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We review how instanton solutions at finite temperature can be seen as
boundstates of constituent monopoles, discuss some speculations concern-
ing their physical relevance and the lattice evidence for their presence in a
dynamical context.
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1. Introduction

Over the last five years there has been a revived interest in studying
instantons at finite temperature T , so-called calorons [1, 2]. The main rea-
son is that new explicit solutions could be obtained in the case where the
Polyakov loop at spatial infinity is non-trivial, necessary to reveal more
clearly the constituent nature of these calorons. This asymptotic value of
the Polyakov loop is called the holonomy. In gauge theories trivial holon-
omy, for which the asymptotic value of the Polyakov loop takes values in the
center of the gauge group, is typical for the deconfined phase. Therefore,
caloron solutions with non-trivial holonomy are more expected to play a role
in the confined phase, still at finite temperature, but where the average of
the trace of the Polyakov loop is small. In the introduction we start with
a pedagogical overview discussing monopoles, instantons, and their physical
significance. The next section discusses the construction of the caloron so-
lutions. Secs. 2.1 and 2.2 are more technical, but tutorial in nature. One
could skip in particular Secs. 2.3 and 2.4, describing in Sec. 3 the properties
of the solutions in less technical terms. Lattice evidence for the dynamical
significance of constituent monopoles is discussed in Sec. 4.
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1.1. Monopoles

That monopoles should play a role in describing the constituent nature
of calorons is in itself not really a surprise, because at finite temperature A0

plays in some sense the role of a Higgs field in the adjoint representation.
However, a gauge transformation,

gAµ(x) = g(x)Aµ(x)g−1(x) + g(x)∂µg
−1(x) , (1)

shows that A0 does not transform correctly (unless the gauge transformation
is time independent), due to the inhomogeneous term. Instead, the Polyakov
loop

P (t, ~x) = Pexp





β
∫

0

A0(t+ s, ~x)ds



 , (2)

transforms as it should, gP (x) = g(x)P (x)g−1(x). Here β = 1/kT is the
period in the imaginary time direction, under which the gauge field is as-
sumed to be periodic. We also will consider other gauges, where Aµ(x) is
periodic up to a gauge transformation, in which case the expression for P
has to be modified accordingly [3]. For example, in the so-called algebraic
gauge, A0(x) is transformed to zero at spatial infinity. In this case the gauge
fields satisfy the boundary condition (P∞ to be defined below)

Aµ(t+ β, ~x) = P∞Aµ(t, ~x)P−1
∞ . (3)

We will require that the total Euclidean action of these calorons is finite,
such that the field strength1

Fµν(x) = ∂µAν(x) − ∂νAµ(x) + [Aµ(x), Aν(x)] (4)

has to go to zero at spatial infinity. It is this that forces the Polyakov loop
to become constant at spatial infinity. For SU(n) gauge theory this gives

P∞=exp(βA∞
0 )≡ lim

|~x|→∞
P (x), A∞

0 ≡ 2πi

β
U0diag (µ1, µ2, . . . , µn)U−1

0 , (5)

independent of the direction and time. Unlike for a Higgs field, however,
P∞ is unitary with determinant 1. Choosing U0 (the constant gauge func-
tion that brings P∞ to its diagonal form) appropriately, the n eigenvalues,

1 Our conventions are Aµ(x) = eAa
µ(x)Ta, where e is the coupling constant and T †

a =
−Ta, Tr(TaTb) = − 1

2
δab, [Ta, Tb] = fabcTc. For SU(2) fabc = εabc and Ta = −i 1

2
τa in

terms of the familiar Pauli matrices.
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exp(2πiµm), are ordered. The freedom in adding an arbitrary integer to µm

is fixed by ordering the µm themselves, and requiring their sum to vanish,

n
∑

i=1

µi = 0, µ1 ≤ µ2 ≤ . . . ≤ µn ≤ µn+1 ≡ 1 + µ1 . (6)

For trivial holonomy P∞ is an element of the center of the gauge group,
P∞ = exp(2πiq/n)1n with q an integer between 0 and n−1, hence µm = q/n.

One might now immediately object that a Higgs field that goes to a
constant at infinity does not have the usual hedgehog form expected for a
non-Abelian ’t Hooft–Polyakov monopole [4], but this is because the caloron
solutions are actually such that the total magnetic charge vanishes. The force
stability of these solutions is based, as for exact multi-monopole solutions
in the Bogomol’ny–Prasad–Sommerfeld (BPS) limit [5] on balancing the
electromagnetic with the scalar (Higgs) force [6, 7]. For the caloron the
difference is in interchanging repulsive and attractive forces. For a single
caloron with topological charge one, this is because there are n−1 monopoles
with a unit magnetic charge in the i-th U(1) subgroup, all compensated by
the n-th monopole of so-called type (1, 1, . . . , 1), having a magnetic charge in
each of these subgroups. This special monopole is also called a Kaluza–Klein
(KK) monopole [8], as will be explained below. The well-known Harrington-
Shepard solution [1] has trivial holonomy, and although all eigenvalues of
P∞ are equal, such that there is no spontaneous symmetry breaking, one
still finds a genuine BPS monopole [9] in a suitable limit (it will be the KK
monopole that survives).

In a Higgs theory, switching off the Higgs potential and splitting off a
square in the energy density,

−Tr
(

(DiΦ)2 +B2
i

)

= −Tr(DiΦ∓Bi)
2 ∓ 2Tr (BiDiΦ) , (7)

exact monopole solutions are constructed using the BPS condition [5], which
imposes the covariant derivative of the Higgs field Φ to be equal (up to a
sign) to the magnetic field, DiΦ ≡ ∂iΦ+[Ai, Φ] = ±Bi, where Bi ≡ 1

2
εijkFjk.

One is then left with a total derivative

Tr (BiDiΦ) = Tr (Di(BiΦ)) = ∂i Tr(BiΦ), (8)

whose integral is proportional to the magnetic charge. The integral can also
be associated to the mapping degree of the map x̂→ Φ(rx̂) (x̂ ≡ ~x/|~x|) for
r → ∞. With Φ taking values in the algebra, and of fixed length at infinity,
this gives for SU(2) a map from S2 to S2. For a caloron the BPS condition is
simply a consequence of the self-duality conditions characteristic of instanton
solutions, Ei = DiA0 − ∂0Ai = ±Bi, with Φ = A0. One might thus be
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tempted to call the constituents dyons, rather than monopoles. In the Higgs
model the Julia–Zee dyons are constructed by taking A0 proportional to the
Higgs field Φ [10]. By a time dependent gauge transformation A0 can then be
gauged to zero. The resulting electric field is now given by Ei = −∂0Ai and
is not quantized (and in particular not equal to ±Bi). In pure gauge theory
it makes, however, no sense to separate DiΦ = DiA0 from ∂0Ai. Gauge
invariance requires that they occur in the combination Fi0 = DiA0 − ∂0Ai.
The electric field is necessarily fixed and quantized as soon as we interpret
A0 as the Higgs field. As discussed in Ref. [11] adding a fifth dimension
for Minkowski time, compactifying the Euclidean time direction to zero size
(β → 0) allows one to have electric charge as for the Julia–Zee dyon. A
compactified Euclidean direction is what one also considers in Kaluza–Klein
theories. It is in this sense that the type (1, 1, . . . , 1) monopole is called a
KK monopole, because it turns out it is static up to a gauge transformation
that makes one full rotation in the unbroken subgroup when going from 0
to β, thus of lowest non-trivial Kaluza–Klein momentum2.

1.2. Instantons

We therefore consider it most appropriate to call the constituents mono-
poles, as is also clear from Nahm’s formalism which provides one of the es-
sential tools to find these self-dual solutions [13]. The Nahm transformation,
as well as the Atiyah–Drinfeld–Hitchin–Manin (ADHM) construction [14] for
instanton solutions on IR4, form indispensable tools to find the exact caloron
solutions. It should be added that from the topological point of view Taubes
showed how to make out of two oppositely charged monopoles a Euclidean
four dimensional gauge field that has non-zero topological charge [15]. This
result is more general, since only when minimizing the action in a sector
with non-trivial topological charge will one find a self-dual instanton solu-
tion. His construction is based on creating a monopole anti-monopole pair,
bringing them far apart, rotating one of them over a full rotation (the so-
called Taubes winding) and finally bringing them together to annihilate, see
Fig. 1. The four dimensional configuration constructed this way is topolog-
ically non-trivial.

In IR4 the topological charge is related to the winding of a gauge function
g(x) defined at infinity, which therefore is a mapping from S3 to the gauge
group. The way g(x) enters is through requiring the Euclidean action,

S = − 1

2e2

∫

d4x Tr
(

F 2
µν(x)

)

, (9)

2 Nevertheless, there is a context in pure gauge theories where dyons appear, but for
this we have to add a term proportional to θF F̃ to the Lagrangian [12]. The electric
charge is now given by θ/(2π) times the magnetic charge.



Instantons and Constituent Monopoles 5721

Fig. 1. The topologically non-trivial field configuration is constructed from two

oppositely charged monopoles, rotating one of them over a full 2π rotation.

to remain finite. As before this implies the field strength at infinity to go to
zero, where Aµ(x) can be written as a pure gauge, Aµ(x) = g(x)∂µg

−1(x).
For SU(2) a simple parametrization as g(x) = aµ(x)σµ in terms of a unit

vector aµ and unit quaternions σµ = (12, i~τ ) (σ̄µ ≡ σ†µ) makes this winding
most transparent as the mapping degree of a(x) at infinity. In the simplest
case of degree 1, a(x) = x/|x| is a 4-dimensional hedgehog. The relation to
Taubes’ construction is using the fact that S3 can be viewed as a twisted
product of S1 (the Taubes winding) and S2 (the hedgehog formed by the
Higgs field), the so-called Hopf fibration [11, 16].

In the case of periodicity in the imaginary time direction as it occurs
for calorons, let us transform A0(x) → 0 everywhere. This can be done by
a time dependent gauge transformation U(x), which in general will not be
periodic. Actually P (t; ~x) itself is the gauge transformation that relates the
gauge field at t+ β to that at t in the A0 = 0 gauge. Since P (x) goes to a
constant (P∞) at spatial infinity, this provides a non-trivial mapping from
S3 (as IR3 compactified at infinity) to the gauge group. The topological
charge is precisely its winding number.

As in the case of the monopole energy density, we can rewrite the action
density in terms of a square and a boundary term,

Tr(F 2
µν) = 1

2
Tr(Fµν ± F̃µν)2 ∓ Tr(Fµν F̃µν), Tr(Fµν F̃µν) = ∂µKµ,

Kµ = 2εµναβ Tr(Aν∂αAβ + 2

3
AνAαAβ) , (10)

with F̃µν = 1

2
εµναβFαβ the dual field strength interchanging electric and

magnetic components. Hence, for self-dual solutions at finite temperature

S =
1

2e2

∫

(K0(0, ~x) −K0(β, ~x)) d3x =
1

3e2

∫

Tr(P (~x)dP−1(~x))3 , (11)

using that in the A0 = 0 gauge A(β, ~x) = PA(0, ~x), expressing the result in a
compact differential form notation. Note that the integral is invariant under
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small deformations of P , using δ(PdP−1)3 = 3dTr(PδP−1(PdP−1)2), and
therefore should be proportional to the winding number of P . A map of
degree k can be obtained by multiplying k maps of degree 1 (the inverse
gives a negative mapping degree). Each of these maps of degree 1 can be
deformed at will, as the integral is invariant under continuous deformations,
and in particular can be arranged to be the identity except for a small
region. Choosing these regions to have no overlap, the integral is easily seen
to be proportional to k. To fix for SU(2) the constant of proportionality
we may take U(~x) = ((1 − |~x|2)σ0 + 2~x · ~σ)/(1 + |~x|2), for the map of
degree 1 related to stereographic projection from S3 to IR3. For SU(n)
we first deform the map to lie in an SU(2) subgroup. This then gives the
celebrated result that self-dual solutions with given topological charge, k =

(16π2)−1
∫

d4xTr
(

Fµν(x)F̃µν(x)
)

, have an action equal 8π2|k|/e2.
This is also a convenient setting to understand why in the limit of zero

temperature, β → ∞, an instanton corresponds to vacuum to vacuum tun-
neling. Finite action requires the field strength to go to zero at |t| → ∞,
but at the same time, the field at t → ∞ is related to the field at t → −∞
by a topologically non-trivial gauge transformation. Strictly speaking, we
need to identify gauge field configuration that are gauge equivalent. Instead
of having multiple vacua we can alternatively say there is one vacuum, with
the field space being non-contractible. This is quite analogous to consider-
ing a periodic quantum mechanics problem, which could be reinterpreted as
quantum mechanics on a circle. Tunneling now corresponds to penetration
of the wave function in the classically forbidden region, to reach back to
the vacuum going around the circle in either direction. Essential is that the
support of the wave function, the region where it is non-vanishing, becomes
sensitive to the non-trivial topology of the configuration space [3].

Fig. 2. Shown is a typical example for the action density (on equal logarithmic scales

at the time where it is maximal) of an SU(2) caloron with non-trivial holonomy

µ2 = −µ1 = 0.125 (for, from left to right, ρ/β = 0.8, 1.2, 1.6).
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The tunneling path in non-Abelian gauge theories is of course described
by the one parameter (t) family of gauge fields Ai(t, ~x) (in the A0 = 0 gauge),
and a finite action means we have to cross a potential barrier when going
around the non-contractible loop (or going from vacuum to vacuum). From
Taubes’ argument it is already clear that this intermediate configuration
can be associated to a monopole-antimonopole boundstate, which is made
more precise by the caloron solutions to be described. At zero-temperature
this is less obvious, since there monopoles form close pairs, cf. Fig. 2 (left).
They behave very much like virtual particles, that can only be created for
a short period of time, thereby explaining the instantaneous character. At
finite temperature, the monopoles can be separated much more easily due
to the interactions with the thermal bath. At high temperature, however,
they will be suppressed due to the Boltzmann weight, and so monopoles
(like calorons) are expected to be dilute. At low temperature instantons
form a more dense ensemble, possibly leading to monopoles to be dense as
well, particularly when instantons overlap. One may then have some hope
that the confining electric phase could be characterized by a deconfining
magnetic phase, where the dual deconfinement is due to the large monopole
density, in a similar spirit to high density induced quark deconfinement. It
would offer a possible alternative to existing scenarios.

Instantons describe virtual processes and are quite often discussed in the
context of the semiclassical approximation. For a one-dimensional particle
with mass m in a positive potential V we may again split off a square,

L(t)= 1

2
mẋ2(t)+V (x(t))= 1

2
m
(

ẋ(t) −
√

2V (x(t))/m
)2

+ ẋ(t)
√

2mV (x(t)),

Scl =

∫

dt ẋ(t)
√

2mV (x(t)) =

∫

dx
√

2mV (x) , (12)

where we typically integrate between the classical turning points, related
to the WKB expression for the wave function in the classically forbidden
region, exp(−

∫ x
x0
dy
√

2mV (y)/~). In a double well this leads to a tunnel

splitting proportional to exp(−Scl/~). One problem in the theory of strong
interactions is that the effective coupling tends to become too big for large
instantons. Instantons can have an arbitrary size ρ, due to the classical scale
invariance of the theory. This classical scale invariance gets broken by the
regularization and one is left with a scale dependent running coupling con-
stant after renormalization. This causes a problem when integrating over
the scale parameter in the one-instanton tunneling amplitude given by the
celebrated result of ’t Hooft [17], dW ∝ dρdx4ρ−5 exp

(

−8π2/e2(ρ)
)

. Actu-
ally, for calorons with non-trivial holonomy and ρ > β, it is more natural
to associate ρ with the distance between constituent monopoles (πρ2/β for
SU(2)), and this may help alleviate the problem one encounters when deal-
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ing with large scale instantons. This is also one way to understand why
there will still be calorons with ρ arbitrary, despite the fact that β fixes the
scale3. At zero temperature, a large ρ leads to a low energy barrier along
the tunneling path, and at some point this will no longer describe a virtual
process and the semiclassical approximation will break down. Nevertheless,
the instanton liquid model has been very successful in describing much of
the low energy phenomenology, in particular for chiral dynamics and as-
pects related to breaking the axial U(1) symmetry. We refer to the reviews
by Schäfer and Shuryak [20] and by Diakonov [21] for more details.

1.3. Fermion zero-modes

In the instanton liquid model the interaction of instantons with fermions
plays an important role. This is because instantons have a remarkable in-
fluence on the spectrum of Dirac fermions, it namely implies the presence
of zero eigenvalue solutions with fixed chirality (the so-called chiral zero-
modes). These chiral zero-modes will play an important role in the Nahm
transformation and in studying the properties of the calorons with non-
trivial holonomy, so we wish to mention some of the interesting and far
reaching physical consequences. This is most easily discussed in terms of
the spectral flow of the Dirac Hamiltonian along the tunneling path. Its
spectrum is of course gauge invariant, and this implies that the energy lev-
els at t = 0 and t = β are identical. The gauge field provides a smooth
interpolation between these, which leads to each of the energies to be a con-
tinuous function of t, the so-called spectral flow, see Fig 3. If we draw the
energy level at zero, the number of crossings is clearly a conserved quantity, it
cannot change under continuous deformations of the gauge field background
(the background need not be a solution of the equations of motion). It is also
clear, by putting instantons in a row, that the number of crossings is pro-
portional to the topological charge, and not surprisingly it is actually equal
to it. The necessity of such a crossing is related to the existence of a chiral
zero-mode, whose number for fermions in the fundamental representation
is equal to the topological charge, as follows from the Atiyah–Singer index
theorem [22]. The argument is most simple in the case of zero-temperature,
where the zero-mode at t→ ±∞ has to behave as exp(−tE±), where E± is
one of (free) fermion energies. Clearly this would only give a normalizable
zero-mode if E+ > 0 and E− < 0, which forces a crossing! At this point the
Dirac vacuum is degenerate and particles or anti-particles are created with
definite chirality. Compatible with the breaking of the axial U(1) symme-
try, the divergences of its current is proportional to the topological density

3 Remarkably, it can be shown [18, 19] under some mild conditions, that any four
dimensional manifold will have instanton solutions with arbitrary ρ.
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E = 0

E = −Λ
t = 0 t = β

Fig. 3. Schematic representation of the spectral flow.

F̃µνFµν . It gives rise to the so-called ’t Hooft interaction [17], which together
with a finite density of fermion modes at zero eigenvalue (required for the
Banks–Casher mechanism [23] to work) play an important role in the spon-
taneous breaking of chiral symmetry (or soft breaking in case of small up
and down quark masses) [20]. Finally, the spectral flow also makes it easy to
understand the origin of the axial anomaly, which occurs due to the need to
regularize the theory. If cutting off modes with E < −Λ, where Λ is the ul-
traviolet cutoff, we see that the spectral flow leads to the fact that modes we
had removed in the trivial vacuum reappear due to the spectral flow at the
vacuum equivalent to it by a topologically non-trivial gauge transformation.
That the violation in conserving the axial U(1) charge is proportional to
the topological charge is in this setting simply a consequence of the number
of crossings in the spectral flow. This is the celebrated infrared-ultraviolet
connection, and also makes it understandable why the anomaly is robust
(fully determined by the lowest order result in perturbation theory).

2. Construction of solutions

Let us start with the well know SU(2) Harrington–Shepard solution [1]
for the caloron with trivial holonomy. In that case one simply takes a pe-
riodic array of instantons parallel in group space (P∞ = 12), placed at
a(p) ≡ (a0 + pβ,~a) for integer p. The solution is found in terms of the
’t Hooft ansatz [24], which in its general form is given by

Aµ(x) = 1

2
η̄µν∂ν log φ(x) . (13)

Here ηµν = 1

2
(σµσ̄ν − σν σ̄µ) = iηa

µντa and η̄µν = 1

2
(σ̄µσν − σ̄νσµ) = iη̄a

µντa,
are the self-dual and anti-selfdual ’t Hooft tensors. Substituting this in the
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self-duality equation, Fµν = F̃µν , one finds this is a solution if and only if

∂2
µφ(x) = 0. Therefore φ = 1 +

∑k
i=1 ρ

2
i |x − b(i)|2, where b(i) are the four

dimensional locations and ρi the sizes of the k instantons4. A singularity at
x = b(i) can be removed by a gauge transformation. For the Harrington–
Shepard solution, taking b(p) = a(p) and ρp = ρ one can perform the sum
over p ∈ Z to find [1],

φHS(x) = 1 +
πρ2 sinh(2πr/β)/(βr)

cosh(2πr/β) − cos(2π(t − a0)/β)
, r = |~x− ~a| . (14)

The case of non-trivial holonomy cannot be treated in the same way,
because we will have to sum over a periodic array of instantons that has a
color rotation by P∞ when shifting time over β. This can only be treated
within the full ADHM ansatz. The rest of this section is more technical and
could be skipped, although the short tutorials on the ADHM construction
and the Nahm transformation in Secs. 2.1 and 2.2 are still recommended.

2.1. ADHM formalism

The SU(n) ADHM construction for charge k instantons [14] starts with a

k dimensional vector λ = (λ1, . . . , λk), where λ†i is a two-component spinor in
the n̄ representation of SU(n) (i.e. λ is a n×2k complex matrix) and a 2k×2k
complex matrix B = σµ ⊗Bµ (each Bµ is a hermitian k× k matrix). These
are combined to form a (n+2k)×2k dimensional matrix ∆(x), which has n
normalized eigenvectors with vanishing eigenvalue, combined in a complex
matrix v(x) of size (n + 2k) × n,

∆(x) =

(

λ
B(x)

)

, B(x) = B − x1k , ∆†(x)v(x) = 0 . (15)

Here the quaternion x = xµσµ (a 2 × 2 matrix with spinor indices) denotes
the position and v(x) can be solved explicitly in terms of the ADHM data,

v(x)=

(

−1n

u(x)

)

φ−1/2 , u(x)=(B†−x†)−1λ† , φ(x)=1n+u
†(x)u(x) . (16)

The square root φ1/2(x) is well-defined because φ(x) is a positive n × n
hermitian matrix. The gauge field is now given by

A(x) ≡ Aµ(x)dxµ = v†(x)dv(x) (17)

4 Using conformal transformations a generalization of this ansatz including non-trivial
color orientations exists [25], but it will only give all possible solutions for charge 2.
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and to check its self-duality it is best to use form notation. For the field
strength two form F (x) = 1

2
Fµν(x)dxµ ∧ dxν = dA(x)+A(x)∧A(x) we find

F = d(v†dv) + v†dv ∧ v†dv = dv† ∧ (1 − v ⊗ v†)dv . (18)

We note that v ⊗ v† projects to the kernel of ∆†. Assuming that ∆ has
no zero eigenvalues such that ∆†∆ is invertible, we find that 1 − v ⊗ v† =
∆(∆†∆)−1∆†. Indeed, when acting on elements in the kernel of ∆†, left-
and right-hand side are equal. Any vector in the orthogonal complement of
this kernel can be written as ∆w, since < v,∆w >=< ∆†v,w >= 0, such
that left- and right-hand side are again equal. Hence

F = dv†∆ ∧ (∆†∆)−1∆†dv = dv†bdx ∧ (∆†∆)−1dx†b†dv , (19)

where we use the fact that ∆†dv = (d∆†)v = dx†b†v, with b† = (0 12 ⊗ 1k)
as a 2k × (n + 2k) matrix5. It might seem this does not help that much,
but remarkably, using dx = dxµσµ we find dx ∧ dx† = ηµνdxµ ∧ dxν , and
since ηµν is self-dual, we are done. Not quite so yet! We had to take dx⊗1k

through (∆†∆)−1 and this is only possible if

(∆†(x)∆(x))−1 = 12 ⊗ fx , (20)

where fx is a hermitian k×k matrix. This condition, stating that ∆†(x)∆(x)
is invertible and commutes with the quaternions, is what is known as the
quadratic ADHM constraint. It has reduced solving a set of non-linear
partial differential equations to solving a quadratic matrix equation.

To construct a charge k caloron with non-trivial holonomy [26], we place
k instantons in the time interval [0, β[, performing a color rotation with P∞

for each shift of t over β, cf. Eq. (3). This is implemented by requiring
(suppressing color and spinor indices and scaling β to 1 in this section)

λpk+k+a = P∞λpk+a , Bpk+a,qk+b = Bpk−k+a,qk−k+b + σ0δpqδab . (21)

Solutions to these equations are parametrized by ζa and Âab
p ,

λpk+a = Pp
∞ζa , Bpk+a,qk+b = pσ0δpqδab + Âab

p−q , (22)

with Â to be determined by the quadratic ADHM constraint.

5 The notation dx†b† may be a bit misleading, it should be read as (dx† ⊗ 1k)b†.
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2.2. Fourier-Nahm transformation

We introduce the n projectors Pm on themth eigenvalue of P∞, such that
P∞ =

∑

m e2πiµmPm and λpk+a =
∑

m e2πipµmPmζa. Fourier transformation
now leads to

2πi
∑

p

e2πipzÂab
p = Âab(z) ,

∑

p

e−2πipzλpk+a =
∑

m

δ(z − µm)Pmζa . (23)

Here ζ†a is again a two-component spinor in the n̄ representation of SU(n)

and Âab(z) = σµÂab
µ (z), with Âµ(z) an anti-hermitian k×k matrix. In terms

of the latter

∑

p,q

Bpk+a,qk+b(x)e
2πi(pz−qz′) =

δ(z − z′)

2πi
D̂ab

x (z′) , (24)

D̂ab
x (z) ≡ D̂ab(z) − 2πixδab = σ0δ

ab d

dz
+ Âab(z) − 2πixδab ,

which is the Weyl operator (positive chirality Dirac operator) for the U(k)

gauge field Âµ(z)−2πixµ1k defined on the circle, z∈ [0, 1], i.e. with period-
icity 1 (β−1 in case β 6= 1). The quadratic ADHM constraint now reads

[

σi ⊗ 1k,D
†
x(z)Dx(z) + 4π2

∑

m

δ(z − µm)ζ†aPmζb

]

= 0 . (25)

Introducing
2πζ†aPmζb ≡ 12Ŝ

ab
m − ~τ · ~ρ ab

m , (26)

this leads precisely to the so-called Nahm equation [13],

d

dz
Âj(z)+[Â0(z), Âj(z)]+ 1

2
εjkℓ[Âk(z), Âℓ(z)] = 2πi

∑

m

δ(z−µm)ρ j
m . (27)

Note that the left-hand side is the difference between the magnetic and
electric field for Âµ(z), with the right-hand side a violation of self-duality.

Although we do not want to go into too much detail here, it is instruc-
tive to discuss the standard setting of the Nahm transformation [13,27]. One
starts from an SU(n), charge k self-dual gauge field on IR4 with periods in all
four directions, some of which may be infinite or zero (in the latter case effec-
tively leading to a reduced dimension). This extends to a family of self-dual
U(n) gauge fields6 when adding −2πizµ1n to the SU(n) gauge field Aµ(x).
The index theorem now guarantees there is a family of k chiral zero-modes

6 One easily checks it does not change the field strength Fµν(x).
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for the Weyl equation D†
zΨ(x; z) = −σ̄µDµ(x; z)Ψ(x; z) = 0, and this al-

lows one to construct the gauge field Âab
µ (z) =

∫

d4xΨa(x; z)†∂Ψ b(x; z)/∂zµ.
This dual U(k) gauge field can be shown to be self-dual with charge n, and
is defined again on IR4, but with its periods inverted. Remarkably, one can
then perform the transformation again, and come back to the original gauge
field [27].

The ADHM construction performs precisely this last step. For instan-
tons on IR4 all periods are infinite and the Nahm transformation reduces
self-duality to algebraic equations. Singularities may appear (except when
all periods are finite), as we have seen from our analysis using Fourier trans-
formation of the ADHM data and like in IR4 are related to introducing λ,
which encodes the asymptotic behavior of the zero-modes.

One final result is crucial to appreciate the strength of this formalism,

D†
zDz = −12 ⊗D2

µ(x; z) − η̄µν ⊗ [Dµ(x; z),Dν(x; z)] , (28)

which uses the fact that σ̄µσν = δµν12 + η̄µν . Since [Dµ(x; z),Dν(x; z)] =
Fµν(x) and the contraction of an anti-self dual tensor (η̄µν) with a self-dual

tensor (Fµν) vanishes, self-duality implies that D†
zDz = −12 ⊗ D2

µ(x; z),
which therefore commutes with the quarternions. This is completely anal-
ogous to our discussion for the ADHM construction, and proves that the
Nahm gauge field Âµ(z) is self-dual. Doing the Nahm transformation for
the second time leads us to perform the same calculation as in Eq. (28), this

time for the dual Weyl operator D̂x, and we see that the quadratic ADHM
constraint is fully equivalent with stating that the dual gauge field is self-
dual. The only complication is the possible presence of singularities when
some of the periods are infinite, in particular for the ADHM construction
somewhat hiding this profound relationship to the Nahm transformation.

2.3. Some explicit formulae

One might think all of this is just pushing the same problem around,
but as we noted before, there is a dramatic simplification due to the di-
mensional reduction. In addition, for topological charge 1 the dual gauge
field is Abelian, further simplifying the Nahm equation. In that case all
the commutator terms in Eq. (27) vanish, and Âµ(z) is piecewise constant,
only jumping at the singularities. It is this that has allowed us to make
progress in finding explicit solutions, together with the “magic” formulae for
gauge field, action density, fermion zero-modes and density found previously
within the ADHM formalism [28,29],
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Aµ(x) = 1

2
φ1/2(x)η̄j

µν∂νφj(x)φ
1/2(x) + 1

2
[φ−1/2(x), ∂µφ

1/2(x)] ,

Ψ l
iI(x) = (2π)−1

(

φ1/2(x)λ∂µfxσ̄µε
)l

iI
,

Ψ l
iI(x)

∗Ψm
iI (x) = −(2π)−2∂2

µf
lm
x , (29)

where l = 1, . . . , k labels the zero-modes (i, I are the gauge and spin index),

φ(x) = (1n − φ0)
−1 , φµ ≡ λ(σµ⊗fx)λ

†, ε ≡ σ2 = iτ2 . (30)

The gauge field for SU(2) further simplifies to Aµ(x) = 1

2
φ(x)η̄j

µν∂νφj(x)
(which could be viewed as a generalized ’t Hooft ansatz), since in that case
φ(x) as a 2×2 matrix is a multiple of 12. For the action density one finds [29],

TrF 2
µν(x) = −∂2

µ∂
2
ν log det fx . (31)

It is thus very convenient to first find the matrix fx, as defined in Eq. (20).
For calorons, after Fourier transformation, it is replaced by the Green’s
function f̂x(z, z′), which satisfies the equation [26]







(

D̂µ(z;x)

2πi

)2

+
1

2π

∑

m

δ(z−µm)Ŝm







f̂x(z, z′) = 1kδ(z−z′) . (32)

The gauge field, as determined through φµ(x), see Eq. (29), is read off from

φµ(x) =
∑

m,m′

Pmζaσµf̂
ab
x (µm, µm′)ζ†bPm′ , (33)

whereas the fermion zero-modes satisfying a generalized boundary condition
Ψ̂a

z (t+ 1, ~x) = e2πizP∞Ψ̂
a
z (t, ~x), cf. Eq. (3), are given by [30,31]

Ψ̂a
z (x) = (2π)−1φ1/2(x)

∑

m

Pmζbσ̄µε∂µf̂
ba
x (µm, z) . (34)

For z = 1

2
this gives the usual anti-periodic boundary conditions for fermions

at finite temperature, but the general z dependence will turn out to be
extremely useful as a diagnostic tool. Finally, the zero-mode density reads

Ψ̂a
z (x)†Ψ̂ b

z (x) = −(2π)−2∂2
µf̂

ab
x (z, z) . (35)

To compute f̂x(z, z
′) we note that we can always transform to a gauge

where Â0(z) ≡ 2πiξ0 is constant, after which ĝ(z) ≡ exp(2πi(ξ0 − x01k)z)

transforms Â0(z) − 2πix0 to zero. This turns Eq. (32) into
{

− d2

dz2
+ V (z; ~x)

}

fx(z, z′) = 4π21kδ(z−z′) , (36)
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with fx(z, z
′) and V (z; ~x) given by

fx(z, z
′)≡ ĝ(z)f̂x(z, z′)ĝ†(z′), V (z; ~x)≡4π2 ~R2(z; ~x)+2π

∑

m

δ(z−µm)Sm,

Rj(z; ~x) ≡ xj1k − (2πi)−1ĝ(z)Âj(z)ĝ
†(z), Sm ≡ ĝ(µm)Ŝmĝ

†(µm) . (37)

Periodicity is now only up to the gauge transformation ĝ(1). In particu-

lar when ~R 2(z; ~x) is piecewise constant explicitly computing the Green’s
function becomes doable. Nevertheless, in general terms one finds

fx(z, z′) = 4π2
{

W (z, z0)
(

θ(z′ − z)12k − (12k −Fz0
)−1
)

W−1(z′, z0)
}

12
,

W (z2, z1) ≡ Pexp

∫ z2

z1

(

0 1k

V (z; ~x) 0

)

dz, Fz0
≡ ĝ†(1)W (z0+1, z0) , (38)

where the (1, 2) component on the right-hand side for fx(z, z′) is with respect
to the 2 × 2 block matrix structure. This equation for fx(z, z

′) is valid for
z′ ∈ [z, z+1], but can be extended with the appropriate periodicity. We can
now also find an explicit result for the action density

TrF 2
µν(x) = ∂2

µ∂
2
ν logψ(x), ψ(x) ≡ det

(

ie−πix0(12k −Fz0
)/
√

2
)

.

(39)
Note that z0 can be chosen at will, e.g. for z0 = µm+ 0 we find

Fµm = TmHm−1 · · ·T2H1T1ĝ
†(1)HnTnHn−1 · · ·Tm+1Hm,

Tm ≡
( 1k 0

2πSm 1k

)

, Hm ≡ Pexp

µm+1
∫

µm

(

0 1k

4π2 ~R2(z; ~x) 0

)

dz .(40)

The main pay off to have these expressions in terms of possibly unknown
solutions to the Nahm equations, is that it allows us to look at the far
field limit. When constituent monopoles are well separated, the charged
components of the field in the core decay exponentially, being left with the
Abelian fields in the far field region. This is related to the high temperature
limit, in which case the cores collapse to zero size.

2.4. Limits and special cases

To extract exponential factors it turned out to be convenient to define

f±m(z)= Pexp



±2π

z
∫

µm

R±
m(z)dz



 , R±
m(z)2± 1

2π

d

dz
R±

m(z)= ~R 2(z; ~x) . (41)
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Since ~R(z; ~x) → ~x1k for |~x| → ∞, we find in this limit that R±
m(z) → |~x|1k

and f±m(z) → exp (±2π|~x|(z − µm)1k). For z, z′ ∈ [µm, µm+1] we can now
write W (z, z′) = Wm(z)W−1

m (z′), see Eq. (38), with

Wm(z) ≡
(

f+
m(z) f−m(z)

2πR+
m(z)f+

m(z) −2πR−
m(z)f−m(z)

)

. (42)

This has allowed us to show that (ff stands for far field limit)

fff
x (µm, µm) = 2π

−1
∑

m

, and fff
x (z, z) = πR−1

m (z) for µm<z<µm+1 , (43)

where
∑

m ≡ R−
m(µm) +R+

m−1(µm) + Sm and Rm(z) ≡ 1

2
(R+

m(z) +R−
m(z)).

For this to hold ~x has to be far removed from any constituent. In addition
fff(µm, µm+1) = 0, which implies that for SU(2) and SU(3) only the Abelian
components of the gauge field survive in this limit.

Useful is also the so-called zero-mode limit (zm), which assumes ~x to be
far removed from any constituent monopole other than of type m, distin-
guished by their magnetic charge and mass 8π2νm, with νm ≡ µm+1 − µm,
see the next section. In this limit one finds up to exponential corrections [31]

for µm ≤ z′ ≤ z ≤ µm+1 (fx(z
′, z) = f †x(z, z′) for z′ > z)

f zm
x (z, z′) = π

(

f−m(z)f−m(µm+1)
−1− f+

m(z)f+
m(µm+1)

−1Z−
m+1

)

×
(

f−m(µm+1)
−1−Z+

mf
+
m(µm+1)

−1Z−
m+1

)−1(
f−m(z′)−1−Z+

mf
+
m(z′)−1

)

R−1
m (z′) ,

(44)

with Z−
m ≡ 1k − 2

∑−1
m Rm−1(µm) and Z+

m ≡ 1k − 2
∑−1

m Rm(µm). One
concludes that the zero-modes (see Eq. (34) and Eq. (35)) are localized ex-
ponentially to the mth constituent monopoles (for z away from the interval
boundaries).

Explicit solutions are found when ~R(z; ~x) ≡ ~x − ~Y (z) is piecewise con-

stant, i.e. ~Y (z) ≡ ~Ym for z ∈ [µm, µm+1], in which case |~R| = R±
m = Rm.

Apart from k = 1, this is so for a class of axially symmetric multi-caloron
solutions [26], in which case 3k eigenvalues of ~Ym give the locations of the
type m constituent monopoles. The expression for the zero-mode in that
case can be used to show that in the high temperature limit the zero-mode
densities reduce to delta functions localized at these constituent locations,
thus establishing that the constituents in this limit are point-like monopoles.
Particularly simple axially symmetric solutions are found for SU(2),

ζa
iI = ρaδiI , ~Y ab

m = ~e(δabξa + ymρaρb), ν1y1 + ν2y2 = 0, ρa > 0 . (45)
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For charge 2, choosing ρ1 =ρ2 =2 and equal mass constituents (ν1 =ν2 = 1

2
)

the constituent locations y are plotted as a function of ξ = ξ1 = −ξ2 in
Fig. 4. We note that opposite charges are found to alternate. The properties
of these solutions will be further discussed in the next section.

y

ξ
-4 -2 2 4

-6

-4

-2

2

4

6

Fig. 4. Constituent locations y based on Eq. (45) as a function of ξ = ξ1 = −ξ2 for

y2 = −y1 = ν1 = ν2 = 1

2
and ρ1 = ρ2 = 2. Dashed versus full lines distinguish the

magnetic charge of the constituents. The dotted lines apply to Fig. 3.

More generally, for SU(2) and charge 2 we may borrow from the study of
monopoles [13,32] the general solution of the Nahm equations for z∈ [µ1, µ2]

Âj(z) ≡ 2πiĝ†(z)h†
(

aj12 + DRjbfb(4πDz)τb
)

hĝ(z) , (46)

where fj(z) are the Jacobi elliptic functions

f1(z) =
k
′

cnk(z)
, f2(z) =

k
′snk(z)

cnk(z)
, f3(z) =

dnk(z)

cnk(z)
. (47)

Here ~a is the center of mass for monopoles of a given type, R and h are
arbitrary spatial and gauge rotations, D is a scale parameter, and 0 ≤ k ≤ 1

(k′ ≡
√

1 − k
2) playing the role of a shape parameter, as will be discussed

in the next section. In general all these parameters differ on the second
interval where in addition z is shifted to z − 1

2
, but they are to be related

through the discontinuities in the Nahm equation, Eq. (27). This tends to
be rather restrictive, and is the point where the construction for calorons
deviates from that for static monopoles.

Quite remarkably, although ~R(z; ~x) is no longer piecewise constant, the
function TrR−1

m (z) is independent of z ∈ [µm, µm+1]. This is a highly non-
trivial consequence of the Nahm equations (from the point of view of integra-
bility, it gives a constant of motion). The physical significance here is that it
is directly related to the zero-mode density (summed over the zero-modes)
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in the high temperature limit, see Eq. (35) and Eq. (43),

(

∑

a

Ψ̂a
z (x)†Ψ̂a

z (x)
)ff

= −∂2
i Vm(~x), Vm(~x) ≡ (4π)−1 TrR−1

m (z) . (48)

Miraculously we have been able to calculate Vm(~x) exactly [31], from which
we will be able to draw conclusions on the pointlike nature of the con-
stituents.

3. Properties of solutions

We start our tour of SU(n) caloron solutions with those of charge 1. In
this case the action density has a particularly simple form [33]

− 1

2
TrF 2

µν(x) = − 1

2
∂2

µ∂
2
ν logψ(x), ψ(x) = 1

2
tr(An · · · A1) − cos(2πt/β),

Am ≡ 1

rm

(

rm |~ρm+1|
0 rm+1

)(

cosh(2πνmrm/β) sinh(2πνmrm/β)
sinh(2πνmrm/β) cosh(2πνmrm/β)

)

. (49)

Here νm = µm+1−µm, rm = |~rm|, ~rm = ~x−~ym and ~ρm = ~ym−~ym−1, where
~ym (~yn+m ≡ ~ym) are the constituent locations7. A few typical examples for
SU(2), where |~ρ1| = πρ2/β in terms of the instanton scale parameter ρ, are
shown in Fig. 2 and for SU(3) in Fig. 5 (we apologize for a somewhat awk-
ward choice of conventions in naming the vectors ~ρm and scale parameters
ρa = |ζa|). From this it is already clear that there are n lumps, centered at
~ym and that when well-separated they are static and spherically symmetric.
The self-duality then guarantees each lump is a basic BPS monopole, which
can be seen to contribute 8π2νm to the action, correctly summing to a total
action 8π2. Interesting properties on the geometry of the moduli space and
alternative approaches can be found in Refs. [34–36].

It is instructive to provide further evidence for the monopole nature of
these constituent lumps. For this we take the far field limit (ff) of Eq. (49).
In this limit ~x is assumed to be far from all constituent locations ~ym and we
find

ψff(x) = 1

2

n
∏

m=1

(rm + rm+1 + |~ρm+1|)
2rm

e2πνmrm/β . (50)

Note that there is no longer any time dependence and the far field limit is
equivalent to the high temperature limit β → 0, where the monopole mass
becomes infinite and the non-Abelian core collapses to zero size (the range
of the exponentially decaying charged fields shrinks to zero). As we will

7 This can be derived from Eqs. (39),(40) using Sm = Ŝm = |~ρm| (see Eq. (26)) and
Am = Bm+1Tm+1HmB

−1
m , where B11

m = B22
m = 0, B12

m = 1 and B21
m = 4πrm.
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Fig. 5. Action densities for the SU(3) caloron with (µ1, µ2, µ3) = (−17,−2, 19)/60

and (ν1, ν2, ν3) = (0.25, 0.35, 0.4) at t = 0 in the plane of the three constituents for

1/β = 1.5, 3 and 4 (from left to right) on equal logarithmic scales.

argue, using AD
µ (~x) as the gauge field for the basic self-dual Abelian–Dirac

monopole, one finds in a suitable gauge for the Abelian far field embedded
in SU(n), Aab

µ (~x) = δabÃ
a
µ(~x), with Ãm

µ (~x) = 1

2
AD

µ (~rm) − 1

2
AD

µ (~rm−1), where
~ED(~x) = ~BD(~x) = ~x|~x|−3 are electric and magnetic fields of this self-dual
Dirac monopole. One verifies8 that indeed − 1

2
TrF 2

µν(x) = − 1

2
∂2

i ∂
2
j logψff(x)

when substituting this gauge field.
To give a little more insight in why the gauge field takes the above form,

we remark that another way to define the location of an SU(2) monopole
is to find the zeros of the Higgs field, or for SU(n) to find where two of
its eigenvalues coincide. At these points the broken gauge symmetry is
partially restored to include an unbroken SU(2) subgroup. In the case of
the caloron we of course need to find coinciding eigenvalues of the Polyakov
loop9, P (~x) [37]. The gauge field Ãm(~x) defined above is associated to
the Abelian component of the embedded SU(2) monopole associated to the
unbroken subgroup. The Polyakov loop therefore is a useful diagnostic tool
particularly when monopoles are too close to be seen as separate lumps. For
SU(2) the constituents are simply found where P (~x) = ±12 [38].

Important is that when coinciding eigenvalues occur at infinity, that is in
P∞, some constituent masses will vanish. For trivial holonomy only the nth
constituent is massive and the action density shows a single lump, the usual
(deformed) instanton, cf. Fig. 6. In the presence of massless constituents
one cannot take the far field limit, due to the infinite range of the fields in
these massless cores. One may, however, move massless constituents off to
infinity. For SU(2) this requires one to take ρ → ∞, and one is left with

8 It is best to first check − 1

2
∂2

i ∂
2
j log[r−1

1 r−1
2 (r1 + r2 + |~ρ2|)

2] =
(

r−3
1 ~r1 − r−3

2 ~r2
)2

,
relevant for SU(2). The exponential terms in Eq. (50) do not contribute, except
for

∑

m
δ(~rm)8π2νm/β. However, in the core Eq. (50) should not be used since the

singularity in ψff(x) is simply due to approximations made outside the core.
9 In technical terms the locations of constituents are found where logP (~x) takes values

on the boundary of the Weyl chamber [39].
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a BPS monopole in a singular gauge to adjust the mismatch in boundary
conditions between caloron and monopole, or put differently, to compensate
for the magnetic charge that is pushed past infinity [9].

Fig. 6. The action density for SU(2) calorons with ρ = β and (from left to right)

µ2 = 0 (i.e. trivial holonomy), 0.125 and 0.25 (i.e. TrP∞ = 0), at t = 0 in a plane

through the constituent locations.

As we have explained in the introduction, chiral zero-modes play an
extremely important role in the physics of instantons. They will also turn
out to be very useful as a diagnostic tool for studying the properties of the
caloron solutions. The Atiyah index theorem has taught us there is one chiral
zero-mode for a charge 1 caloron. But when the caloron has “dissociated”
in n constituents the natural question is if the zero-mode is going to follow
this. There is a compelling reason to expect it will opt for being localized on
one constituent only. When well separated, the constituents become BPS
monopoles. These are known to have zero-modes, but only for a given range
of z values in terms of the Higgs expectation value, as dictated by the Callias
index theorem [40]. We will show how this determines to which constituent
the zero-mode will be localized. Even more useful is that we can change
this by introducing an arbitrary phase in the boundary conditions for the
fermions, which reads in the algebraic gauge (Eq. (3))

Ψ̂z(t+ β, ~x) = exp(2πizβ)P∞Ψ̂z(t, ~x) . (51)

Physical fermions at finite temperature are required to be anti-periodic,
Ψ(t, ~x) = Ψ̂z=1/2β(t, ~x). That z determines the location of the zero-mode
is seen as follows. The gauge transformation g(t) = exp(2πizt) exp(tA∞

0 )
makes the fermions periodic at the expense of changing A0 = 0 at spatial
infinity to A0 = A∞

0 − 2πiz, cf. Eq. (5). This acts as an effective mass
term in the Dirac equation, which differs for each of the gauge components.
As discussed earlier in this section, each constituent monopole is associated
with an SU(2) embedding and the two isospin components of these embed-
dings effectively have “masses” 2π(µm/β − z) and 2π(µm+1/β − z). This
only gives a normalizable zero-mode when these are of opposite sign [40],
that is for z ∈ [µm/β, µm+1/β]. In the interior of this interval the zero-
mode is exponentially localized (to the constituent monopole at ~ym), but at
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z = µm or z = µm+1 one of the isospin components becomes massless and
the zero-mode delocalizes, having in addition support on the constituent at
respectively ~ym−1 or ~ym+1.

The expression for the zero-mode density can be given in a simple form
for arbitrary charge 1 calorons as well [41]. With µm/β≤z′≤z≤µm+1/β

f̂x(z, z
′) =

πe2πit(z−z′)

βrmψ
〈vm(z′)|Am−1 · · · A1An · · · Am − e−2πit/β |σ2vm(z)〉,

vm(z) ≡
(

sinh[2π(z − µm/β)rm]
cosh[2π(z − µm/β)rm]

)

, |Ψ̂z(x)|2 = − 1

4π2
∂2

µf̂x(z, z) , (52)

where for later use we have introduced also the off-diagonal expression for
the Green’s function f̂x(z, z′) (for z≤z′ one can use the fact that f̂x(z′, z) =

f̂∗x(z, z′)), which can be computed using impurity scattering calculations
in a piecewise constant potential, see Sec. 2.3, the details of which need
not concern us here. We illustrate the behavior of the zero-mode in Fig. 7
at various values of z for the caloron of Fig. 5. It is also interesting to
consider the so-called zero-mode limit (zm) in which ~x is far removed from

z = 12/60 z = 30/60 z = 48/60

z = 19/60 z = 43/60 z = 58/60

Fig. 7. Normalized zero-mode densities at β = 1, for the SU(3) caloron of Fig. 5

shown for z = µj on equal linear scales (bottom) and on equal logarithmic scales

for three values of z roughly in the middle of each interval z ∈ [µj , µj+1] (top).

The zero-mode with anti-periodic boundary conditions is found at z = 30/60.
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any constituent location, except the one at ~ym. This gives10

f̂ zm
x (z, z) =

2π sinh (2πrm(µm+1/β − z)) sinh (2πrm(z − µm/β))

βrm sinh (2πrmνm/β)
. (53)

At z = 1

2
(µm + µm+1)/β (i.e. z = 0 or z = 1/2β for SU(2)) we find

f̂ zm
x (z, z) = π(rmβ)−1 tanh(πrmνm/β) , (54)

with −(4π2)−1∂2
µf̂

zm
x (z, z) giving precisely the zero-mode density of a basic

BPS monopole, confirming once again the nature of the constituents. In the
high temperature limit, as long as z 6= µm/β, the zero-modes become in-
finitely localized to the constituent locations ~ym. In this limit the zero-mode
density is given by β−1δ(~x − ~ym) for µm/β < z<µm+1/β. The zero-modes
are therefore ideal for localizing the cores of the constituent monopoles, par-
ticularly useful for the higher charge calorons discussed below. It should be
noted that in general the definitions of the constituent locations based on
the peaks in the energy density, the degeneracy of two eigenvalues in the
Polyakov loop and the peak in the zero-mode densities will only coincide
with ~ym when all constituents have a non-zero mass and are well separated
(as compared to the size of the monopole cores) from each other.

Before discussing the higher charge calorons we give the simple ex-
pression for the SU(2) charge 1 gauge field in the algebraic gauge with
P∞ = exp(βωτ3) (hence µ2 = −µ1 = βω),

Aµ =
i

2
η̄3

µντ3∂ν log φ+
i

2
φRe

(

(η̄1
µν − iη̄2

µν)(τ1 + iτ2)∂νχ
)

, (55)

where φ−1 ≡ 1 − ρ2f̂x(ω, ω) and χ ≡ ρ2f̂x(ω,−ω), which has some resem-
blance to the ’t Hooft ansatz in Eq. (13). It reduces to this ansatz for trivial
holonomy, ω = 0, for which χ = 1 − φ−1, and one easily checks that this
gives precisely the Harrington–Shepard solution with φ = φHS, see Eq. (14).
In the high temperature limit one finds for non-trivial holonomy χff = 0,
φff = (|~x− ~y1|+ |~x− ~y2|+ |~y2 − ~y1|)/(|~x− ~y1|+ |~x− ~y2| − |~y2 − ~y1|) and that
Aµ = i

2 η̄
3
µντ3∂ν log φff describes a pair of oppositely charged Dirac monopoles

with the Dirac string on the line connecting them, where φff diverges, but
outside of which log φff is harmonic.

3.1. Higher charge calorons

When ignoring charged components of the gauge field, outside the core
the Abelian field has unavoidable Dirac strings. We can trace how the exact

10 Allowing only for errors decaying exponentially in rl6=m, one needs to include O(r−1
m±1)

dependent shifts in µm, µm+1 and νm, see Eq. (44) and Ref. [31].
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solution instead takes care of the return flux, namely through the Abelian
component in the magnetic field coming from the commutator of the charged
components of the non-Abelian field, as is of course well-known from the
’t Hooft–Polyakov monopole. But from the numerical point of view this will
require exponential fine tuning outside the core. It is notoriously difficult
to find approximate superpositions for magnetic monopoles without seeing
a remnant of the Dirac string, and in that sense there is “no free lunch”.
Like in the instanton liquid we would like to make approximate superposi-
tions of calorons, which also allows us to mix calorons of different charges.
However, for those that “dissociate”, the constituents should not “remember”
from which caloron they originated. Although the constituents themselves
might be well separated, interference can occur in the regions between them.
An example of this is shown in Fig. 8, where we added two charge 1 caloron
gauge fields in the algebraic gauge, called the sum ansatz [20, 21]. This
preserves the gauge condition but some care is required at the gauge singu-
larity, which is removed by a gauge transformation with non-trivial winding
number (sometimes one refers to these gauge fields as being in the singular
gauge). Adding the gauge fields after such a gauge transformation is per-
formed, destroys the proper decay at infinity. Instead, one first smoothly
deforms to zero the gauge fields of all other calorons in a small neighbor-
hood centered around the gauge singularity one wishes to remove. This only
costs a small amount of action, particularly when the calorons are not too
close. In principle a similar construction is possible for keeping Dirac strings
hidden, but in this case the gauge singularity is due to approximating the
fields by their Abelian component, far from the constituent cores. However,
this would require exponential fine tuning. Nevertheless, not performing any
adjustment the action density along the Dirac string (or sheet due to the
additional extent in the time direction) actually stays finite11, see Fig. 8.

It is due to these complications we felt compelled to analyze the higher
charge caloron solutions. The disadvantage is that one can only consider
the exact self-dual solutions this way, and not superpositions of opposite
charges. On the other hand, it should guarantee absence of Dirac strings, as
we indeed confirm for a set of exact axially symmetric solutions that share
all the properties of the charge 1 solutions, as illustrated for the example of
SU(2) charge 2 solutions in Figs. 9–11. In the high temperature limit these
solutions are again described by point-like constituent monopoles [26]. Most
of the memory effect has disappeared. In the light of this it is interesting
to point out that when further separating the two pairs on the left from

11 Only at the gauge singularity the action density of the combined field diverges, which
may be removed as discussed.
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Fig. 8. Approximate superposition of two SU(2) charge 1 calorons (left). The

logarithm of the action density is plotted through the plane of the constituents

at t = 0 for β = 1 we zoom in by a factor 40 for the transverse direction on the

would-be Dirac strings (right).

Fig. 9. Action density on equal logarithmic scales for exact axially symmetric SU(2)

charge 2 solutions at β = 1 for t = 0, on a plane through the constituents. Locations

can be read off from the dotted lines in Fig. 4, from left to right. For the last case

see Fig. 10.

those on the right, each can be viewed as coming from a single caloron12.
However, when the two middle constituents start to get closer than the
size of their cores, as in Fig. 9 it is more natural to interpret the solution in
terms of one well “dissociated” caloron formed by the two outer constituents,
on top of which is superposed a small “non-dissociated” caloron, which is
no longer static. Indeed, its peak is nearly O(4) symmetric, whereas the
other two constituents are static and O(3) symmetric to a high degree, as is
appropriate for a BPS monopole (see Fig. 9 (left)). A very subtle memory
effect, however, remains. It can be shown that for these point-like axially
symmetric solutions the magnetic charges have to alternate. In particular
one cannot move one monopole through the other. It may perhaps come as
a surprise, but in part there is a good reason for being cautious, since as we
have just seen two oppositely charged constituent monopoles really form a

12 In this context the parameters ξa and ρa appearing in Eq. (45) can be interpreted as
the center of mass and size of those calorons.
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Fig. 10. Action density on equal logarithmic scales for the exact axially symmetric

SU(2) charge 2 solution with all constituents well-separated (left), the approximate

solution based on the sum ansatz (middle) and the high temperature limit with

point-like Dirac monopoles (right). See also Fig. 9.

Fig. 11. Zero-mode densities on equal logarithmic scales for the caloron in Fig. 10

(same horizontal scale). On the left are shown the two periodic zero-modes (z = 0)

and on the right the two anti-periodic zero-modes (z = 1/2).

small caloron. Since the distance between constituents is given by πρ2/β,
this means that we have to go through a singular caloron when interchanging
constituent locations on the line. A singular caloron lies on the boundary of
the moduli (i.e. parameter) space and one cannot use continuity arguments.

The reason to expect that in general one no longer deals exclusively with
point-like monopoles comes from the known multi-monopole solutions. It
is well-known that when putting monopoles of equal charge on top of each
other, these are deformed in for example the shape of a doughnut [42], as
famously illustrated in the scattering of two magnetic monopoles [43]. At the
technical level this is related to the fact that the Green’s function mentioned
above no longer involves a piecewise constant potential. Only for the axially
symmetric solutions this was still the case. Nevertheless, for SU(2) and
charge 2 we have been able to find an exact expression for the zero-mode
density in the high temperature limit. As long as z 6= µj, the fermions have
an infinite mass in this limit, and the zero-modes will vanish outside the
cores of the constituent monopoles, which themselves need not necessarily
be isolated points. We thus are able to trace with the help of the zero-modes
to which region the cores have to be localized. Here we will just present the
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result [31] and discuss its physical significance. For µm < z < µm+1 and in

the far field limit
∑

a |Ψ̂a
z (x)|2 = −β−1∂2

i Vm(~x), with

Vm(~x) =
1

2π|~x| +
D

4π2

∫

r<D

drdϕ
∂r|~x− r~y(ϕ)|−1

√
D2 − r2

, (56)

where ~y(ϕ) = (
√

1 − k
2 cosϕ, 0, sinϕ), up to an arbitrary coordinate shift

and rotation. Here D is a scale and k a shape parameter to characterize
arbitrary SU(2) charge 2 solutions. In this representation it is clear that
Vm(~x) is harmonic everywhere except on a disk bounded by an ellipse with

minor axes 2D
√

1−k
2 and major axes 2D. Although not directly obvious,

when k → 1 the support of the singularity structure is on two points only,
separated by a distance 2D. Taking an arbitrary test function f(~x) one can
prove that [31]

lim
k→1

−
∫

f(~x)∂2
i Vm(~x)d3x = f(0, 0,D) + f(0, 0,−D) . (57)

For the caloron k and D are in general not independent, monopoles of
different charges have to adjust to each other to form an exact caloron solu-
tion. As an example we illustrate in Fig. 12 the relation for the case studied
in Ref. [31], which is a two parameter family of exact SU(2) charge 2 calorons
solutions in terms of an instanton scale ρ and relative gauge orientation an-
gle α. For fixed ρ it interpolates between two axially symmetric solutions.
On the left is shown the relation between k and ρ for some values of α. To-
gether with the fact that D = π

√
2ρ2(1+O(1−k

2)), this shows that k → 1
for increasing D. It can be shown this approach is exponential, cf. Fig. 12
(left).

The important conclusion is that, when well separated, the constituent
monopoles become point-like objects. This is a necessary requirement for
the constituent monopoles to be used as entities to describe the field con-
figurations at larger distances. Much work, of course, remains to be done,
but the results so far have been encouraging. In addition important lattice
evidence has been accumulated by now, which we will briefly summarize in
the next section.

4. Lattice evidence

There are a number of lattice studies, that clearly point to constituent
monopoles to have a dynamical role to play. Two methods have been em-
ployed. One is based on so-called cooling, the other one uses fermion zero-
modes. In both cases the purpose is to filter out ultraviolet noise, i.e. one
is interested in the long distance fluctuations.
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Fig. 12. On the left we plot k versus ρ for α = 0 (k ≡ 1), α = −π/100 and

α = −π/2. On the right are shown the locations of the constituent monopoles (fat

vs. thin curves for opposite charges) at ρ = 1/4, varying α from −π (indicated by

the arrows) to 0.

4.1. Cooling

Cooling is the process by which one lowers the lattice action through local
updates, replacing a link by a suitable combination of neighboring links, such
that when remaining unchanged it satisfies the lattice equations of motion.
There are by now many variants, using improved lattice actions (to reduce
discretization errors), and criteria to stop the cooling [44]. Such a criterion is
important, because when cooling too long either all the non-trivial fields are
removed, or at best one reaches a self-dual solution. The latter is of course
sometimes done on purpose, so as to reproduce the classical solutions on the
lattice to quite some precision, or to look for solutions not known exactly.
For the calorons this has been extensively studied [38], even in connection
with a numerical implementation of the Nahm transformation [45], mainly
in the presence of so-called twisted boundary conditions [46] to coach the
system in having non-trivial holonomy.

From the dynamical point of view, one would like to find how often, and
with which properties, calorons appear in the long distance fluctuations. In
this case one would like to start from Monte Carlo generated configurations
and stop the cooling process when reaching a plateau in the plot for the
action as a function of the number of cooling steps. The plateau would
be infinitely long if the configuration is a solution of the lattice equations
of motion, but would still be sizeable if these are satisfied approximately.
Therefore, configurations consisting of any number of well-separated instan-
tons (Q) and anti-instantons (Q̄) can form such plateaus, with an action
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approximately equal to 8π2(Q + Q̄), whereas the topological charge of the
equivalent continuum configuration equals Q− Q̄. An instanton can shrink
to such a small size ρ (from the caloron point of view its two constituents
monopoles getting too close together) that the lattice no longer supports it
as a solution13. Also, when instantons and anti-instantons come close to-
gether they annihilate, this effect is independent of the lattice discretization.
In both cases the plateau ends, and the cooling curve typically settles down
at the next plateau where Q+ Q̄ has decreased by 1 or 2 unit, respectively
(whereas Q− Q̄ changes by ±1 or 0, respectively). The expectation is that
the annihilation of oppositely charged configurations is slow, at least when
they are sufficiently separated, and that from the plateaus one can recover
the statistical properties of instantons and calorons.

To prompt the system to have a given holonomy, one can freeze the time-
like links at the spatial boundary of the box to the required holonomy [48],
but in larger volumes it is expected that the confining environment itself
will provide local regions with a sufficiently coherent background A0 field
associated with non-trivial holonomy. One important finding has been that
after cooling the non-trivial holonomy is preserved to some degree [49]. This
has been analyzed for SU(2) in terms of the so-called “asymptotic holon-
omy” L∞, defined as the average of 1

2
TrP (~x) over all points ~x for which the

action density, summed over t, is smaller than .0001. Histograms of L∞ in
the confined phase are shown in Fig. 13 (taken from Ref. [49]). Early on in
the cooling process a clear peak at L∞ = 0 is observed, which becomes a
flat distribution when cooled down to the plateau associated to Q+Q̄=1.
Important is in particular that the distribution is not becoming peaked to-
wards L∞ = ±1. Many configurations with well “dissociated” calorons in
this dynamical setting have been found [49], and with this method one can
study the configurations in great detail. For SU(2) one can thus look for the
monopole centers by finding where the Polyakov loop equals ±12 and use
the fermion zero-modes for periodic and anti-periodic boundary conditions
to test if they are localized on the appropriate constituents14.

In these studies one also finds configurations that cannot be directly
interpreted in terms of instantons, calorons and their possible constituent
monopoles [49]. Interestingly, there are cases where two constituents appear,
but of opposite fractional topological charge. These could arise from the
“annihilation” of two other constituents of opposite duality [50] but where
originally each of these, together with one of the surviving constituents,
formed an (anti-)caloron. More recently these authors also performed cool-
ing studies for SU(2) at considerably lower temperature than just around the

13 This can be prevented by a suitable choice of improved lattice action [47].
14 For SU(2) one profits from the fact that z = 0 always lies in the middle of the interval

[µ1, µ2], whereas z = 1

2
always lies in the middle of [µ2, 1 + µ1].
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Fig. 13. The “asymptotic holonomy” L∞ for an ensemble of O(200) configurations

generated on a 163 × 4 lattice with periodic boundary conditions for a lattice

coupling 4/e2 = 2.2. Left is shown the measurement on the first plateau, right

on the last plateau. For comparison the Haar measure
√

1 − L2 is shown by the

dashed curve. Figures taken from Ref. [49].

deconfining phase transition [51]. The calorons in this case do not tend to
“dissociate” in isolated lumps of action density. Nevertheless, constituents
could be identified through the behavior of the Polyakov loop and were
characteristic for non-trivial holonomy. This may explain why in the past
constituent monopoles were never noticed in cooling studies. Finally let us
mention that many results for SU(3) have now been obtained as well [51].

4.2. Zero-mode filter

The use of zero-modes as a filter relies on two observations. The first
is, as we have seen, that zero-modes quite accurately trace the underlying
gauge field of instantons, calorons and constituent monopoles. Secondly, a
zero-mode probes the long distance features of the configuration and ignores
the ultraviolet high momentum components, otherwise one could never have
a zero-mode. In some sense the Dirac operator is a particular projection of
the covariant momentum. For SU(3), comparing periodic and anti-periodic
fermion boundary conditions [52], or cycling through all possible phases [53],
Eq. (51), a significantly different behavior in the two phases was found. In
the deconfined phase, the proper z-dependent behavior of the trivial holon-
omy configuration is seen. These are of course the old Harrington–Shepard
solutions, but their zero-modes were previously only considered for anti-
periodic boundary conditions. In the confined phase indications for a three
lump structure is seen (see Fig. 14, taken from Ref. [53]) in a reasonable
fraction of the configurations. These results are based on dynamical con-
figurations generated with the Lüscher–Weisz [54] improved lattice action.
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Fig. 14. The zero-mode density for a particular configuration in the confined phase

on a 6×203 lattice with (Lüscher–Weisz) coupling 6/e2 = 8.20, taken from Ref. [53].

Shown are slices in (x, y) at (t, z) = (5, 9) (left), (t, z) = (2, 19) (center) and

(t, z) = (5, 18) (right), for z = 0.05, 0.3 and 0.65 (from top to bottom).

Configurations that had exactly one chiral zero-mode (which requires the
use of a chirally improved lattice Dirac operator [55]) were singled out. By
the index theorem, this implies the topological charge is equal to one. The
dynamically generated configurations can, and typically will, consist of Q+1
instantons and Q anti-instantons, giving rise to near zero-modes with less
perfect chiral behavior. Work is in progress to analyze the near zero-modes,
as well as performing cooling on the SU(3) gauge field configurations [56].
This will help to further rule out the unlikely possibility for the zero-mode to
jump between instanton, rather than monopole constituents. A more theo-
retical study [57] has recently shown that it seems indeed impossible for the
full signature of a single caloron with non-trivial holonomy to be emulated
by the effect of hopping between instantons.

Even more remarkable is that a similar structure of multiple lumps for the
topological charge 1 sector was found on a symmetric lattice of size 164 and
124 at low temperature, well in the confined phase [53, 58]. In this case the
lattice does not single out one direction as being (imaginary) time. Yet, using
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one of these directions to impose the z dependent boundary condition for the
fermions, in almost half of the configurations one finds more than one lump.
The results seem to indicate these lumps are randomly distributed over the
volume. How to reconcile this with the results found with cooling, that
pointed to “non-dissociated” calorons at low temperature, is at the moment
not clear. But let us recall that fractionally charged instantons on the torus
were long ago introduced by ’t Hooft [46], and have been extensively studied
on the lattice [60]. Twisted boundary conditions and, related to it, the
quantization of the topological charge in units of 1/n, make it more difficult
to embed these solutions in a dynamical environment. Nevertheless, on the
basis of some simple assumptions concerning the dynamical properties of
these configurations, quasi realistic results have been obtained [61]. It is
indeed compelling to interpret the 4kn dimensions of the SU(n) charge k
instanton parameter space on the torus in terms of the space-time locations
of kn instanton quarks, as they were called long ago [59] (even though their
meaning at that time was more abstract). Results for instantons on T 2×R2,
that in some sense interpolate between the case of calorons and instantons
on the torus, give further evidence [62] for this conjecture.

5. Conclusion

It is clear we can do no justice here to all the results that have been ob-
tained in using lattice simulations. The great advantage of using zero-modes
as a filter is that it minimizes the bias, since it directly uses the Monte Carlo
configurations themselves. On the other hand, in the cooling studies one has
access to the relation between the behavior of the Polyakov loop, which plays
the role of an order parameter in SU(n) gauge theories, and the presence
of constituent monopoles, which may give some insight in the underlying
dynamics. Of course, we would like to make constituent monopoles into a
precise tool, e.g. for testing the celebrated idea of a dual superconductor
to describe confinement [63, 64], or as we speculated in the introduction, to
describe a dense phase of monopoles to lead to deconfinement of magnetic
charges, like quark deconfiment at high density.

On the more theoretical side we have also not touched upon the role
these constituent monopoles play in supersymmetric gauge theories [65, 67]
and how the initial motivation for reconsidering calorons with non-trivial
holonomy came from the study of D-branes [8, 35, 66]. Nevertheless, we
feel the applications to the dynamics of non-Abelian gauge theories is very
promising. We hope to have given the reader some insight in this matter.
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