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THE RENORMALIZATION GROUP

AND THE COLOR GLASS CONDENSATE∗
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The Color Glass Condensate is the matter which controls the high en-
ergy limit of strongly interacting particles. I qualitatively describe the
nature and origin of this matter, and the renormalization group equations
which allow for a computation of its properties.

PACS numbers: 12.38.–t, 24.85.+p

1. Implications of high gluon density

In Fig. 1, I show a slice of a hadron at small x, that is the transverse
distribution of the low longitudinal momentum degrees of freedom (wee par-
tons). At small x, this density grows and at very small x satisfies

Λ
2 =

1

πR2

dN

dy
≫ Λ

2
QCD . (1)

This means the typical separation between partons is small, and αs evaluated
at this scale is weak.

What can stabilize the density distribution of partons? Instabilities are
typically driven by negative mass squared terms proportional to the phase
space density ρ. They are typically stabilized by interactions proportional
to αsρ

2. The stable density is ρ ∼ 1/αs, and when αs is weak, this is
large. This is closely related to the phenomena of Bose condensation and
superconductivity. The quantum occupation numbers for this state are large
and it is highly coherent. Hence the name condensate. This implies the gluon
density distribution should saturate [1].
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Fig. 1. The transverse distribution of partons inside a hadron.

The partons which generate this condensate come from higher values
of x in the frame where the condensate is at rest. These higher x degrees
of freedom are Lorentz time dilated compared to their natural time scales,
and this time dilation is transferred to the low x degrees of freedom. Since
the color distribution comes from partons at very many different values of x,
one expects the distribution of color in the transverse space to be random.
These properties are similar to ordinary glasses, and in fact the theory one
writes down to describe this is the same type used to describe spin glasses.
Hence the name glass.

The gluons which make up this distribution are colored. It is therefore
a scientifically accurate name that this low x high density gluon matter be
called Color Glass Condensate.

In order to parameterize the Color Glass Condensate, we introduce the
saturation momentum,

Q2
sat ∼ αsΛ

2 . (2)

This is the largest momentum where the phases space density remains of
order 1/αs.

To compute the dependence of this momentum on x, it turns out we
need to understand the gluon distribution in an intermediate range of phase
space density, where 1/αs ≫ ρ ≫ 1. One can analyze the BFKL equation
in this range of momentum, and compute the dependence of the saturation
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momentum on x [2]. Over a wide range of energy, one finds [3]

Q2
sat ∼ 1 GeV2

(x0

x

)0.3
. (3)

This result is quite close to the value found by an analysis of deep inelastic
scattering and diffraction by Golec-Biernat–Wustoff [4].

In fact, Golec-Biernat, Kwieciński and Stasto made a very important
discovery based on the HERA data [5]. They discovered that over a very wide
range of momentum of the virtual photon, Q2 in deep inelastic scattering,
the cross section

σγ∗p = F

(

Q2

Q2
sat

)

. (4)

This works for x < 10−2 and Q2 < 400 GeV2. One can understand this
result for small Q2 ∼ Q2

sat, but it is a surprise it works well at such large Q2.
In fact one finds that another scale appears in the problem Q4

sat/Λ
2
QCD. In

this intermediate scaling region, Q2
sat ≪ Q2 ≪ Q4

sat/Λ
2 correlation function

scale as powers of Q2, that is anomalous dimensions which are computable
within BFKL dynamics. In this region, the phase space density is not so
large, and the time scales for evolution of matter are more or less normal time
scales, but the correlations are non-trivial. The description of the matter is
quantum, not classical [2]. This region has been called the Quantum Color
Fluid by my good friend Kharzeev [6].

We can now draw a phase diagram of QCD. In Fig. 2, the regions of phase
space occupied by the Color Glass Condensate, the Quantum Color Fluid,
and the ordinary parton gas is shown in the ln(1/x) − ln(Q2) plane. We

Fig. 2. The phase diagram for high density QCD.
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believe we have a semi-quantitative theory of this matter, and this theory
should become precise at asymptotically small x. This is because the density
becomes large at small, and therefore the coupling is weak, and we can
compute the properties of weakly coupled theories.

2. Universality

The concept of universality is built into our theoretical description of
the Color Glass Condensate. The properties of the matter depend only
upon the density of partons per unit area, independent of the nature of the
original parton. Because all matter is made from CGC at high energies,
the properties of hadrons relevant for high energy processes are universal.
The parton distributions themselves can be computed as a property of this
matter.

There is a deeper sense in which this matter is universal which arises
from renormalization group ideas. To understand this, one needs to know
about the property of limiting fragmentation. If one plots the distribution

Fig. 3. Limiting fragmentation in heavy ion collisions.

of produced particles as a function of rapidity measured from the rapidity
of one of the colliding particles, except for a few units of rapidity which
corresponding to the slow moving particles (the wee partons) in the center
of mass frame, the distributions are the same at different energies. It is as
if the only effect of going to higher energy is to add in new low momentum
degrees of freedom. The high momentum degrees of freedom are frozen out.

This means that there should be an effective action for the low momen-
tum degrees of freedom, and going to higher energy integrates out these
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degrees of freedom, and results in a new theory for the yet lower momentum
degrees of freedom at the higher energy scale. In fact these low momentum
degrees of freedom are integrated out to generate sources for the wee partons
at higher energy. This process is a renormalization group [1, 7].

Unlike the ordinary renormalization groups we are familiar with from
perturbative field theory, this renormalization group turns out to be a func-
tional differential equation. It is essentially an infinite dimensional diffusion
equation for the wavefunction which describes the small x gluons. Because of
its diffusive nature, going to smaller values of x implies that the wavefunction
spreads, and this spreading is the origin of the non-trivial growth of the gluon
distribution function and the saturation momentum. One can write the
functional differential equations explicitly, and see that all known renormal-
ization group equations which include DGLAP and BFKL are reproduced.
In addition one gets a complete description of both the Color Glass Con-
densate and the Quantum Color Fluid regions of the QCD ln(1/x)− ln(Q2)
phase diagram. The solutions at small x appear to be universal [8]. For a
complete review of these and other topics see the recent review of Iancu and
Venugopalan [9].

What I am claiming here is very radical: We have a complete under-
standing of the high energy limit of QCD in terms of a universal form of
matter. At high enough energy, we have the tools at our disposal to explicitly
compute the properties of QCD.

3. The renormalization group equations

3.1. The renormalization group

The Color Glass Condensate is described by classical gluon fields which
are produced by a light cone current,

J+ = δµ+ρ(x−, xT) . (5)

The current has no dependence upon x+ because of Lorentz time dilation.
This current describes the gluonic degrees of freedom with x values larger
than the scale at which we are studying our gluon fields. An effective action
for the Color Glass Condensate gives a path integral representation of the
form

∫

[dA][dρ] exp (iS[A, ρ] − F [ρ]) . (6)

In this equation S is the action for the gluon fields in the presence of a
light cone current described by the charge density ρ. (To define it properly
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one must provide a manifestly gauge invariant action.) Once one solves for
the fields in terms of ρ, then one is required to average over the source
with a weight function F [ρ] which in the McLerran–Venugopalan model
is taken as a Gaussian [1]. Implicit in the path integral is a longitudinal
momentum cutoff. The fields have momenta below this cutoff, and the
effect of integrating out the fields above the cutoff is included in the source
ρ and the integration over various values of ρ.

The question arises: How does one determine F [ρ]? It turns out that F
is determined by renormalization group equations generated by varying the
longitudinal momentum cutoff [1, 7]. The reason why the renormalization
group treatment is essential follows from trying to solve for physical quan-
tities, such as the gluon distribution function within the CGC approach. In
lowest order one computes the classical field associated with the source ρ,
inserts it into an expression for the operator of interest, and then averages
over ρ. The lowest order corrections to this involve Gaussian fluctuations
around this classical solution. If there is some scale associated with the pro-
cess of physical interest, say p+, one finds that the first order corrections
are of order αs ln(Λ+/p+), where Λ

+ is the longitudinal momentum cutoff.
The coupling constant α is small because we evaluate it at the saturation
momentum scale. The quantum corrections to the lowest order result are
therefore small so long as

e−c/αsΛ
+ ≪ p+ ≤ Λ

+ . (7)

In order to go to lower momenta, it is easiest to change the longitudinal
momentum cutoff to a smaller value. To do this, we have to integrate out
the degrees of freedom between the old longitudinal momentum cutoff scale
and the new one. This can be done in Gaussian approximation since the
coupling is weak, and so long as the ratio of the various cutoff scales satisfies
αs ln(Λ+/Λ+′) ≪ 1. It turns out that this integration does not change the
action for the interaction of the gluon fields with the source. All that changes
is the weight function for integration over the source fields. If we let

dy = ln

(

Λ
+

Λ+′

)

(8)

the renormalization group equation becomes

d

dy
e−F [ρ] = −H

(

ρ,
d

dρ

)

e−F [ρ] . (9)

It turns out that H is second order in d/dρ, real, and positive semidefinite.
Therefore H can be interpreted as a Hamiltonian for a 2 + 1 dimensional
quantum system.
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The Hamiltonian above has an unusual property. If there was a potential
for the Hamiltonian H with a unique minimum, then at large times the
solution of the above equation would tend towards the ground state. In the
Color Glass Condensate H, there is in fact zero potential. The system never
tends to the ground state, and there is quantum diffusion. To see how this
works consider a 1 dimensional example.

d

dy
Z =

−p2

2
Z . (10)

This has the solution

Z =
1

√
2πy

exp

(

−
x2

2y

)

. (11)

As the Euclidean time y increases, the wavefunction spreads, corresponding
to diffusion. This is unlike the situation where there is a potential

d

dy
Z =

(

−p2

2
− V (x)

)

Z . (12)

Here as we evolve in time, the coordinate x settles into the minimum of
V , and has small excursions around it. The solution for Z becomes time
independent.

The consequences of this simple observation are enormous. For the case
of diffusion, physical quantities are never independent of rapidity, even at the
smallest values of x. The non-triviality of the small x limit is a consequence
of the lack of a potential in the renormalization group evolution equation!

The interested reader is referred to the growing literature on this sub-
ject for details. Suffice it to say that one can use the renormalization group
equation above, and the explicit form for H which has been computed to
reproduce all known renormalization group equations. The explicit form
of the equations exists, and various approximate solutions have been con-
structed. The picture which results agrees with the phenomenology of small
x physics. Understanding and solving these equations provides a rich area
for future research.

I thank the organizers of the Cracow School of Theoretical Physics for
inviting me to lecture and to participate in this School. This manuscript
has been authorized under Contract No. DE-AC02-98H10886 with the
U. S. Department of Energy.
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