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We present first results of an approach in which all contributions from
Zweig-rule-satisfying SU(3)-breaking final-state interactions (FSIs) in B →
PP decays are taken into account. We include the effects due to Pomeron
exchange between the two outgoing pseudoscalar mesons, neglect charmed
intermediate states, and express all of the other rescattering effects in terms
of only three effective complex parameters. It is pointed out that the ex-
perimental bound on the B → K+K− branching ratio limits the value of
only one of these parameters, thus permitting sizable FSI effects in other
B decays. From the fits to the experimental B → PP branching ratios
we determine the values of the FSI parameters and the weak angle γ. A
broad range of around 60◦–100◦ is admitted for the latter, which includes
the region expected in the Standard Model.

PACS numbers: 13.25.Hw, 11.30.Hv, 12.15.Hh, 11.80.Gw

1. Introduction

Most analyses of CP-violating effects in B decays are based on short-
distance (SD) amplitudes only. In other words, any possible final-state in-
teractions (FSIs) are usually completely neglected. While it is very difficult
to assess if this neglect is justified or not, various authors have argued that
FSIs should be important and, consequently, that reliable analyses of B de-
cays must take these interactions (and the inelastic ones in particular) into
account [1–5].

Since a direct calculation of the effects of all inelastic FSIs is beyond our
means, an SU(3)-symmetric approach was developed [6,7], in which the sum
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of all such effects is expressed in terms of only three effective complex param-
eters. The approach has been recently extended to include SU(3)-symmetry-
breaking effects [8]. Below we shall briefly review the whole scheme, along
with its most important results.

In the following section we specify the SD input used. In Section 3 we
give a brief description of our treatment of all FSIs. Section 4 is devoted
to the presentation of the fits performed within our approach and a short
discussion of our results. Our main conclusions are reiterated in Section 5.

2. Short-distance parameters

SD amplitudes for B decays are customarily expressed in terms of SD
quark-diagram amplitudes of different topologies: T (tree), P (penguin), C

(color-suppressed), S (singlet penguin), etc. The relevant amplitudes may
be strangeness-conserving (for b → d u ū decays), and strangeness-violating
(for b → s u ū decays). As usual, we distinguish the strangeness-violating
quark-diagram amplitudes by a prime. The dominant SD amplitudes are
then, in order of their importance: T ≫ P ≈ C (P ′ > S′ ≫ T ′ > C ′ ) in
strangeness-conserving (strangeness-violating) sections.

For our study of the effect of FSIs to be feasible, we must bring down
the number of SD and FSI parameters as much as possible. Therefore, we
assume first that the strong SD phases are negligible. (In Ref. [9] these
phases were of the order of 10◦, while in Ref. [10] it is argued that the
FSI-uncorrected amplitudes do not contain any strong phases).

Further reduction of the number of SD parameters follows from the as-
sumption of the following (SU(3)-breaking) relations between the SD quark-
diagram amplitudes:

1. for tree amplitudes

T ′ = |T ′|eiγ =
Vus

Vud

fK

fπ
T ≈ 0.276 T , (1)

2. for penguin amplitudes (dominated by the t quark, hence the weak
phase factor being e−iβ for P , and ±1 for P ′, i.e. P ′ = ±|P ′|)

P = −e−iβ

∣

∣

∣

∣

Vtd

Vts

∣

∣

∣

∣

P ′ ≈ −0.176 e−iβP ′ , (2)

3. for color-suppressed amplitudes

C = ξT (3)

and

C ′ = T ′(ξ − (1 + ξ)δEWe−iγ) , (4)
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where we take ξ = C1+ζC2

C2+ζC1
≈ 0.17 (see [8]), and include the contribu-

tion from the electroweak penguin P ′
EW

(described by δEW ≈ +0.65
[11]), with all other electroweak penguins neglected,

4. singlet penguin amplitude (with weak phase equal 0, as for P ′) is inde-
pendent of other SD amplitudes (the data require that this amplitude
be sizable [12, 13]),

5. other quark-diagram amplitudes are assumed negligible.

In the fits described in Section 4 we accept β = 24◦, which is in agree-
ment with the world average [14] sin 2β = 0.734 ± 0.054. Consequently, SD
amplitudes are parametrized by four parameters: |T |, P ′, S′, and the weak
phase γ.

3. Simplified description of FSI

Under the assumption that FSIs are independent of the original SD decay
mechanism, the set of all FSI-corrected weak decay amplitudes W ≡ {Wk}
may be expressed as:

W = S
1/2

w ≡ w − aw + i∆W inel , (5)

where w represents the set of all SD decay amplitudes {wk}, S is the strong
interaction S-matrix; the terms −aw (with (aw)k ≡ akwk) and i∆W inel

represent the Pomeron-exchange-induced corrections, and the “inelastic” FSI
corrections (including the P1P2 → P1P2 elastic transitions not mediated by
Pomeron) respectively. The Pomeron-mediated FSIs involve no parameters
and are directly calculable. For exact SU(3), the exchange of Pomeron leads
to overall renormalization of the SD amplitudes only. Thus, only the SU(3)-
breaking part of Pomeron-mediated interactions may modify the pattern of
SD amplitudes.

The main problem is the treatment of inelastic FSIs. Consequently,
several simplifications have to be introduced (for more details see [6,7,15]).
These are:

1. All intermediate inelastic states are represented by quasi-two-body
states M1M2, as the SD decay process always produces two quark-
antiquark pairs at the most (see [7]).

2. SD amplitudes wX(B → M1M2), corresponding to a given quark dia-
gram X (X → P , T , etc.) and a given final state M1M2, are assumed
to be proportional to the SD wX(B → PP ) amplitudes for a diagram
of the same topology and with a similar flavor composition of the
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PP state, with the (unknown) proportionality coefficients η(M1M2)
depending only on the M1M2 state produced:

wX(B → M1M2) = η(M1M2)wX(B → PP ) . (6)

Complete SD amplitudes are given as sums over their contributing
diagrams. With the above assumptions, the FSI-corrected amplitudes
W are given in terms of quark-diagram SD amplitudes P , T , etc., and
various FSI parameters. Even for exactly SU(3)-symmetric FSIs, the
number of independent and — in principle — measurable data in all
B → PP decays turns out to be too small to determine all of these
parameters [6, 7].

3. In order to limit the number of rescattering parameters, the Zweig rule
and nonet SU(3) symmetry for intermediate states are additionally as-
sumed [7]. Let us consider the SU(3)-symmetric FSIs first. Then,
there are just two possible topologies of quark-line diagrams (Fig. 1),
to which only three possible SU(3) structures (hence three complex pa-

Figure 1:
(u)�- -� �? 6-M1M2 P1P2 ()�- -AAU AAA��� ���- -�M1M2 P1P2

Fig. 1. Types of rescattering diagrams: (u) uncrossed, (c) crossed.

rameters) may be assigned. The uncrossed FSI diagrams of Fig. 1(u)
are parametrized with the help of parameters u+ and u−, correspond-
ing to the SU(3)-invariant forms:

Tr({M †
1 ,M

†
2}{P1, P2}) u+ ,

Tr([M †
1 ,M

†
2 ]{P1, P2}) u− . (7)

The first (second) structure describes transitions in which the product
of charge conjugation parities of mesons M1 and M2 is positive (nega-
tive), i.e. CM1

·CM2
= +1(−1), respectively. For the crossed diagrams

of Fig. 1(c), only one SU(3) structure is possible:

Tr(M †P1M
†
2P2 + M

†
1P2M

†
2P1) c . (8)
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The other structure, with a “−” sign in between the two terms above,
is inconsistent with the requirements of Bose symmetry for the final
PP state.

The FSI-corrected amplitudes W may be expressed in terms of FSI-
corrected quark-diagram amplitudes, denoted here as T̃ , C̃, P̃ , S̃, Ã

(annihilation), Ẽ (exchange), and P̃A (penguin annihilation). In the
case of SU(3)-symmetric FSIs, their relation to the input SD ampli-
tudes T , C, P , and S is [7]:

T̃ = T + C · 2c ,

C̃ = C + T · 2c ,

P̃ = P + S · (2c + 2u) + (T + 3P + S) · d ,

S̃ = S + P · 2c ,

Ã = C · 2u ,

Ẽ = T · 2u ,

P̃A = 2P · 2u , (9)

where

u =
u+ + u−

2
, (10)

d = u+ − u− . (11)

From Eq. (9) we see that the size of long-distance penguins generated
by the FSIs from the tree diagrams is controlled by the d parameter.

4. Theory and experiments suggest that SU(3) is broken via a suppression
of those amplitudes in which a strange quark is exchanged between the
M1 and M2 mesons of the original pair. The above SU(3)-invariant
forms (Eqs. (7), (8)) may be modified appropriately to take this sup-
pression into account [8]. This requires the introduction of additional
parameter(s). The dependence between the input SD quark-diagram
amplitudes and the FSI-corrected amplitudes cannot then be reduced
to a simple form similar to that given in Eq. (9). The relevant formulas
are given in Ref. [8]. The studies performed in [8] show that the best
fits to the B → PP branching ratios are obtained when SU(3) in these
FSIs is strongly broken. Consequently, in Section 4 below we present
only those results of [8] which are obtained when the limit of maxi-
mally broken SU(3) is taken. For the case of maximally broken SU(3),
some of the most interesting FSI corrections are gathered in Table I.
In order to hide the SU(3)-symmetric part of Pomeron-mediated FSI
into our parameters, we introduced there:
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ū =
u

1 − a(ππ)
, (12)

d̄ =
d

1 − a(ππ)
, (13)

T̄ = T (1 − a(ππ)) , (14)

P̄ = P (1 − a(ππ)) , (15)

... , (16)

where a(ππ) (directly calculable to be 0.16) describes Pomeron-mediated
FSIs in the ππ channel. Furthermore,

∆ = (2P̄ + T̄ ) d̄ ,

∆′ = (2P̄ ′ + T̄ ′) d̄ . (17)

TABLE I

Selected rescattering contributions to B+, B0
d
→ PP decays for inelastic FSI with

maximally broken SU(3): ∆ ≡ (2P̄ + T̄ ) d̄; ∆′ ≡ (2P̄ ′ + T̄ ′) d̄ .

Decay uncrossed FSI diagrams crossed FSI diagrams

B+ → π+π0 0 − 1√
2
2c̄(T̄ + C̄)

K+K̄0 0 0

B0
d
→ π+π− −(∆ + 2ū(T̄ + 2P̄ )) −2c̄C̄

π0π0 1√
2
(∆ + 2ū(T̄ + 2P̄ )) − 1√

2
2c̄T̄

K+K− 2ūP̄ 0

K0K̄0 −2ūP̄ 0

B+ → π+K0 −∆′ − 2ū(C̄′ + S̄′) −c̄S̄′

π0K+ 1√
2
(∆′ + 2ū(C̄′ + S̄′)) 1√

2
c̄(T̄ ′ + C̄′ + S̄′)

B0
d
→ π−K+ ∆′ + 2ūS̄′ c̄(C̄′ + S̄′)

π0K0 − 1√
2
(∆′ + 2ūS̄′) 1√

2
c̄(T̄ ′ − S̄′)
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4. Fits and their results

We performed fits to the available branching ratios of B decays, compar-
ing the situation with no FSI (i.e. for W = w only) to the following two
cases:

(a) SU(3)-breaking Pomeron-exchange-induced FSIs only (i.e. with W =
w − aw and SU(3)-breaking a);

(b) both Pomeron-exchange-induced and non-Pomeron inelastic SU(3)-
breaking FSIs (i.e., with full W of Eq. (5)).

As an input for the fits only the branching ratios of the B → PP decays
were taken into account. The fit procedure consisted in minimizing the sum
over 16 decay channels i of the deviations between the experimental and
theoretical branching ratios Bi normalized to their experimental errors (see
e.g. [9, 16]):

f(SD ampl; FSI param.) =
∑

i

(Bi(theor) − Bi(exp))2

(∆Bi(exp))2
. (18)

For details of the fit procedures and their results, see [8]. In the fits we used
not only the B → ππ and B → πK branching ratios (as in [9,16]), but also
those of B → Kη,Kη′ etc., not considered elsewhere. Inclusion of the latter
(mandatory for a complete description of FSI) was possible thanks to the
introduction of the singlet penguin amplitude S′ as an additional parameter.

4.1. Pomeron-exchange-induced FSIs

For the no-FSI case, the fit to all 16 decay channels (which include πη(η′)
and Kη(η′) channels) yields γ = 103◦, in agreement with earlier fits to the
B → ππ, πK branching ratios preferring γ & 90◦ [9, 16, 17]. When SU(3)-
breaking Pomeron-exchange-induced FSIs are taken into account, the best
fit to the data is obtained for P ′ < 0 and γ = 101◦. The dependence of
the minimized function f on γ is shown in Fig. 2. Solid lines correspond
to no FSIs (or to fully SU(3)-symmetric Pomeron-exchange-induced FSIs);
dashed lines correspond to SU(3)-breaking Pomeron-induced FSIs. Clearly,
inclusion of SU(3)-breaking in Pomeron-mediated FSI cannot bring the fitted
value of γ into agreement with the Standard Model expectations of γSM ≈
64.5◦ ± 7◦ [17].
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Figure 2:
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Fig. 2. Dependence of minimized function f (Eq. (18)) on γ: thin lines — P ′ > 0,
thick lines — P ′ < 0; solid lines — no FSIs / SU(3) symmetric Pomeron-induced
FSIs, dashed lines — SU(3)-breaking Pomeron-induced FSIs.

4.2. Full FSIs

The FSI parameters were further restricted by the following considera-
tions:

1. Since the present upper bound on the value of the B0
d → K+K−

branching ratio (< 0.6 × 10−6) limits the size of ū quite severely
(cf. Table I), ū = 0 was assumed in the fits.

2. Since for ū = 0, the FSI-induced corrections vanish for all B+, B0
d →

KK̄ decays (Table I), the branching ratios of the B → KK̄ decays
cannot yield any restrictions on the values of d̄ and c̄ which must be
treated as free parameters. However, c̄ should be real as the s-channel
in Fig. 1(c) is exotic.

Thus, all inelastic FSI effects are ultimately parametrized in terms of
only three real parameters (Re d̄, Im d̄, Re c̄ = ±|c̄|).

First we considered the two limiting cases when |d̄| ≪ |c̄| and |d̄| ≫ |c̄|,
assuming d̄ = 0 and c̄ = 0, respectively. The results of the two fits for the
P ′ < 0 case are shown in Fig. 3 as a function of γ (for the P ′ > 0 case,
the minimum is much higher). Solid (dashed) lines correspond to d̄ = 0
(c̄ = 0), respectively. Since the FSI contributions should constitute only
corrections to the SD expressions, the value of d̄ was additionally bounded
by |Re d̄| < 0.25, |Im d̄| < 0.25. Restricting the size of |c̄| was not necessary.
For more details see Ref. [8].
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Fig. 3. Dependence of minimized function f (Eq. (18)) on γ for full FSIs with
P ′ < 0; solid lines — d̄ = 0, unrestricted |c̄|; dashed lines — c̄ = 0, |Re d̄| < 0.25,
|Im d̄| < 0.25.

Comparison with Fig. 2 shows that in both limiting cases the inclusion
of inelastic FSIs permits a substantial reduction of f when compared to the
no-FSI case (from 14.0 down to around 8.0). Furthermore, the fitted value
of γ appears now significantly shifted. For d̄ = 0 the shift is from 102◦ to
around 90◦, with c̄fit = 0.24 (Fig. 3, solid line); while for c̄ = 0 the fit yields
γ = 57◦, with Re d̄fit ≈ −0.22 and Im d̄fit ≈ +0.21 (Fig.3, dashed line).
The corresponding fitted values of SD amplitudes were: T̄ = 2.41(2.71),
P̄ ′ = −4.24(−6.17), S̄′ = −2.09(−1.53) for d̄ = 0 (c̄ = 0), respectively.

In the most general fit, all three FSI parameters (Re d̄, Im d̄, c̄) were
free. It turns out (see [8]) that the overall minimum is then very close to
the point Re d̄ = −0.22, Im d̄ = +0.21, c̄ = 0 discussed previously. A more
detailed study shows [8] that for all values of γ in the region of 80◦ ± 20◦

or so, the obtained values of f (with appropriately fitted d̄ and c̄) are in
the region of 8.5 ± 1. Taking into account that our approach is of necessity
highly simplified, a difference of 1 in f cannot be treated as meaningful.
Consequently, all γ from around 60◦ to 100◦ are admitted by the fits. To sum
up, our results show that the inclusion of inelastic FSI effects significantly
diminishes the value of the minimized function f and may help in bringing
the extracted value of γ down to the SM range [17].

For negligible strong SD phases, it is the third term in Eq. (5) which al-
lows the existence of direct CP violation effects. This term provides a specific
prescription for how strong phases are generated by quark interchanges be-
tween outgoing mesons. For ū = 0, the pattern of FSI phases in all B → PP
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decays, and hence the pattern of CP-violating observables is governed by pa-
rameters d̄, c̄. For a given value of γ, the values of these parameters are fixed
by the fit to the branching ratios, with the subsequent calculation of CP-
violating observables being unambiguous and straightforward. The resulting
asymmetries depend upon the value of γ in a distinguishable manner. As
experimental data on relevant asymmetries are still not precise, it is too
early to draw definite conclusions from any (dis)agreement of our approach
with the data. However, it should be mentioned that, with the exception of
the B+ → π+η asymmetry measurement (difficult to accommodate in any
approach, see [18]), other CP asymmetries (i.e. for B → Kπ, and K+η(η′))
and the time-dependent rates in B0

d(t) → π+π− weakly hint at the SM value
of γ (see [8]).

5. Conclusions

We have presented the first quantitative and complete treatment of all
inelastic FSIs in B decays to two light pseudoscalar mesons. The only ne-
glected but potentially important corrections were those due to the interme-
diate states composed of charmed mesons. Our main conclusions are:

1. Small size of the experimental B0
d → K+K− branching ratio does not

imply that inelastic rescattering effects in other B → PP decays may
be neglected, the reason being that the B0

d → K+K− decay amplitude
does not depend on parameters describing the long-distance u-loop
penguin and the FSI-induced quark rearrangement.

2. Our fits permit the values of γ in the range of 60◦–100◦ or so, and
weakly hint at γ values compatible with SM expectations. Thus, the
FSIs may help in bringing the extracted value of γ down to the Stan-
dard Model range.

Better data and further analysis of FSI effects (including the role of
charming penguins) are needed before one could safely conclude that the
overall body of data on B → PP decays favors the SM value of γ.

REFERENCES

[1] L. Wolfenstein, Phys. Rev. D43, 151 (1991); M. Suzuki, L. Wolfenstein, Phys.
Rev. D60, 074019 (1999).

[2] J.F. Donoghue, E. Golowich, A.A. Petrov, J.M. Soares, Phys. Rev. Lett. 77,
2178 (1996); P. Żenczykowski, Acta Phys. Pol. B 28, 1605 (1997); M. Neubert,
Phys. Lett. B424, 152 (1998).



Inelastic Final State Interactions in B Decays to . . . 5689

[3] W.S. Hou, K.C. Yang, Phys. Rev. Lett. 84, 4806 (2000).

[4] P. Żenczykowski, Phys. Rev. D63, 014016 (2001); Acta Phys. Pol. B 32, 1847
(2001).

[5] J.-M. Gerard, J. Weyers, Eur. Phys. J. C7, 1 (1999); D. Atwood, A. Soni,
Phys. Rev. D58, 036005 (1998); A. Falk, A. Kagan, Y. Nir, A. Petrov, Phys.
Rev. D57, 4290 (1998).

[6] P. Żenczykowski, Acta Phys. Pol. B 33, 1833 (2002).

[7] P. Łach, P. Żenczykowski, Phys. Rev. D66, 054011 (2002).

[8] P. Żenczykowski, P. Łach, hep-ph/0309198.

[9] M. Beneke, G. Buchalla, M. Neubert, C.T. Sachrajda, Nucl. Phys. B606, 245
(2001)

[10] J.-M. Gerard, C. Smith, Eur. Phys. J. C30, 69 (2003).

[11] M. Neubert, J.L. Rosner, Phys. Lett. B441, 403 (1998).

[12] A.S. Dighe, M. Gronau, J.L. Rosner, Phys. Rev. Lett. 79, 4333 (1997).

[13] C.W. Chiang, J.L. Rosner, Phys. Rev. D65, 074035 (2002).

[14] Y. Nir, Nucl. Phys. Proc. Suppl. 117, 111 (2003).

[15] P. Żenczykowski, Acta Phys. Pol. B 34, 4435 (2003).

[16] A. Höcker, H. Lacker, S. Laplace, F. Le Diberder, Eur. Phys. J. C21, 225
(2001).

[17] M. Battaglia et al., hep-ph/0304132.

[18] C.-W. Chiang, M. Gronau, J.L. Rosner, hep-ph/0306021.


