md

0.50/ps

]0.5
√

0.55

ηQCD
B

√

2.40

S0(xt)
. (3.15)

Here
√

B̂Bd
FBd

is a non-perturbative parameter and ηQCD
B = 0.55±0.01 the

QCD correction [45,61]. Moreover mt(mt) = (167± 5) GeV. The constraint
in the (¯̺, η̄) plane coming from this step is illustrated in Fig. 3.

Step 5:

The measurement of ∆Ms together with ∆Md allows to determine Rt in
a different manner:

Rt = 0.90

[

ξ

1.24

]

√

18.4/ps

∆Ms

√

∆Md

0.50/ps
, ξ =

√

B̂BsFBs

√

B̂Bd
FBd

. (3.16)

One should note that mt and |Vcb| dependences have been eliminated this
way and that ξ should in principle contain much smaller theoretical uncer-
tainties than the hadronic matrix elements in ∆Md and ∆Ms separately.

The main uncertainties in these steps originate in the theoretical uncer-

tainties in B̂K and

√

B̂dFBd
and to a lesser extent in ξ [18]:

B̂K = 0.86 ± 0.15 ,

√

B̂dFBd
= (235+33

−41) MeV , ξ = 1.24 ± 0.08 . (3.17)
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Also the uncertainties due to |Vub/Vcb| in step 2 are substantial. The QCD
sum rules results for the parameters in question are similar and can be found
in [18]. Finally [18]

∆Md = (0.503 ± 0.006)/ps, ∆Ms > 14.4/ps at 95% C.L. (3.18)

3.4. The angle β from Bd → ψKS

One of the highlights of the year 2002 were the considerably improved
measurements of sin 2β by means of the time-dependent CP asymmetry

aψKS
(t) ≡ −aψKS

sin(∆Mdt) = − sin 2β sin(∆Mdt) . (3.19)

The BaBar [56] and Belle [57] Collaborations find

(sin 2β)ψKS
=

{

0.741 ± 0.067 (stat) ± 0.033 (syst) (BaBar) ,
0.719 ± 0.074 (stat) ± 0.035 (syst) (Belle) .

Combining these results with earlier measurements by CDF, ALEPH and
OPAL gives the grand average [62]

(sin 2β)ψKS
= 0.734 ± 0.054 . (3.20)

This is a mile stone in the field of CP violation and in the tests of the SM
as we will see in a moment. Not only violation of this symmetry has been
confidently established in the B system, but also its size has been measured
very accurately. Moreover in contrast to the five constraints listed above,
the determination of the angle β in this manner is theoretically very clean.

3.5. Unitarity triangle 2003 (SM)

We are now in a position to combine all these constraints in order to
construct the unitarity triangle and determine various quantities of interest.
In this context the important issue is the error analysis of these formulae,
in particular the treatment of theoretical uncertainties. In the literature the
most popular are the Bayesian approach [63] and the frequentist approach
[64]. For the PDG analysis see [35]. A critical comparison of these and other
methods can be found in [18]. I can recommend this reading.

In Fig. 4 we show the result of the recent update of an analysis in collab-
oration with Parodi and Stocchi [55] that uses the Bayesian approach. The
allowed region for (¯̺, η̄) is the area inside the smaller ellipse. We observe
that the region ¯̺< 0 is disfavoured by the lower bound on ∆Ms. It is clear
from this figure that the measurement of ∆Ms giving Rt through (3.16) will
have a large impact on the plot in Fig. 4.
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Fig. 4. The allowed 95% regions in the (¯̺, η̄) plane in the SM (narrower region)

and in the MFV models (broader region) from the update of [55]. The individual

95% regions for the constraint from sin 2β, ∆Ms and Rb are also shown.

The ranges for various quantities that result from this analysis are given
in the SM column of Table I. The UUT column will be discussed soon. The
SM results follow from the five steps listed above and (3.20) implying an
impressive precision on the angle β:

(sin 2β)tot = 0.705+0.042
−0.032 , β = (22.4 ± 1.5)◦ . (3.21)

On the other hand (sin 2β)ind obtained by means of the five steps only is
found to be [55]

(sin 2β)ind = 0.685 ± 0.052 , (3.22)

demonstrating an excellent agreement (see also Fig. 4) between the direct
measurement in (3.20) and the standard analysis of the UT within the SM.
This gives a strong indication that the CKM matrix is very likely the dom-
inant source of CP violation in flavour violating decays and gives a support
to the MFV idea. In order to be sure whether this is indeed the case, other
theoretically clean quantities have to be measured. In particular the angle γ
that is more sensitive to new physics contributions than β. We refer to [12]
and [22] for reviews of the methods relevant for this determination.

3.6. Unitarity triangle 2003 (MFV)

In a general MFV model the formulae (3.11)–(3.20) still apply with
S0(xt) replaced by the master function S(v). In particular as emphasized
in [65], S(v) could be negative resulting in η̄ < 0. As found in [7,65] this case
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is disfavoured but not yet excluded. Here we will only consider S(v) > 0.
We recall that in the absence of new CP violating phases, (3.20) determines
a universal angle β in the MFV models. Moreover we note that not only
(3.20) but also (3.11), (3.12) and (3.16) do not involve S(v) and are universal
within the MFV models. Using only them allows to construct a universal
unitarity triangle (UUT) common to all these models [6]. The apex of the
UUT is positioned within the larger ellipse in figure 4 as obtained recently
in an update of [55]. The results for various quantities of interest related to
this UUT are collected in Table I. A similar analysis has been done in [7].

TABLE I

Values for different quantities from the update of [55] λt = V ∗

ts
Vtd.

Strategy UUT SM

η̄ 0.361± 0.032 0.341 ± 0.028
¯̺ 0.149± 0.056 0.178 ± 0.046
sin 2β 0.715+0.037

−0.034 0.705+0.042
−0.032

sin 2α 0.03 ± 0.31 −0.19± 0.25
γ (67.5 ± 8.9)◦ (61.5 ± 7.0)◦

Rb 0.393± 0.025 0.390 ± 0.024
Rt 0.925± 0.060 0.890 ± 0.048
∆Ms (ps−1) 17.3+2.1

−1.3 18.3+1.7
−1.5

|Vtd| (10−3) 8.61 ± 0.55 8.24 ± 0.41
Imλt (10−4) 1.39 ± 0.12 1.31 ± 0.10

It should be stressed that any MFV model that is inconsistent with the
broader allowed region in figure 4 and the UUT column in Table I is ruled
out. We observe that there is little room for MFV models that in their
predictions for UT differ significantly from the SM. It is also clear that to
distinguish the SM from the MFV models on the basis of the analysis of
the UT presented above, will require considerable reduction of theoretical
uncertainties. Therefore for the near future the most precise determination
of the UUT will come from sin 2β measured through aψKS

and the ratio
∆Ms/∆Md as advocated in Section 3.2.

4. Relations from minimal flavour violation

4.1. Preliminaries

We have seen that an UUT could be constructed. In this construction
the relation between Rt and the ratio ∆Md/∆Ms, that does not depend on
Fr, played an important role. It is clear from the tables in Sections 2.5 and
2.8 that there are other interesting relations between branching ratios and
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various observables which similarly to UUT are independent of Fr. These
relations are very important for testing the general concept of MFV. In order
to illuminate the origin of the MFV relations in question we will now list
the formulae for most important decays in the MFV models. Because of
space limitations our presentation will be reduced to the minimum. Details
on these formulae can be found in [13,15,40,41] and references therein. The
numerical constants in the formulae below correspond to [35] and

sin2 θw = 0.231 , α =
1

128
, λ = 0.224 (4.1)

with the first two given in the MS scheme. They differ slightly from those
in [13, 15, 40, 41].

4.2. Basic formulae

4.2.1. The εK constraint

Similarly to (3.13) we have

η̄
[

(1 − ¯̺)A2ηQCD
2 S(v) + Pc(ε)

]

A2B̂K = 0.187, (4.2)

where Pc(ε) = 0.29 ± 0.07 and ηQCD
2 = 0.57 ± 0.01 as before.

4.2.2. B0
d,s − B̄0

d,s mixing

Within the MFV models ∆Ms,d are given as follows (q = d, s) [16]

∆Mq =
G2

F

6π2
ηQCD
B mBq(B̂qF

2
Bq

)M2
W |V ∗

tbVtq|2S(v), (4.3)

where ηQCD
B = 0.55 ± 0.01 [45, 61], implying (3.14)–(3.16) with S0(xt) in

(3.15) replaced by S(v).

4.2.3. K → πνν̄

The rare decays K+ → π+νν̄ and KL → π0νν̄ proceed through Z0-
penguin and box diagrams. As the required hadronic matrix elements can
be extracted from the leading semileptonic decays and other long distance
contributions turn out to be negligible [66], the relevant branching ratios
can be computed to an exceptionally high degree of precision [46–48].

The basic formulae for the branching ratios are given in MFV as follows

BR (K+ → π+νν̄) = 4.78 × 10−11
[

(ImFt)
2 + (ReFc + ReFt)

2
]

, (4.4)
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BR(KL → π0νν̄) = 2.09 × 10−10 (ImFt)
2 , (4.5)

where

Fc =
λc
λ
Pc(X) , Ft =

λt
λ5
X(v) , λi = V ∗

isVid (4.6)

and Pc(X) = 0.39±0.06 results from the internal charm contribution [46,47].
Imposing all existing constraints on the CKM matrix one finds in the

SM [66,67]

BR(K+ → π+νν̄) = (7.7 ± 1.1) × 10−11 ,

BR(KL → π0νν̄) = (2.6 ± 0.5) × 10−11 , (4.7)

where the errors come dominantly from the uncertainties in the CKM pa-
rameters. This should be compared respectively with the results of AGS
E787 Collaboration [68] and KTeV [69]

BR(K+ → π+νν̄) = (15.7+17.5
−8.2 ) × 10−11 ,

BR(KL → π0νν̄) < 5.9 × 10−7 . (4.8)

4.2.4. B → Xs,dνν̄

Theoretically clean [46,70] are also the inclusive decays B → Xs,dνν̄ for
which the branching ratios read

BR(B → Xqνν̄) = 1.58 × 10−5

[

BR(B → Xceν̄)

0.104

] [

0.54

f(z)

] |Vtq|2
|Vcb|2

X2(v) ,

(4.9)
where f(z) is a phase space factor for B → Xceν̄. The SM expectation

BR(B → Xsνν̄) = (3.5 ± 0.5) × 10−5 (4.10)

is to be compared with the 90% C.L ALEPH upper bound 6.4 × 10−4. The
exclusive channels are less clean but experimentally easier accessible with
the 90% C.L BaBar upper bound of 7.0 × 10−5.

4.2.5. KL → µ+µ−

The short distance contribution to the dispersive part of KL → µ+µ− is
given by [46,47]

BR(KL → µ+µ−)SD = 1.95 × 10−9

[

Reλc
λ

Pc(Y ) +
Reλt
λ5

Y (v)

]2

, (4.11)

where Pc(Y ) = 0.121 ± 0.012 [47]. Unfortunately due to long distance
contributions to the dispersive part of KL → µ+µ−, the extraction of
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BR(KL → µ+µ−)SD from the data is subject to considerable uncertain-
ties [71,72]. While the chapter on this extraction is certainly not closed, let
us quote the estimate of [71] that reads

BR(KL → µ+µ−)SD ≤ 2.5 × 10−9 (4.12)

to be compared with BR(KL → µ+µ−)SD = (0.8 ± 0.3) × 10−9 in the SM.
On the other hand the parity violating muon polarization asymmetry

∆LR in K+ → π+µ+µ− is substantially cleaner [73]. It is given at NLO
level by [74]

|∆LR| = r 1.78 × 10−3

∣

∣

∣

∣

Reλc
λ

Pc(Y ) +
Reλt
λ5

Y (v)

∣

∣

∣

∣

, (4.13)

where r is a phase factor that may depend on various experimental cuts.

4.2.6. Bq → µµ̄

Next, the branching ratios for the rare decays Bq → µ+µ− are given by

BR(Bq → µ+µ−) = τ(Bq)
G2

F

π
η2
Y

(

α

4π sin2 θW

)2

F 2
Bq
m2
µmBq |V ∗

tbVtq|2Y 2(v),

(4.14)
where ηY = 1.012 [47] are the short distance QCD corrections evaluated us-
ingmt ≡ mt(mt). In writing (4.14) we have neglected the terms O(m2

µ/m
2
Bq

)

in the phase space factor. In the SM one finds [75] (see Section 4.4)

BR(Bs → µµ̄) = (3.42±0.54)×10−9 , BR(Bd → µµ̄) = (1.00±0.14)×10−10 ,
(4.15)

where to reduce the hadronic uncertainties the experimental data for ∆Md

and as an example ∆Ms = (18.0 ± 0.5)/ps have been used. This should
be compared respectively with the 90% C.L. bounds from CDF(D0) and
Belle [76, 77]

BR(Bs → µµ̄) < 9.5 (16) × 10−7, BR(Bd → µµ̄) < 1.6 × 10−7. (4.16)

4.2.7. KL → π0e+e−

The rare decay KL → π0e+e− is dominated by CP-violating contribu-
tions. It has been recently reconsidered within the SM [78] in view of the
most recent NA48 data on KS → π0e+e− and KL → π0γγ [79] that allow
a much better evaluation of the indirectly (mixing) CP-violating and CP-
conserving contributions. The directly CP-violating contribution has been
know already at NLO for some time [80]. The CP-conserving part is found
to be below 3 × 10−12 [78].
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Generalizing the formula (33) in [78] to MFV models we obtain

BR(KL → π0e+e−)CPV = 10−12

[

Cmix + Cint

(

Imλt
10−4

)

+ Cdir

(

Imλt
10−4

)2
]

,

(4.17)
where

Cmix = (15.7 ± 0.3)|as|2 , |as| = 1.08+0.26
−0.21 , (4.18)

Cdir = 6.2 × 10−2(ỹ2
7A + ỹ2

7V ) , Cint = 0.34 ỹ7V

√

Cmix . (4.19)

Here

ỹ7V = P0 +
Y (v)

sin2 θw
− 4Z(v) + PEE(v) , ỹ7A = − 1

sin2 θw
Y (v) , (4.20)

where Imλt = Im(VtdV
∗
ts), P0 = 2.89 ± 0.06 [80] and PE is O(10−2). Con-

sequently the last term in ỹ7V can be neglected. The effect of new physics
contributions is mainly felt in ỹ7A as the corresponding contributions in ỹ7V

cancel each other to a large extent.
The present experimental bound from KTeV [81]

BR(KL → π0e+e−) < 2.8 × 10−10 (90%C.L.) (4.21)

should be compared with the SM prediction [78]

BR(KL → π0e+e−)SM = (3.2+1.2
−0.8) × 10−11 . (4.22)

4.2.8. ε′/ε

The formula for the CP-violating ratio ε′/ε of [82] generalizes to the
arbitrary MFV model as follows:

ε′

ε
= Imλt Fε′(v) , (4.23)

where

Fε′(v) = P0 + PX X(v) + PY Y (v) + PZ Z(v) + PE E(v) . (4.24)

The numerical values of the coefficients Pi can be found in [82]. They depend
strongly on the hadronic matrix elements of the relevant operators and the
value of αs. For instance for the non-perturbative parameters R6 = 1.2 and
R8 = 1.0 in [82] and αs(MZ) = 0.119 one has

P0 = 19.5, PX = 0.6 , PY = 0.5 , PZ = −12.4 , PE = −1.6 (4.25)



5646 A.J. Buras

with P0 and PZ originating dominantly in the matrix elements of the QCD
penguin Q6 and the electroweak penguin Q8, respectively. On the other
hand for R6 = 1.6, R8 = 0.8 and αs(MZ) = 0.121 one has

P0 = 28.6 , PX = 0.6 , PY = 0.6 , PZ = −10.3 , PE = −2.7 . (4.26)

On the experimental side the world average based on the latest results
from NA48 [83] and KTeV [84], and previous results from NA31 and E731,
reads

ε′/ε = (16.6 ± 1.6) × 10−4 (2003) . (4.27)

While several analyses of recent years within the SM find results that are
compatible with (4.27) it is fair to say, in view of large hadronic uncertainties
in the coefficients Pi, that the chapter on the theoretical calculations of ε′/ε
is far from being closed. For instance with mt = 167GeV and Imλt =
1.44 × 10−4 (see an example in Section 5.5) one finds in the SM ε′/ε =
17.4 × 10−4 and 32.2 × 10−4 for (4.25) and (4.26), respectively. The most
recent analysis with the relevant references is given in [82].

4.2.9. B → Xsγ and B → Xs gluon

These decays are governed by the magnetic–penguin operators

Q7γ =
e

8π2
mbs̄ασ

µν(1 + γ5)bαFµν , Q8G =
gs
8π2

mbs̄ασ
µν(1 + γ5)T

a
αβbβG

a
µν

(4.28)
originating in the diagrams of Fig. 2(d) with an on-shell photon and gluon,
respectively. Their Wilson coefficients are strongly affected by QCD cor-
rections [85, 86] coming dominantly from the mixing of Q7γ and Q8G with
current–current operators.

In the leading logarithmic approximation one has

BR(B → Xsγ) = 2.88×10−3

[

BR(B → Xceν̄)

0.104

] [

0.54

f(z)

] |Vts|2
|Vcb|2

|C(0)eff
7 (µb)|2 ,

(4.29)
where f(z) is the phase space factor in BR(B → Xceν̄e). The Wilson coef-

ficient C
(0)eff
7 (µb) is given by

C
(0)eff
7γ (µb) = −0.348D′(v) − 0.042E′(v) − 0.158 , (4.30)

where we have set µb = 5GeV and αs
(5)(MZ) = 0.118. The last term in this

formula comes from the mixing with the current–current operator Q2 and the
coefficients in front of the master functions come from the renormalization
group analysis. The small coefficient in front of E′(v) makes this function
subleading in this decay.
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The corresponding NLO formulae that include also higher order elec-
troweak effects [87] are very complicated and can be found in [88]. As
reviewed in [89–91], many groups contributed to obtain these NLO results,
in particular Christoph Greub, Mikolaj Misiak and their collaborators. See
also [92].

On the experimental side the world average resulting from the data by
CLEO, ALEPH, BaBar and Belle reads [18]

BR(B → Xsγ)Eγ>1.6GeV = (3.28+0.41
−0.36) × 10−4 . (4.31)

It agrees well with the SM result [88]

BR(B → Xsγ)
SM
Eγ>1.6GeV = (3.57 ± 0.30) × 10−4 . (4.32)

The B → Xs gluon decay is dominated by Q8G with C
(0)eff
8G given by

C
(0)eff
8G (µb) = −0.364E′(v) − 0.074 (4.33)

with the last term representing QCD renormalization group effect. The NLO
corrections have been calculated in [93]. Unfortunately, the remaining strong
renormalization scale dependence in the resulting branching ratio and the
difficulty in extracting it from the experiment, make these results not yet
useful at present.

4.2.10. B → Xsµ
+µ− and AFB(ŝ)

This decay is dominated by the operators

Q9V = (s̄b)V−A(µ̄µ)V , Q10A = (s̄b)V−A(µ̄µ)A . (4.34)

They are generated through the electroweak penguin diagrams of Fig. 2f and
the related box diagrams are needed mainly to keep gauge invariance. At
low

ŝ =
(pµ+ + pµ−)2

m2
b

, (4.35)

also the magnetic operator Q7γ plays a significant role.
At the NLO level [94, 95] the invariant dilepton mass spectrum is given

by
d/dŝΓ (b→ sµ+µ−)

Γ (b→ ceν̄)
=

α2

4π2

∣

∣

∣

∣

Vts
Vcb

∣

∣

∣

∣

2 (1 − ŝ)2

f(z)κ(z)
U(ŝ) , (4.36)

where

U(ŝ) = (1 + 2ŝ)
(

|C̃eff
9 (ŝ)|2 + |C̃10|2

)

+4

(

1 +
2

ŝ

)

|C(0)eff
7γ |2 + 12C

(0)eff
7γ Re C̃eff

9 (ŝ) (4.37)
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and C̃eff
9 (ŝ) is a function of ŝ that depends on the Wilson coefficient C̃9 and

includes also contributions from four quark operators. Explicit formula can
be found in [94, 95].

The Wilson coefficients C̃9 and C̃10 are given as follows

C̃9(µ) = P0 +
Y (v)

sin2 θw
− 4Z(v) + PEE(v), C̃10(µ) = − Y (v)

sin2 θw
(4.38)

with P0 = 2.60 ± 0.25 in the NDR scheme and PE = O(10−2). Note the

great similarity to (4.20). C̃9 and C̃10 are defined by

C9V (µ) =
α

2π
C̃9(µ) , C10A(µ) =

α

2π
C̃10(µ) . (4.39)

Of particular interest is the forward–backward asymmetry in B → Xsµ
+µ−.

It becomes non-zero only at the NLO level and is given in this approximation
by [96]

AFB(ŝ) = −3C̃10

[

ŝRe C̃eff
9 (ŝ) + 2C

(0)eff
7γ

]

U(ŝ)
(4.40)

with U(ŝ) given in (4.37). Similar to the case of exclusive decays [97], the
asymmetry AFB(ŝ) vanishes at ŝ = ŝ0 that in the case of the inclusive decay
considered is determined through

ŝ0Re C̃eff
9 (ŝ0) + 2C

(0)eff
7γ = 0 . (4.41)

AFB(ŝ) and the value of ŝ0 are sensitive to short distance physics and subject
to only very small non-perturbative uncertainties. Consequently, they are
particularly useful quantities to test the physics beyond the SM.

The calculations of AFB(ŝ) and of ŝ0 in the SM have recently been done
including NNLO corrections [98, 99] that turn out to be significant. In par-
ticular they shift the NLO value of ŝ0 from 0.142 to 0.162 at NNLO.

The most recent reviews summarizing the theoretical status can be found
in [28, 91]. On the experimental side the Belle and BaBar Collaborations
[100] reported the observation of this decay and of the Xse

+e− channel. The
90% C.L. ranges extracted from these papers [101] read

3.5 × 10−6 ≤ BR(B → Xsµ
+µ−) ≤ 10.4 × 10−6 , (4.42)

2.8 × 10−6 ≤ BR(B → Xse
+e−) ≤ 8.8 × 10−6 . (4.43)
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4.3. Model independent relations

We will now list a number of relations between various observables that
do not depend on the functions Fr(v) and consequently are universal within
the class of MFV models.

1. From (4.3), (4.9) and (4.14) we find [29]

∆Md

∆Ms
=

mBd

mBs

B̂d

B̂s

F 2
Bd

F 2
Bs

∣

∣

∣

∣

Vtd
Vts

∣

∣

∣

∣

2

, (4.44)

BR(B → Xdνν̄)

BR(B → Xsνν̄)
=

∣

∣

∣

∣

Vtd
Vts

∣

∣

∣

∣

2

, (4.45)

BR(Bd → µ+µ−)

BR(Bs → µ+µ−)
=

τ(Bd)

τ(Bs)

mBd

mBs

F 2
Bd

F 2
Bs

∣

∣

∣

∣

Vtd
Vts

∣

∣

∣

∣

2

(4.46)

that all can be used to determine |Vtd/Vts| without the knowledge of Fr(v) [6].
In particular, as already emphasized in Section 3, the relation (4.44) will offer
after the measurement of ∆Ms a powerful determination of the length of one
side of the unitarity triangle, denoted usually by Rt.

Out of these three ratios the cleanest is (4.45), which is essentially free
of hadronic uncertainties [70]. Next comes (4.46), involving SU(3) breaking
effects in the ratio of B-meson decay constants. Finally, SU(3) breaking in

the ratio B̂Bd
/B̂Bs enters in addition in (4.44). These SU(3) breaking effects

should eventually be calculable with high precision from lattice QCD.
Eliminating |Vtd/Vts| from the three relations above allows to obtain

three relations between observables that are universal within the MFV mod-
els. In particular from (4.44) and (4.46) one finds [75]

BR(Bs → µµ̄)

BR(Bd → µµ̄)
=
B̂d

B̂s

τ(Bs)

τ(Bd)

∆Ms

∆Md
, (4.47)

that does not involve FBq and consequently contains substantially smaller
hadronic uncertainties than the formulae considered above. It involves only
measurable quantities except for the ratio B̂s/B̂d that is known already now
from lattice calculations with respectable precision [18]:

B̂s

B̂d
= 1.00 ± 0.03 , B̂d = 1.34 ± 0.12 , B̂s = 1.34 ± 0.12 . (4.48)

With the future precise measurement of ∆Ms, the formula (4.47) will give a
very precise prediction for the ratio of the branching ratios BR(Bq → µµ̄).
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2. Next, combining (4.4) and (4.5), it is possible to derive a very accurate
formula for sin 2β that depends only on the K → πνν̄ branching ratios and
Pc(X) [29]:

sin 2β =
2rs

1 + r2s
, rs =

√
σ

√

σ(B1 −B2) − Pc(X)√
B2

, (4.49)

where σ = 1/(1 − λ2/2)2 and we have assumed X > 0. The corresponding
formula valid also for X < 0 is given in [65]. Here we have defined the
“reduced” branching ratios

B1 =
BR(K+ → π+νν̄)

4.78 × 10−11
, B2 =

BR(KL → π0νν̄)

2.09 × 10−10
. (4.50)

It should be stressed that sin 2β determined this way depends only on two
measurable branching ratios and on Pc(X) which is completely calculable
in perturbation theory. Consequently this determination is free from any
hadronic uncertainties and its accuracy can be estimated with a high degree
of confidence. With measurements of BR(K+ → π+νν̄) and BR(KL →
π0νν̄) with 10% accuracy a determination of sin 2β with an error of 0.05 is
possible.

Moreover, as in MFV models there are no phases beyond the CKM phase,
we also expect

(sin 2β)πνν̄ = (sin 2β)J/ψKS
, (sin 2β)φKS

≈ (sin 2β)J/ψKS
. (4.51)

with the accuracy of the last relation at the level of a few percent [102]. The
confirmation of these two relations would be a very important test for the
MFV idea. Indeed, in K → πνν̄ the phase β originates in the Z0 penguin
diagram, whereas in the case of aJ/ψKS

in the B0
d–B̄

0
d box diagram. In the

case of the asymmetry aJ/φKS
it originates also in B0

d–B̄
0
d box diagrams but

the second relation in (4.51) could be spoiled by new physics contributions
in the decay amplitude for B → φKS that is non-vanishing only at the one
loop level.

An important consequence of (4.49) and (4.51) is the following one. For
a given sin 2β extracted from aJ/ψKS

and BR(K+ → π+νν̄) only two values

of BR(KL → π0νν̄), corresponding to two signs of X, are possible in the full
class of MFV models, independent of any new parameters present in these
models [65]. Consequently, measuring BR(KL → π0νν̄) will either select
one of these two possible values or rule out all MFV models. The present
experimental bound on BR(K+ → π+νν̄) and sin 2β ≤ 0.80 imply in this
manner an absolute upper bound BR(KL → π0νν̄) < 4.9×10−10 (90% C.L.)
[65] in the MFV models that is by a factor of three stronger than the model
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independent bound [103] from isospin symmetry. However, as we will see in
Section 5.5, even stronger bound on BR(KL → π0νν̄) can be obtained once
the data on B → Xsµ

+µ− are taken into account.
3. It turns out that in most MFV models the coefficient C9V is only very

weakly dependent on new physics contributions. Consequently, as pointed
out in [41], a correlation between ŝ0 in AFB and BR(B → Xsγ) exists. It is
present in the ACD model discussed in Section 6 and in a large class of su-
persymmetric models discussed for instance in [28]. We show this correlation
in Fig. 5.

1.4 1.5 1.6 1.7 1.8
0.12

0.13

0.14

0.15

0.16

(BR(B → Xsγ) × 104)
1

2

ŝ 0

Fig. 5. Correlation between
√

BR(B → Xsγ) and ŝ0 [41]. The dots are the re-

sults in the ACD model (see Section 6) for 1/R = 200, 250, 300, 350, 400, 600 and

1000 GeV and the star denotes the SM value.

4. Very recently a correlation between the B → πK modes and BR(K+ →
π+νν̄) in a MFV new-physics scenario with enhanced Z0 penguins has been
pointed out in [58]. In Fig. 6 we show BR(K+ → π+νν̄) as a function of
the variable L̄ that is given entirely in terms of B → πK observables and
|Vub/Vcb|. For a general discussion of correlations between B → πK decays
and rare decays we refer to [58].
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Fig. 6. Correlation between BR(K+ → π+νν̄) and the B → πK variable L̄.
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5. Other correlations between various decays can be found in [53, 65,
104–106]. For instance there exists in addition to an obvious correlation
between K → πνν̄ and B → Xqνν̄ also a correlation between ε′/ε and rare
semileptonic B and K decays.

4.4. Model dependent relations

4.4.1. Bq → µµ̄ and ∆Mq

From (4.3) and (4.14) we derive [75]

BR(Bq → µµ̄) = 4.36 × 10−10 τ(Bq)

B̂q

Y 2(v)

S(v)
∆Mq , (q = s, d) . (4.52)

These relations allow to predict BR(Bs,d → µµ̄) in a given MFV model with
substantially smaller hadronic uncertainties than found by using directly the
formulae in (4.14). In particular using the formulae for the functions Y and
S in the SM model of Section 2.5, we find [75]

BR(Bs → µµ̄) = 3.42 × 10−9

[

τ(Bs)

1.46 ps

] [

1.34

B̂s

] [

mt(mt)

167GeV

]1.6 [

∆Ms

18.0/ps

]

,

(4.53)

BR(Bd → µµ̄) = 1.00 × 10−10

[

τ(Bd)

1.54 ps

] [

1.34

B̂d

] [

mt(mt)

167GeV

]1.6 [

∆Md

0.50/ps

]

.

(4.54)

Using mt(mt) = (167 ± 5)GeV, the lifetimes from [18], B̂q in (4.48),
∆Md = (0.503±0.006)/ps and taking as an example ∆Ms = (18.0±0.5)/ps,
we find the predictions for the branching ratios in question given in (4.15).
They are substantially more accurate than the ones found in the literature
in the past.

4.4.2. BR(K+
→ π+νν̄), ∆Md/∆Ms and β

In [47] an upper bound on BR(K+ → π+νν̄) has been derived within
the SM. This bound depends only on |Vcb|, X, ξ and ∆Md/∆Ms. With the
precise value for the angle β now available this bound can be turned into
a useful formula for BR(K+ → π+νν̄) [107] that expresses this branching
ratio in terms of theoretically clean observables. In any MFV model this
formula reads:

BR(K+ → π+νν̄) = κ̄+|Vcb|4X2(v)

×
[

σR2
t sin2 β +

1

σ

(

Rt cos β +
λ4Pc(X)

|Vcb|2X(v)

)2
]

,(4.55)
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where σ = 1/(1 − λ2/2)2, κ̄+ = 7.54 × 10−6, Pc(X) = 0.39 ± 0.06 and Rt is
given in (3.16). This formula is theoretically very clean and does not involve
hadronic uncertainties except for ξ and to a lesser extent in |Vcb|. We will
use it in Section 6.

4.4.3. K+
→ π+νν̄, KL → π0νν̄ and KL → µ+µ−

From (4.4), (4.5) and (4.11) it is possible to derive a relation between
the three decays in question [10] (P̄c = Pc(1 − λ2/2))

B1 = B2 +

[

(P̄c(Y ) +
√

B3)
X(v)

Y (v)
− P̄c(X)

]2

, B3 =
BR(KL → µ+µ−)SD

1.95 × 10−9

(4.56)
with B1 and B2 defined in (4.50). Consequently

X(v)

Y (v)
=
P̄c(X) +

√
B1 −B2

P̄c(Y ) +
√
B3

, (4.57)

where the signs in case of ambiguities have been chosen as in the SM.

5. Procedures for the determination of master functions

5.1. Preliminaries

The idea to determine the values of the master functions in a model
independent manner is not new. The first model independent determina-
tion of S(v) has been presented in [108], subsequently in [109] and very
recently in [55]. The corresponding analyses for X(v) and Y (v) can be
found in [65, 105] and [7, 110], respectively. To my knowledge, no direct de-
termination of the remaining four functions can be found in the literature,
but the functions Z(v), D′(v) and E′(v) can be in principle extracted from
the model independent analyses that use the Wilson coefficients instead of
master functions [28]. The function E(v) is very difficult to determine as we
will see below.

In what follows we will assume that the UUT has been found so that
the universal CKM matrix is known. Moreover, we will assume first that all
non-perturbative factors like B̂K , FBq have been calculated with sufficient
precision. Subsequently we will relax this assumption.

5.2. Ideal scenario

With the assumptions just made, it is straightforward to determine the
seven master functions and simultaneously test the general idea of MFV.
Here we go:
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Step 1:

S(v) can be extracted from εK , ∆Md and ∆Ms. Finding the same value
of S(v) in these three cases, would be a significant sign for the dominance
of MFV in ∆F = 2 transitions.

Step 2:

X(v) can be extracted from K+ → π+νν̄, KL → π0νν̄, B → Xsνν̄ and
B → Xdνν̄. Again, if MFV is the whole story in the ∆F = 1 decays with νν̄
in the final state, the same value of X(v) should result in these four cases.

Step 3:

Y (v) can be extracted from the short distance dispersive part of KL →
µ+µ−, the parity violating asymmetry ∆LR and the branching ratios Bd,s →
µ+µ−. The comments are as in Step 2 with νν̄ replaced by µµ̄.

Step 4:

Having determined X(v) and Y (v), we can extract the values of Z(v)
and E(v) by studying simultaneously KL → π0e+e− and ε′/ε.

Step 5:

With all this information at hand we can finally find the values of D′(v)
and E′(v) from a combined analysis of B → Xsγ, B → Xs gluon and
B → Xsµ

+µ−. To this end the branching ratio for B → Xsγ and the
forward–backward asymmetry AFB in B → Xsµ

+µ− are most suitable.
This scenario is rather unrealistic for the present decade as the theoret-

ical uncertainties in several of the observables are presently large and their
precise measurements will still take some time. This is in particular the
case for KL → µ+µ−, KL → π0e+e−, B → Xs gluon and ε′/ε. Let us then
investigate, whether by making plausible assumptions about the importance
of various master functions, we can determine the values of all the relevant
functions using only observables that are theoretically rather clean.

5.3. Realistic scenario

The idea here is to assume as in Section 2.8 that the dominant new
physics contributions reside only in five functions C(v), Z(v), S(v), D′(v)
and E′(v) and to set the remaining ones to the SM values. Here we go again
but in a somewhat different order:

Step 1:

We determine X(v) from K+ → π+νν̄, KL → π0νν̄, B → Xsνν̄ and
B → Xdνν̄ as in the Step 2 of the previous scenario. Taking Bνν̄ from the
SM, we can determine C(v). All these decays are theoretically clean and
the success of this determination is in the hands of the experimentalists and
their sponsors.
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Step 2:

The knowledge of C(v) together with Bµµ̄ from the SM, allows to de-
termine Y (v). Similar we could take D(v) from the SM to find the value of
Z(v) but this is not necessary as seen in the Step 5 below.

Step 3:

From the ratio BR(Bs → µ+µ−)/∆Ms, that is theoretically rather clean,
we can determine the value of Y 2(v)/S(v) by means of (4.52) and conse-
quently S(v).

Step 4:

Neglecting the small contribution of E′(v) to B → Xsγ we can determine
D′(v).

Step 5:

Having Y (v) and D′(v) at hand we can next extract Z(v) from AFB, in
particular from the value of ŝ0.

E(v) and E′(v) could then be determined from ε′/ε and B → Xs gluon,
respectively. However, these determinations are rather unrealistic in view of
the subdominant role of E(v) in ε′/ε, large hadronic uncertainties in Pr in
(4.24), very large renormalization scheme dependence in BR(B → Xs gluon)
and great difficulty in extracting this branching ratio from the data.

5.4. Sign ambiguities

Needless to say, in the procedures outlined above we did not discuss the
sign ambiguities in the determination of master functions from branching
ratios. These ambiguities can easily be resolved when several quantities are
considered simultaneously. For instance while KL → π0νν̄ and B → Xsνν̄
are not sensitive to the sign of X(v), BR(K+ → π+νν̄) is substantially
smaller for negative X(v). Similarly AFB, BR(B → Xsl

+l−), KL → µ+µ−,
∆LR, KL → π0e+e− and ε′/ε are sensitive to the signs of the master func-
tions. These aspects have been already partially investigated in [58,65] and
it will be of interest to return to them in the future when more data are
available.

5.5. An example

In view of limited data on FCNC processes a numerical analysis along
the steps suggested above will not be done here. Instead we will present an
example. To this end let note that from the analyses in [28, 55, 58] one can
infer the upper bounds S(v) ≤ 3.8 and

X(v) ≤ 2.7 , Y (v) ≤ 2.2 , Z(v) ≤ 1.9 (5.1)

to which I would not like to attach any confidence level. The bounds in
(5.1) follow from the Belle and BaBar data [100] on B → Xsl

+l− under the
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assumption that the new physics contributions to ∆F = 1 box diagrams
and the function D can be neglected [58]. Let us then calculate the values
of various branching ratios assuming the maximal values for the functions
X, Y and Z in (5.1).

The CKM parameters are fixed in the following manner. We set λ =
0.224, |Vcb| = 0.0415 and sin β = 0.40. We next assume that ∆Ms = 18.0/ps
and use (3.16) with ξ = 1.24 to find UUT with (see (3.10))

Rt = 0.91 , Rb = 0.40 , ¯̺ = 0.166 , η̄ = 0.364 ,
|Vts|
|Vcb|

= 0.983 , (5.2)

|Vtd| = 8.55 × 10−3 , Imλt = 1.44 × 10−4 , Reλt = −3.14 × 10−4 . (5.3)

TABLE II

Example of branching ratios for rare decays in the MFV and the SM.

Branching Ratios MFV SM

BR(K+ → π+νν̄) × 1011 19.1 8.0

BR(KL → π0νν̄) × 1011 9.9 3.2

BR(KL → µ+µ−)SD × 109 3.5 0.9

BR(KL → π0e+e−)CPV × 1011 4.9 3.2

BR(B → Xsνν̄) × 105 11.1 3.6

BR(B → Xdνν̄) × 106 4.9 1.6

BR(Bs → µ+µ−) × 109 19.4 3.9

BR(Bd → µ+µ−) × 1010 6.1 1.2

The result of this exercise is shown in column MFV of Table II where
also the SM results with X = 1.53, Y = 0.98 and Z = 0.68 are shown. In
the case of Bq → µ+µ− we have used central values of FBq and τ(Bq) [18].
While somewhat higher values of branching ratios can still be obtained when
the input parameters are varied, this exercise shows that enhancements of
branching ratios in MFV by more than factors of six relative to the SM
should not be expected. Of interest is the high value of BR(KL → µ+µ−)SD.
It indicates that this decay could give a strong upper bound on the function
Y if the hadronic uncertainties could be put under control [7]. Even a better
example is ε′/ε [104]. With the matrix elements in (4.25) we could get very
strong upper bounds on the functions X, Y and Z as with the values in
(5.1) we find ε′/ε = −2.4×10−4 in total disagreement with the experimental
data in (4.27). In the SM we find ε′/ε = 17.4 × 10−4. Yet, with the matrix
elements in (4.26) the MFV scenario considered here gives ε′/ε = 16.1×10−4
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in perfect agreement with (4.27). This example demonstrates that until the
values of Pr in ε′/ε are put under control, this ratio cannot be efficiently
used as a constraint on MFV models.

A similar analysis in a different spirit and a different set of input param-
eters prior to the data of [100] can be found in [7].

6. MFV and universal extra dimensions

6.1. Introduction

Let us next discuss the master functions and their phenomenological
implications in a specific MFV model: the SM model with one extra universal
dimension. This is the model due to Appelquist, Cheng and Dobrescu (ACD)
[111] in which all the SM fields are allowed to propagate in all available
dimensions. In this model the relevant penguin and box diagrams receive
additional contributions from Kaluza–Klein (KK) modes and from the point
of view of FCNC processes the only additional free parameter relative to the
SM is the compactification scale 1/R. Extensive analyses of the precision
electroweak data, the analyses of the anomalous magnetic moment of the
muon and of the Z → bb̄ vertex have shown the consistency of the ACD
model with the data for 1/R ≥ 250GeV. We refer to [40,41] for the relevant
papers.

The question then arises whether such low compactification scales are
still consistent with the data on FCNC processes. This question has been
addressed in detail in [40, 41, 112]. The answer is given below.

6.2. Master functions in the ACD model

The master functions in the ACD model become functions of xt and 1/R:
Fr(xt, 1/R). They have been calculated in [40, 41] with the results given in
Table III. Our results for the function S have been confirmed in [113]. For
1/R = 300 GeV, the functions S, X, Y , Z are enhanced by 8%, 10%, 15%
and 23% relative to the SM values, respectively. The impact of the KK
modes on the function D and the ∆F = 1 box functions is negligible in
accordance with our assumptions in Section 2.8.

The most interesting are very strong suppressions of D′ and E′, that
for 1/R = 300GeV amount to 36% and 66% relative to the SM values,
respectively. However, the effect of these suppressions is softened in the rel-
evant branching ratios through sizable additive QCD corrections, discussed
already in Section 4.
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6.3. The impact of the KK modes on specific decays

6.3.1. The impact on the unitarity triangle

Here the function S plays the crucial role. Consequently the impact of
the KK modes on the UT is rather small. For 1/R = 300GeV, |Vtd|, η̄ and γ
are suppressed by 4%, 5% and 5◦, respectively. It will be difficult to see these
effects in the (¯̺, η̄) plane. On the other hand a 4% suppression of |Vtd| means
a 8% suppression of the relevant branching ratio for a rare decay sensitive to
|Vtd| and this effect has to be taken into account. Similar comments apply
to η̄ and γ. As we work now in a specific model, we follow here a different
philosophy than in the model independent analysis of the previous sections
and determine the CKM parameters using also the S function, like in the
analysis of Section 3.

6.3.2. The impact on rare K and B decays

Here the dominant KK effects enter through the function C or equiva-
lently X and Y , depending on the decay considered. In Table IV we show
seven branching ratios as functions of 1/R for central values of all remaining
input parameters. For 1/R = 300GeV the following enhancements relative
to the SM predictions are seen: K+ → π+νν̄ (9%), KL → π0νν̄ (10%),
B → Xdνν̄ (12%), B → Xsνν̄ (21%), KL → µµ̄ (20%), Bd → µµ̄ (23%) and
Bs → µµ̄ (33%). The SM values in Table IV differ slightly from those given
in the example of Table II due to a different choice of the CKM parameters
in [40].

6.3.3. An upper bound on BR(K+
→ π+νν̄) in the ACD model

The enhancement of BR(K+ → π+νν̄) in the ACD model is interesting
in view of the results from the BNL E787 Collaboration [68] in (4.8) with
the central value by a factor of 2 above the SM expectation. Even if the
errors are substantial and this result is compatible with the SM, the ACD
model with a low compactification scale is closer to the data.

TABLE III

Values for the functions S, X , Y , Z, E, D′, E′, C and D.

1/R [GeV] S X Y Z E D′ E′ C D

250 2.66 1.73 1.19 0.89 0.33 0.19 0.02 1.00 −0.47

300 2.58 1.67 1.13 0.84 0.32 0.24 0.07 0.95 −0.47

400 2.50 1.61 1.07 0.77 0.30 0.30 0.12 0.89 −0.47

SM 2.40 1.53 0.98 0.68 0.27 0.38 0.19 0.80 −0.48
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TABLE IV

Branching ratios for rare decays in the ACD model and the SM.

1/R 250 GeV 300 GeV 400 GeV SM

BR(K+ → π+νν̄) × 1011 8.36 8.13 7.88 7.49

BR(KL → π0νν̄) × 1011 3.17 3.09 2.98 2.80

BR(KL → µ+µ−)SD × 109 1.00 0.95 0.88 0.79

BR(B → Xsνν̄) × 105 4.56 4.26 3.95 3.53

BR(B → Xdνν̄) × 106 1.70 1.64 1.58 1.47

BR(Bs → µ+µ−) × 109 5.28 4.78 4.27 3.59

BR(Bd → µ+µ−) × 1010 1.41 1.32 1.22 1.07

In order to find the upper bound on BR(K+ → π+νν̄) in the ACD
model we use the formula (4.55) with X(v) given in Table III and |Vcb| ≤
0.0422, Pc(X) < 0.47, sin β = 0.40 and mt < 172 GeV. Here we have
set sin 2β = 0.734, its central value, as BR(K+ → π+νν̄) depends very
weakly on it. The result of this exercise is shown in Table V. We give there
BR(K+ → π+νν̄)max as a function of ξ and 1/R for two different values of
∆Ms. We observe that for 1/R = 250 GeV and ξ = 1.30 the maximal value
for BR(K+ → π+νν̄) in the ACD model is rather close to the central value
in (4.8).

TABLE V

Upper bound on BR(K+ → π+νν̄) in units of 10−11 for different values of ξ, 1/R
and ∆Ms = 18/ps (21/ps) from [40].

ξ 1/R = 250 GeV 1/R = 300 GeV 1/R = 400 GeV SM

1.30 12.7∗ (11.3∗) 12.0∗ (10.7) 11.3∗ (10.1) 10.8 (9.3)

1.25 12.0 (10.7) 11.4 (10.2) 10.7 (9.6) 10.3 (8.8)

1.20 11.3 (10.1) 10.7 (9.6) 10.1 (9.1) 9.7 (8.4)

1.15 10.6 (9.5) 10.1 (9.0) 9.5 (8.5) 9.1 (7.9)

6.3.4. The impact on B → Xsγ and B → Xs gluon

Due to strong suppressions of the functions D′ and E′ by the KK modes,
the B → Xsγ and B → Xs gluon decays are considerably suppressed com-
pared to SM estimates. For 1/R = 300GeV, BR(B → Xsγ) is suppressed
by 20%, while BR(B → Xs gluon) even by 40%. The phenomenological rel-
evance of the latter suppression is unclear at present as BR(B → Xs gluon)
suffers from large theoretical uncertainties and its extraction from experi-
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ment is very difficult. The suppression of BR(B → Xsγ) in the ACD model
has already been found in an approximate calculation of [114].

In Fig. 7 we compare BR(B → Xsγ) in the ACD model with the ex-
perimental data and with the expectations of the SM. The shaded region
represents the data in (4.31) and the upper (lower) dashed horizontal line are
the central values in the SM for mc/mb = 0.22 (mc/mb = 0.29). The solid
lines represent the corresponding central values in the ACD model. The
theoretical errors, not shown in the plot, are for all curves roughly ±10%
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Fig. 7. The branching ratio for B → Xsγ as a function of 1/R. See text.

We observe that in view of the sizable experimental error and consider-
able parametric uncertainties in the theoretical prediction, the strong sup-
pression of BR(B → Xsγ) by the KK modes does not yet provide a powerful
lower bound on 1/R and the values 1/R ≥ 250GeV are fully consistent with
the experimental result. Once the uncertainty due to mc/mb and the ex-
perimental uncertainties are reduced, BR(B → Xsγ) may provide a very
powerful bound on 1/R that is substantially stronger than the bounds ob-
tained from the electroweak precision data.

6.3.5. The impact on AFB(ŝ)

In Fig. 8(a) we show the normalized forward–backward asymmetry, given
in (4.40), for 1/R = 250GeV. The dependence of ŝ0 on 1/R is shown in
Fig. 8(b). We observe that the value of ŝ0 is considerably reduced relative
to the SM result obtained by including NNLO corrections [28, 98, 99]. This
decrease, as seen in Fig. 5, is related to the decrease of BR(B → Xsγ).
For 1/R = 300GeV we find the value for ŝ0 that is very close to the NLO
prediction of the SM. This result demonstrates very clearly the importance
of the calculations of the higher order QCD corrections, in particular in
quantities like ŝ0 that are theoretically clean. We expect that the results
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in Figs. 8 (a) and (b) will play an important role in the tests of the ACD
model in the future.
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Fig. 8. (a) Normalized forward–backward asymmetry in the SM (dashed line) and

ACD for R−1 = 250 GeV. (b) Zero of the forward backward asymmetry AFB.

6.4. Concluding remarks

The analysis of the ACD model discussed above shows that all the present
data on FCNC processes are consistent with 1/R as low as 250GeV, implying
that the KK particles could in principle be found already at the Tevatron.
Possibly, the most interesting results of our analysis is the enhancement of
BR(K+ → π+νν̄), the sizable downward shift of the zero (ŝ0) in the AFB

asymmetry and the suppression of BR(B → Xsγ).
The nice feature of this extension of the SM is the presence of only

one additional parameter, the compactification scale. This feature allows a
unique pattern of various enhancements and suppressions relative to the SM
expectations. We would like to emphasize that violation of this pattern by
the future data will exclude the ACD model. For instance a measurement
of ŝ0 that is higher than the SM estimate would automatically exclude this
model as there is no compactification scale for which this could be satisfied.
Whether these enhancements and suppressions are required by the data or
whether they exclude the ACD model with a low compactification scale, will
depend on the precision of the forthcoming experiments and the efforts to
decrease the theoretical uncertainties.

7. Summary

In these lectures we have discussed the class of models with MFV as
defined in [6]. See Section 2 for details. While these models, including the
SM, were with us already for many years, we are only beginning to put
them under decisive tests. We have emphasized here the parametrization
of MFV models in terms of master functions [9, 10] that has been already
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efficiently used within the SM since 1990. This should be contrasted with the
formulation in terms of Wilson coefficients of certain local operators as done
for instance in [27,28]. While the latter formulation involves scales as low as
O(mb) and O(1GeV), the former one exhibits more transparently the short
distance contributions at scales O(MW ,mt) and higher. The formulation
presented here has also the advantage that it allows to formulate the B and
K decays in terms of the same building blocks, the master functions. This
allows to study transparently the correlations between not only different
B or K decays but also between B and K decays. This clearly is much
harder when working directly with the Wilson coefficients. In particular
the study of the correlations between K and B decays is very difficult as
the Wilson coefficients in K and B decays, with a few exceptions, involve
different renormalization scales. I believe that the present formulation will
be more useful when the data on all relevant decays will be available.

We have also compared briefly our definition of MFV to a slightly more
general MFV framework developed in [7]. This comparison is given in Sec-
tion 2.3. In particular in the latter framework the new physics contributions
cannot be always taken into account by simply modifying the master func-
tions as done in our approach. As a result some of the correlations present
in our approach are not present there. Only time will show which of these
two frameworks gives a better description of the data.

We have outlined various procedures for a model independent determi-
nation of the master functions. While such an approach cannot replace the
direct calculation of master functions in a given model, it may help to test
the general concept of MFV. In this context of particular interest are rela-
tions between various observables that do not involve the master functions at
all. These relations, if violated, would imply new sources of flavour violation
without the need for precise knowledge of Fr.

At present most of the experimental data that we have to our disposal,
are consistent with MFV but this information is still rather limited. On the
other hand there are at least two pieces of data that could point towards
the importance of new operators, new sources of flavour violation and in
particular of CP violation.

These are:

• The violation of the second relation in (4.51) as seen by Belle [115]
but not BaBar [116]. A subset of papers discussing this issue is given
in [117].

• The B → πK puzzle: L̄ in Fig. 6 is required by the B → πK data
to be larger than 1.8, whereas the MFV correlation between B → πK
and B → Xsµ

+µ− indicates L̄ < 1.1 [58]. If confirmed with higher
precision, this result would imply physics beyond MFV.
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Only time will show whether these findings will require to go beyond
MFV.

We have also presented the results of an explicit calculation of master
functions in the SM with one additional universal extra dimension. The
dependence of Fr on a single new parameter, the compactification radius R,
allowed to predict uniquely the signs of the KK contribution to Fr. This
will allow in the future to test this model when Fr will be extracted from
the data.

Our story of the Minimal Flavour Violation is approaching the end. I
hope I have convinced some readers that this framework is a very good start-
ing point for going beyond the Standard Model. We should know already in
the coming years whether indeed the description of all FCNC processes in
terms of seven or even only four master functions will survive all future tests.
In this spirit it will be exciting to follow the experimental developments and
to see whether all the MFV correlations between various observables are
confirmed by the future experimental findings.

I would like to thank the organizers for inviting me to such a wonderful
school and most enjoyable atmosphere. I also thank Stefan Recksiegel, Felix
Schwab and Andreas Weiler for comments on the manuscript and Frank
Krüger for useful discussions. The work presented here has been supported
in part by the German Bundesministerium für Bildung und Forschung under
the contract 05HT1WOA3 and the DFG Project Bu. 706/1-2.
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