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∗

Andrzej Czarnecki

Department of Physics, University of Alberta

Edmonton, AB T6G 2J1, Canada

William J. Marciano

Physics Department, Brookhaven National Laboratory

Upton, NY 11973, USA

and Arkady Vainshtein

William I. Fine Theoretical Physics Institute, University of Minnesota

116 Church St. SE, Minneapolis, MN 55455, USA

(Received October 24, 2003)

Hadronic electroweak corrections to the muon anomalous magnetic mo-
ment (g − 2) are reviewed. Emphasis is on clarification of discrepancies
among various published studies. A theorem on non-renormalization of the
transversal part of a correlator of two vector currents and an axial current
is reviewed and its consequences in the form of superconvergent sum rules
are discussed.
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1. Introduction

The subject of this paper is a class of two-loop electroweak contributions
to the muon g− 2 containing a fermion triangle along with a virtual photon
and Z boson, as shown in Fig. 1. In the standard model all charged fermions
contribute to the triangle loop. Individual contributions of fermions lighter
than the Z boson are enhanced by large logarithms ln(MZ/m), where m
denotes the mass of the fermion in the loop or of the muon, whichever is
heavier. Those large logarithms were first found in [1] where the diagrams
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in Fig. 1 where evaluated only for leptons in the triangle loop. However, it
was pointed out in [2] and explicitly shown in [3] that such logarithms cancel
in sums over all fermions of a given generation (as long as m ≪ MZ for all
fermions in the generation). The source of this cancellation can be traced
back to the cancellation of anomalies, given by the same fermionic triangles,
within a given generation. It is required for renormalizability.

µ

γ

γ Z

f

Fig. 1. Effective Zγγ∗ coupling induced by a fermion triangle, contributing to aEW
µ

.

Some subtlety here is that the anomaly cancellation refers to the longi-
tudinal part of the axial Z boson current, while both transversal and longi-
tudinal parts of the fermionic triangle contribute to g−2. At the level of free
quarks the cancellation is, of course, explicit, so the only question is whether
it can be spoiled by strong interactions. Since ln MZ arises from the loop mo-
menta much larger than the hadronic scale ΛQCD perturbative QCD should
provide the answer. For the longitudinal part the Adler–Bardeen theorem [4]
guarantees the absence of gluonic corrections governed by αs(MZ). We will
describe below why this is also true for the transversal part confirming the
cancellation of ln MZ within a generation.

For the light quark loops strong interactions become essential at the
range of loop momenta on the order of hadronic scale. Not only is αs ∼ 1
but also nonperturbative phenomena defining hadron masses are crucial in
this range. Namely, these dynamical phenomena — not the current masses
of light quarks — define effective infrared cutoff in the logarithmic integrals.
While an exact calculation in this range is not possible, in the paper [3]
(CKM) a crude approximation was used: “constituent masses” of 300 MeV
assigned to quarks u, d and 500 MeV to the quark s played the role of the
infrared cutoff. The contribution of the first two generations of fermions was
found to be

∆aCKM
µ (e, u, d;µ, c, s) =

GF√
2

m2
µ

8π2

α

π

[

−6 ln
(mumc)

4/3

(mdms)1/3m2
µ

−
49

3
+

8π2

9

]

≃ −8.3 × 10−11 (with mc = 1.3 GeV) . (1)
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Some uncertainty was assigned to this result, but the cancellation of ln MZ ,
present in that model, was believed to be rigorously valid.

Around the same time the paper [5] (PPR) appeared, in which the
fermion triangle contributions of Fig. 1 were also studied. The result of
the PPR paper for the first two generations was

∆aPPR
µ (e, u, d;µ, c, s) =

GF√
2

m2
µ

8π2

α

π

[

−
14

3
ln

M2
Z

m2
µ

+ 4 ln
M2

Z

m2
c

−
107

9
+

8π2

9

]

≃ −8.7 × 10−11. (2)

This calculation was done in the chiral limit, so that the u, d, s masses were
replaced by mµ in (2), just like the electron mass. The MZ dependence
of the logarithms would cancel if the first coefficient (−14/3) were replaced
by −12/3 = −4. We have argued that −4 is indeed the correct coefficient
and that the factor −14/3 arises due to an incomplete accounting of u, d, s
contributions in Eq. (20) in [5].

Since the numerical values of (1) and (2) are very similar, and since
analytical results in [5] were given for individual flavors and not for their
sum, the presence of a residual ln MZ in the final result of [5] was incon-
spicuous. The difference was first pointed out by Mingxing Luo in a private
communication to W. Marciano.

More recently, the authors of [5] together with M. Knecht have revisited
that issue in a detailed study [6]. They maintained the finding of [5] and
argued that the cancellation of ln MZ in [3] is a “spurious” result of the naive
constituent quark model. If the conclusion of [6] were correct, it would call
into question the validity of QCD studies in a variety of contexts, since it
suggests that low energy strong dynamics may influence very short distance
phenomena, a violation of the basic tenet of asymptotic freedom.

On the other hand, with respect to large distances, the analyses in [5,
6] correctly emphasize differences in the hadronic dynamics of longitudinal
and transversal parts of quark triangles. These differences are not properly
accounted for by approximation with constituent masses of light quarks.
Moreover, constituent masses break the chiral structure of the fermion loops.

The above challenge prompted us to reanalyze the triangle contributions
to g − 2 in [7]. We believe to have located the source of the error in [6];
our arguments are summarized in this text. We also address some questions
raised after [7] was published. Let us stress that the discrepancy in question
is not relevant for an interpretation of the present g − 2 experiment, whose
design accuracy is ±40× 10−11. This is an academic dispute par excellence.
However, its clarification is important, especially if our community is to
determine the much more difficult hadronic three-loop light-by-light effects
that limit the accuracy of the standard model prediction for g − 2.



5672 A. Czarnecki, W.J. Marciano, A. Vainshtein

2. Hadronic triangle diagrams

Some details of the virtual fermion triangle are shown in Fig. 2. For the
determination of the muon anomalous magnetic moment, we are interested
in the Z∗ → γ∗ transition between virtual Z and γ in the presence of the ex-
ternal magnetic field to first order in this field. Moreover, the magnetic field
is constant so Z∗ and γ∗ carry the same momentum q. In this approxima-
tion, but including all effects of strong interactions in the quark loop (such as
gluon exchanges and non-perturbative effects), the amplitude of the Z∗−γ∗

transition Tµν(q) can be parametrized using two Lorentz-invariant functions
of the external momentum q,

Tµν(q) =
e

4π2

[

wT(q2)
(

−q2F̃µν +qµqσF̃σν−qνq
σF̃σµ

)

+ wL(q2) qνq
σF̃σµ

]

.

(3)

Here, F̃µν = (1/2)εµνγδF
γδ denotes the dual of the external electromagnetic

field tensor. The structure (3) is obtained in the following way. We construct
Tµν which is a pseudo-tensor under Lorentz transformations using the vector

qµ and the pseudo-tensor F̃µν . From these objects we can construct three

structures: F̃µν , qµqσF̃σν , and qνq
σF̃σµ. In addition, Tµν must be consistent

with electromagnetic current conservation, qµTµν = 0. This leaves us with
two independent structures and we group them in such a way that one is
transversal and the other longitudinal with respect to qν .

external magnetic field

γ Zf

γµ γνγ5 q

Fig. 2. Virtual fermion loop with structure of couplings and external momentum.

The existence of the longitudinal part stems from the axial ABJ anomaly
[9] which in fact exactly determines wL(q2) in the chiral limit of massless
fermions f ,

qνTµν =
e

4π2
wL(q2)q2qσF̃σµ . (4)

Comparing this with the axial anomaly we find

wL(q2) = −
2

q2
2I3

f NfQ2
f ≡

2

Q2
2I3

f NfQ2
f , (5)
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where Qf and I3
f are the electric charge and the third component of weak

isospin projection while Nf accounts for the number of colors in the case of
quarks and equals one for leptons. There are no corrections to this result in
the limit mf = 0, neither perturbative — due to Adler–Bardeen theorem [4],
nor nonperturbative — due to ’t Hooft consistency condition [10].

There is no such strong result for wT, but there is a very useful theorem
proven by Vainshtein [8]. It states that for massless fermions, the following
relation holds to all orders of perturbation theory:

2wT(q2) = wL(q2) (for mf = 0) . (6)

There are nonperturbative corrections to this result which are given by pow-
ers of Λ2

QCD/Q2 but no perturbative ones. One way to prove Vainshtein’s
theorem is to consider the imaginary part of Tµν . The crucial point is that
Im Tµν is symmetric under µ ↔ ν, q ↔ −q. Indeed, since Im Tµν is given by
convergent diagrams, we can freely use the anti-commutation of γ5 to move
it from the axial vertex γνγ5 to the vector one, γµ. In the limit mf = 0, this
involves commuting γ5 with an even number of γ matrices, no matter how
many gluon emissions occur on the way.

Thus, we find

Im
[

wT(q2)
(

−q2F̃µν + qµqσF̃σν − qνq
σF̃σµ

)

+ wL(q2) qνq
σF̃σµ

]

∝ qµqσF̃σν + qνq
σF̃σµ . (7)

This is possible only if

2 Im wT = Im wL = const δ(q2) . (8)

Only with such a form for Im wT,L(q2), ImTµν has no terms antisymmetric
in µ ↔ ν. The coefficient of the delta-function in Eq. (8) is fixed to be
2π × 2I3

f NfQ2
f by the exact form of wL in (5). Both wT(q2) and wL(q2)

are analytical functions decreasing at large q2. It means that they satisfy
unsubtracted dispersion relations

wT,L(q2) =
1

π

∞
∫

0

ds
Im wT,L(s)

s − q2
, (9)

which when combined with Eq. (8) for imaginary parts implies relation (6)
for the real parts as well.

Note that the real part of Tµν contains an antisymmetric term F̃µν . In
terms of diagrammatic calculations it arises from counterterms fixed by the
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conservation of the vector current. When the Pauli-Vilars regularization is
used these counterterms are given by heavy regulator loops.

To summarize, we now know that in the chiral limit mf = 0, the longi-
tudinal function wL is exactly given by Eq. (5) and the transversal function
wT is known up to nonperturbative corrections,

wT =
2I3

f NfQ2
f

Q2
+ non-perturbative corrections . (10)

At this point we can apply our findings to an analysis of logarithmic con-
tributions ln MZ to g − 2. We will use the fact that Eqs. (5) and (10) rig-
orously determine the large Q2 asymptotics of wL,T ; the non-perturbative
corrections to wT, to be discussed below, are suppressed by extra powers of
Λ2

QCD/Q2 and do not influence ln MZ terms. Corrections due to deviations

from the chiral limit are also suppressed by powers of mf/Q.
How do wL and wT enter the g−2 contribution of the diagrams in Fig. 1?

It was shown in [7] that for a determination of ln MZ terms we can use the
following simple representation:

∆aEW
µ ≃

α

π

Gµ m2
µ

8π2
√

2

∞
∫

m2
µ

dQ2

(

wL +
m2

Z

m2
Z + Q2

wT

)

. (11)

Two points can be made regarding this integral:

•
∫

∞

dQ2wL diverges. The theory is inconsistent unless the anomaly
cancellation condition is satisfied,

∑

f

I3
f Nf Q2

f = 0 (12)

•
∫

∞

dQ2M2
Z wT/(m2

Z + Q2) ≃ lnMZ . With wT = wL/2 at large Q the
anomaly cancellation condition (12) leads to the cancellation of ln MZ

within a generation where mf ≪ MZ for all fermions.

In the analyses [5,6] the authors missed the leading 1/Q2 part in wT(u, d, s)
but not in wL(u, d, s) and wT,L(e, µ, c). Naturally, they arrived then at the
expression (2) where ln MZ terms do not cancel. Technically the mistake
in [5, 6] arose from an incorrect construction of the Operator Product Ex-
pansion (OPE) in the part related to wT. Referring to [7] for details note
that the authors missed the leading operator which reflects interaction with
the soft electromagnetic field (external magnetic field) at short distances.
As we demonstrated above this leads to an inconsistency.
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On the other hand, the authors of [5, 6] were correct in their analysis
of nonperturbative corrections, they were the first to point out that these
corrections start with Λ4

QCD/Q6 in wT. So, below we will try to explain

following [7] what can be done when we account for both the leading per-
turbative term 1/Q2 in wT and subleading nonperturbative terms Λ4

QCD/Q6

and higher.

3. Large Q2 expansion, sum rules and models for Im wT,L

For simplicity we limit ourselves in this section to the first generation,
i.e. u and d quarks. As we mentioned above, the first nonperturbative
corrections in the chiral limit mu,d = 0 are of order Λ4

QCD/Q6 in wT, as

has been shown in detail in [6,7]. A particular example illustrating how the
d = 6 operators appear in the OPE is given in Fig. 3. The diagrams allow
for a perturbative calculation of the OPE coefficient while averaging of the
four-fermion operator in the external magnetic field involves nonperturbative
physics.

γ Z

q q

γ Z

q q

Fig. 3. Diagrams for four-fermion operators responsible for leading non-

perturbative corrections to wT.

Of course, the expansion of wT in powers of 1/Q2 continues further
and we are not able to find the sum. Still the analysis gives some exact
relations: the first term is 1/Q2 with the coefficient 1 (it is normalized to
∑

u,d 2I3NfQ2
f = 1), while the coefficient of 1/Q4 is zero. These relations

can be rewritten in the form of sum rules for ImwT. Indeed, using the
dispersion representation (9) at large Q2 we find

∞
∫

0

ds Im wT(s) = π ,

∞
∫

0

ds s Im wT(s) = 0 . (13)

The existence of such sum rules has been pointed out in [11], where their
exactness was considered puzzling. It does not look puzzling to us, as there
are many examples of such exact sum rules like Weinberg sum rules or sum
rules for the DIS structure functions. Moreover, even if wT would not have
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the leading 1/Q2 term, as assumed in [6], these sum rules would be no less
exact (except the right hand side would be zero in the first one).

It is instructive to compare these relations with similar sum rules for the
longitudinal function wL where all powers of 1/Q2 are known,

∞
∫

0

ds Im wL(s) = 2π ,

∞
∫

0

ds sk Im wL(s) = 0 (k = 1, . . . ,∞) . (14)

This set of relations implies a unique solution Im wL(s) = 2πδ(s) showing
that the massless pion is the only contributing intermediate state.

For the transversal function wT the intermediate hadronic states have to
be 1+ mesons with isospin 1 and 0 or 1− mesons with isospin 1. The lightest
ones ρ, ω and a1 are massive even in the chiral limit. Representing ImwT

as

Im wT = π
∑

i

giδ(s − m2
i ) (15)

we get from Eq. (13)

∑

i

gi = 1 ,
∑

i

gi m
2
i = 0 . (16)

The analysis of [6] assumed
∑

i gi = 0.
Until now we did not make any specific assumptions. Let us now assume

a saturation by the lightest states and consider ρ and ω to be degenerate.
Then the solution of relations (16) gives

wT =
1

m2
a1

− m2
ρ

[

m2
a1

Q2 + m2
ρ

−
m2

ρ

Q2 + m2
a1

]

. (17)

This model for wT by construction satisfies exact relations (13) and was
used in [7]. Of course, one can modify the model adding extra resonances
but numerically aµ is not much sensitive to these modifications.

One more comment on the chiral symmetry breaking by quark masses.
Accounting for nonvanishing mu,d leads to negligible effects for wT. The
main (and important) effect for wL is a shift of the pole from 0 to m2

π, i.e.

to wL = 2/(Q2 + m2
π).

These refinements of wT,L in the long distance hadronic triangle effects
for the u, d quark loops, together with similar ones for the s quark, were
made in our study [7]. Numerically it changes the result in Eq. (1) to
∆aCMV

µ (e, u, d;µ, c, s) = −6.7(1.0) × 10−11.
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4. Summary

Although the combined hadronic and leptonic triangle loop effects in
electroweak corrections are not that significant for the muon g − 2, it is
reassuring that a theory based on the Operator Product Expansion and its
matching with hadronic phenomenology allows for quite accurate calcula-
tions. We resolved a conceptual controversy existing in literature concern-
ing cancellation of short distances between fermionic triangles. It seems to
be possible now to develop an analogous approach to improve theoretical
accuracy for the light-by-light part of hadronic effects.

This research was supported in part by the Natural Sciences and Engineer-
ing Research Council of Canada and by the DOE grants DE-AC03-76SF00515
and DE-FG02-94ER408.

REFERENCES

[1] E.A. Kuraev, T.V. Kukhto, A. Schiller, Sov. J. Nucl. Phys. 51, 1031 (1990);
T.V. Kukhto, E.A. Kuraev, A. Schiller, Z.K. Silagadze, Nucl. Phys. B371,
567 (1992).

[2] T. Kinoshita, W.J. Marciano, in Quantum Electrodynamics, edited by T. Ki-
noshita, World Scientific, Singapore 1990, p. 419.

[3] A. Czarnecki, B. Krause, W. Marciano, Phys. Rev. D52, 2619 (1995).

[4] S.L. Adler, W.A. Bardeen, Phys. Rev. 182, 1517 (1969).

[5] S. Peris, M. Perrottet, E. de Rafael, Phys. Lett. B355, 523 (1995).

[6] M. Knecht, S. Peris, M. Perrottet, E. de Rafael, J. High Energy Phys. 11, 003
(2002).

[7] A. Czarnecki, W.J. Marciano, A. Vainshtein, Phys. Rev. D67, 073006 (2003).

[8] A. Vainshtein, Phys. Lett. B569, 187 (2003).

[9] S.L. Adler, Phys. Rev. 177, 2426 (1969); J.S. Bell, R. Jackiw, Nuovo Cim.
A60, 47 (1969).

[10] G. ’t Hooft, in Recent Developments In Gauge Theories, eds. G. ’t Hooft
et al., Plenum Press, New York 1980.

[11] E. de Rafael, talk given at the International Symposium on Lepton Moments,
Cape Cod, June’03, http://g2pc1.bu.edu/∼leptonmom/talks/deRafael.pdf
and private communication.


