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The strong first order nature for more than five colours found in sim-
ulations of hot QCD leads to a quasi-particle picture valid down to the
critical temperature. We review the evidence for magnetic quasi-particles
and suggest simulations that put this picture into evidence.

PACS numbers: 21.65.+f, 25.60.+f

1. Introduction

Plasmas are ubiquitous in the universe. Most of visible matter is in this
state, in which atoms are fully ionized. A plasma we know quite well is
the sun. It sustains the thermonuclear power generation, that one tries to
imitate in Tokamaks. Large static magnetic fields show up on the sun’s
surface as sunspots. They tell us that there is no magnetic screening effect.
Of course long range static electric fields are absent, due to Debye screening.

What I will concentrate on in these two lectures is the strong first order
character of the transition to and on the magnetic screening present in the
QCD plasma for a large number of colours. This screening renders the QCD
plasma so different from the plasmas we are used to. That the magnetic
screening length had to be there was recognized already in the early days
[1] of hot QCD. It was based on the simple observation, that the static
magnetic sector of QCD is three-dimensional Yang–Mills theory and that
this theory contains a mass gap.
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This mass gap is, alas, not computable in terms of the small gauge
coupling constant. But it is accessible by lattice simulations. On the basis
of these simulations we find that the ratio of the square of the magnetic
screening mass and of the string tension is a large number. In terms of
length scales this is a small number.

Some time ago a model for the three dimensional Yang–Mills theory was
proposed, in which precisely this ratio was supposed to be small. It supposes
that the partition function can be approximately computed by thinking of
the theory as being a dilute 3D gas of lumps with size equal to the magnetic
screening length. The lumps are non-perturbative quantities in terms of the
3D gluons. But they are supposed to be in an adjoint SU(N) multiplet.

This model has simple consequences for the Wilson loops, which have
been verified to 1–2% by lattice simulations. Apart from a group theory
factor the model predicts the tension σ of the loop to be simply the product
of the magnetic screening lM and the density nM of the lumps:

σ ∼ lMnM . (1.1)

Multiplying this relation with l2M gives the desired diluteness l3MnM. This
diluteness equals l2Mσ and we know from lattice simulations this is a small
number. Thus we have an a posteriori justification for the model.

In the next Section 2 we recall some basic facts and numerology for the
Debye screening of electric charges, and how to simulate them on the lattice.

In the Section 3 we formulate the effective actions at high temperature.
In the next Section 4 we pursue the same but now for the magnetic screening.

Finally we pass to the subject of magnetic quasi-particles in Section 5.
The last section contains conclusions and prospects.

2. The Debye mass

Let us consider some gas heated at a temperature well above the ioniza-
tion energy. The electrons and ions are then moving more or less indepen-
dently from each other.

Since the ions are much heavier than the electrons one can consider them
to be a charged background with a density |e|n. If you immerse a heavy point
charge Q in this medium its Coulomb interaction changes the density n(~x)
of the electrons around it. The ions will remain unperturbed. As all of you
know this gives rise to screening of the Coulomb law. The argument is purely
classical. The Poisson equation in the presence of the ionized electrons with
charge e reads:

∆A0 = 4πen(~x) − 4πeni − 4πQδ(~x) . (2.1)
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The variation in the electron density is due to the variation in the energy
eA0 of electrons in the field A0, and the corresponding Boltzmann factor
exp eA0/T , setting Boltzmann’s constant equal 1s. Putting A0(~x = ∞) = 0
we get n(~x) = n exp eA0/T . The Poisson equation becomes in the linear
approximation in the energy:

∆A0 = 4π
e2ni
T

A0 − 4πe0δ(~x) . (2.2)

Eq. (2.2) is solved by a Yukawa potential, A0 ∼ exp−mDr
r , with the Debye

screening mass mD:

m2
D = 4π

e2ni
T

. (2.3)

The screening length lD is the inverse of the screening mass mD. Its
raison d’être is statistical, due to the Boltzmann factor. So we expect the
screening to involve many electrons. And this is precisely what Eq. (2.3) tells
us: in a sphere of radius lD we have T 3/2/(e3n1/2) = (T/(e2/ra))

3/2(r3
an)−1/2

electrons with ra the atomic radius. The first dimensionless factor is large
because T is larger than the ionization energy e2/ra. The second dimension-
less factor is large because the number of electrons inside the atomic radius
is small in the ionized state .

Typically, for the sun’s corona T/e2 is about102−3 the atomic scale and
the number of electrons in the Debye sphere is 106. This condition is called
the statistical screening or plasma condition.

It is amusing to do the following Gedanken experiment. Suppose we want
to compute the electric flux going through some large (with respect to the

atomic size) closed loop L with area A(L). Normalize the flux Φ =
∫
L d~S · ~E

by the electron charge e and define :

V (L) = exp i2πΦ/e . (2.4)

Of course, at T below the ionization temperature no flux would be de-
tected by the loop, because there are only neutral atoms moving through
the loop. Only at the perimeter of the loop there might be an effect.

Let us now raise the temperature above Tionisation. What will happen?
Both electrons and ions are screened. For simplicity we will take the ions
to have the opposite of one electron charge. Then one electron (ion) on
the down side of the loop will contribute +1/2(−1/2) to the flux, and with
opposite sign if on the up side of the loop. That is: V (L)|one charge = −1.
Of course if we plot |Φ/e| as function of the distance of the particle to the
loop you find an exponential curve with the maximum 1/2 at zero distance.
For the sake of the argument we will replace that curve by a theta function
of height 1/2 and width 2lD. If one wants to do better one has to deal
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with infinitesimally thin slabs, and integrate over the thickness. The result
is parametrically the same as the one we will derive keeping the simplistic
method.

Assuming that all charges move independently, the average of the flux
loop V (L) is determined by the probability P (l) that l electrons (ions) are
present in the slab of thickness 2lD around the area spanned by the loop.
Taking for P (l) the Poisson distribution 1

l!(l̄)
l exp−l̄- l̄ is the average number

of electrons (ions) in the slab- we find for thermal average of the loop:

〈V (L)〉T =
∑

l

P (l)V (L)l =
∑

l

P (l)(−)l = exp−4l̄ . (2.5)

Now l̄ = A(L)2lDn(T ), so the electric flux loop obeys an area law
exp−ρ(T )A(L), with a tension ρ(T ) = 8lDn(T ). We know from the sta-
tistical screening condition that l2Dρ = 8l3Dn(T ) is a large number: hence the
electric tension in units of the Debye mass is large.

We leave it as an exercise to the reader to compute the tension in the
realistic case, where the ions carry charge Z × |e|. Now one single ion pro-
duces a sign (−)Z and our one-slab approximation breaks down if Z is even:
we have to revert to the method where we integrate over infinitesimally thin
slabs.

So the behaviour of the loop is very different for the ionised state. It
behaves with an area law. In the de-ionised state it records only perimeter
effects.

3. Effective field theories at high temperature

With what we have learnt above in mind we turn to gauge theory at
high T . Any field theory in equilibrium at non-zero temperature can be
formulated as a Euclidean path integral. The time direction in that integral
is periodic mod 1/T for bosons, and anti-periodic for fermions. For the
statistical Gibbs sum one has

Trphys exp−H

T
=

∫
DADq... exp− 1

g2
S(A, q, ...) , (3.1)

where the gauge potentials A, the quark fields q, and eventually other fields
in the Standard Model are integrated over. In the limit that T becomes small
with respect to typical particle scales the time direction can be neglected.
This is called dimensional reduction [5]. It can be formulated as a systematic
approximation scheme using that QCD at high temperature T has a small
running coupling g(T ). The inverse propagator of a boson is proportional to
(2πnT )2 +~p2. Here n takes on integer values. For a fermion n is replaced by
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n + 1/2. As T becomes large one can integrate all heavy T -modes (“hard”
modes) and stay with a three dimensional theory in terms of only the static
bosonic modes with n = 0. For QCD this 3d Lagrangian reads:

LE = Tr(~D(A)A0)
2 + m2

ETrA2
0 + λE(Tr(A2

0))
2

+λ̄E(Tr(A0)
4 − 1

2
(TrA2

0)
2) + TrF 2

ij + δLE . (3.2)

This is called the electrostatic Lagrangian. The last term contains higher

powers of A0 and of the covariant derivative ~D(A) = ~∂ + igE[ ~A. Neglect-
ing it means one neglects O(g4) in the correlations you compute with the
first six terms. The parameters in this Lagrangian are computed from the
corresponding n-point functions in one and two loop accuracy in terms of
g2
E = g2(T )T . Higher loop order adds only to the accuracy if one takes into

account δLE. The electrostatic coupling g2
E is to one loop order in terms of

ΛMS (no flavours):
g2
EN

T
=

24π2

11 log(6.742.T
Λ

MS
)

. (3.3)

The subtraction was chosen to minimize the one loop effects [4].
We have swept one problem under the rug. When integrating the hard

modes we have to admit a lower cut-off ΛE, in between the scale T and
the electrostatic scale gT . In principle the parameters will depend on this
cut-off.

One expects that we have the same picture as before: above the decon-
fining temperature Tc ∼ 200 MeV) we have a gas of “ions”, the quarks, and
of “electrons”, the gluons. There is screening as before, as witnessed by the
mass parameter m2

E = N
3 g2T 2 in electrostatic Lagrangian, Eq. (3.2).

This constitutes the Stephan–Boltzmann picture of QCD and interac-
tions between gluons and quarks describe deviations from this free quasi-
particle system.

Specific to QCD is that there is not only an electrostatic scale set by
the Debye mass. We can integrate out in electrostatic Lagrangian all de-
grees of freedom corresponding to the Debye scale. That leaves us with the
magnetostatic Lagrangian:

LM = TrF 2
ij + δLM (3.4)

with a magnetostatic gauge coupling g2
M in Fij .

Here an ultra-violet cut-off ΛM is needed. It separates the electrostatic
scale gT and the magnetic scale g2T .

Terms with higher order covariant derivatives are contained in δLM.
They are needed when we want an accuracy of O(g3).
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The magnetic action gives a non-perturbative theory. In calculating a
Green’s function with a typical external momentum p we find as dimen-
sionless parameter g2

M/p which is O(1) if the momentum is the magnetic
scale. In particular calculation of the free energy in this theory will give for
dimensional reasons (g2

M)3 times a non-perturbative constant. That is the
contribution one expects from a 4-loop diagram. As for the Green’s function
all higher loops are of the same order.

Still we can compute a series in the small coupling g(T ). Only the
coefficients are non-perturbative.

For asymptotically large temperatures such a picture is indeed accurate.
But asymptotic means temperatures about 106Tc, well above the electro-
weak scale.

To put the calculation of the contributions of order higher than three in
perspective and to see how the different scales come in, we recall once more
the hierarchy of scales, cut-offs Λ and reduced actions needed to compute
the pressure:

T ≫ ΛE ≫ gT ≫ ΛM ≫ g2T .

The pressure is normalized by p0 = PStefan−Boltzmann and consists of three
parts:

p

p0
= ph + pE + pM .

The hard modes are cut-off in the infrared by ΛE and equal ph. Schematically
we get:

ph = 1 + g2 + g4 log
T

ΛE
+ g4 + g6 log

T

ΛE
+ g6 + ... .

All powers of the coupling are even, since infrared divergencies are cut-off
by ΛE. The short distance scales (larger than T ) are absorbed in the running
coupling, Eq. (3.3). The cut-off ΛE appears only in logarithms. The electric
mode contributions are computed with LE and give pE:

pE = g3 + g4 log
ΛE

mE
+ g4 + g5 + g6 log

ΛE

mE
+ g6 log

mE

ΛM
+ g6 + ... .

Note the odd powers in g. They come in because the electric mass gT
comes in through propagators from the electrostatic action, Eq. (3.2). For
example, the contribution from the scalar potential A0 gives the first term
in pE:

−1

2
(N2 − 1)

∫
d~l

(2π)3
log(~k2 + m2

E) =
Γ (−3

2)

16π 3
2

m3
E . (3.5)

The dominant cubic term was computed in Eq. (3.5). We can expect
logarithms of the two ratios of the three scales mE, ΛE in the electrostatic
action and ΛM.
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Finally the magnetic contribution is computed with LM:

pM = g6 log
ΛM

g2
M

+ g6 + ... .

We only put in the obvious dependence on the parameters in the elec-
trostatic and magnetostatic actions. There are three comments:

• All terms shown are perturbatively calculable, except the last one in
pM.

• All perturbatively calculable terms have been computed [15], except
for the g6 terms. In particular the log’s are known by now [8].

• All dependence on the cut-offs cancels, as expected.
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Fig. 1. Left: perturbative results at various orders for pure SU(3) gauge theory,

including O(g6) for an optimal constant. Right: the dependence of the O(g6)

result on the (not yet computed) constant, which contains both perturbative and

non-perturbative contributions. The 4d lattice results are from [6]. From Ref. [8].

This is dramatically illustrated by Fig. 1. You see on the left the lattice

data for the pressure in units of its Stephan–Boltzmann value 8π2

45 T 4 plotted

together with the known low order (up to O(g6)) perturbative results. For
the asymptotically large temperatures mentioned the quasi-particle picture
is indeed accurate as the figure shows. The right panel shows how the
prediction can improve, when the known [8] logarithmic contribution to the
O(g6) coefficient is included, together with a guess for the non-perturbative
part of the coefficient.
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For any reasonable T , say below 2 GeV, the coupling obeys g2
E(T )/

T ≤ 2.5. This is about 30 times bigger then e2, so we may already sur-
mise that low order perturbation theory will be far from accurate.

3.1. The Debye mass and electric flux loop in QED and QCD

Now we discuss the Debye screening in the QCD plasma.
Let us put a probe charge in the plasma, say a very heavy quark. In

Fig. 2 the exchange of a single gluon is shown, together with its multiply

Fig. 2. A single gluon exchanged between two static test charges.

inserted self-energy. Once we compute the self energy Π00 of the gluon,
shown in Fig. 3, the resumed propagator D00 becomes:

D00(~p) =
1

~p2 + Π00(~p)
. (3.6)

It is easy to see that only the hard modes contribute to the self energy.

+ + +

Fig. 3. One-loop self-energy of a gluon.

Hence one finds the one loop result for m2
E in the electrostatic La-

grangian.

D00(r) ∼
exp−mEr

r
. (3.7)

To two loop order one finds that already at that order non-perturbative
effects contribute.

Hence a definition independent of perturbation theory is called for, and
a natural candidate is the correlator between two heavy test charges: its
fall-off as a function of distance gives us the screening mass.
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The test charge put in the plasma changes the free energy. This change
can be expressed in terms of an expectation value of the thermal Wilson
line:

exp−∆Fψ
T

=

∫
DA 1

NTrP(A0) exp−S(A)∫
DA exp−S(A)

≡ 〈P (A0)〉 , (3.8)

where the thermal Wilson line is given by:

P (A0(~x)) =
1

N
TrP exp ig

1

T∫

0

dτA0(~x, τ) . (3.9)

If the test charge is in the fundamental representation then so is A0.
The path ordering is defined by dividing the interval [0, 1/T ] into a large

number Nτ of bits of length ∆τ = 1
NτT

:

P(A0) = lim
Nτ→∞

U(τ = 0,∆τ)U(τ = ∆τ, 2∆τ) . . . U

(
τ =

1

T
− ∆τ,

1

T

)
.

(3.10)
From a formal and from a computational point of view the correlator

〈P (A0)P (A0)
†〉 has two advantages over the calculation presented above

using the scalar potential:

• The correlator is gauge invariant.

• The correlator can be evaluated non-perturbatively, i.e. on the lattice.

Both are needed for an accurate determination of the screening length
in QCD. Perturbation theory is not enough, despite the small coupling g(T )
for asymptotically large temperature (i.e. well above the electro-weak scale).
In the confined phase 〈P (A0(r)) < P (A0)

†(0)〉 obeys an area law exp−σ r
T ,

in the deconfined phase the area law is replaced by the Yakaw potential
controlled by the Debye mass.

There is a further advantage: correlators of gauge invariant operators
will excite the levels of a fictitious Hamiltonian describing Yang–Mills dy-
namics in a space with one periodic mod 1/T direction and two other infinite
directions. The time conjugate to this Hamiltonian is now the direction of
the correlation.

Conserved quantum numbers are then, apart from those from the two
dimensional rotation group, the usual discrete parities, charge conjugation
C, parity P (now in 2D), and a new quantum number, that changes A0 →
−A0, called R-parity.

Note that the Debye mass defined this way should coincide in one loop
order with what we found before: mE in the electrostatic Lagrangian. So it
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is associated with R-parity −1. Clearly, this corresponds to the imaginary
part of the Wilson line. The real part excites R = +, P = C = + states.
To wit: if the correlator 〈PP 〉 between two like charges were zero, then the
difference between correlators of imaginary and real parts would be zero.
That would mean, in turn, that the masses controlling their decays would
be degenerate. This is not the case. Two like screened charges are compatible
on a torus. In the confined phase (no screening) their correlation is indeed
zero.

3.2. Z(N) symmetry, universality, and the order of the transition

There is a symmetry due to invariance of the Yang–Mills action under
gauge transformations that are not periodic in Euclidean time, but only
periodic modulo a center group element exp ik 2π

N IN . IN is the N × N unit
matrix. So with k integer, the determinant is one. What is not invariant is
the periodicity of fields in representations with non-zero N -allity, like quark
fields. So we will discard them for the moment.

Now the Wilson line, Eq. (3.9), under such a transformation is multiplied
by the Z(N) phase factor exp ik 2π

N . So the probability to find the system
with a given value for the Wilson line:

E(P̃ ) ∼
∫

DAδ(P̃ − P (A0) ) exp−S(A) (3.11)

has the same value in P̃ as in exp ik 2π
N P̃ , because the measure stays the same,

so does the action, only the argument of the delta function will change. This
is most useful manifestation of Z(N) symmetry [11].

Note that the Wilson line is a scalar quantity in every point ~x.
So it bears resemblance to a Z(N) spin variable z(~x) defined on a three

dimensional lattice. If we endow this Z(N) spin system with a nearest
neighbour Z(N) invariant action, we have a system that has a transition
point where the spin system changes from disordered into ordered behaviour.

There is now the hypothesis [23] that the transition of this spin system
and that of the Yang–Mills system are in the same universality class. This
is interesting because it relates critical behaviour of a rather simple system
to that of our Yang–Mills system.

For N = 2 and 3 this spin system is unique in that one can write down
only one action for this spin system per link:

SN=2,3 = β(z + z∗) . (3.12)

Here z is a shorthand for the product of the two spin variables at the end
points.
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Indeed the transition is second (first) order for N = 2(3), and many
studies have found that critical behaviour is identical [9].

However for N = 4 the spin system is not unique. Let us parametrize
the action per link like:

SN=2,3 = β((z + z∗) + xz2) . (3.13)

In Fig. 4 [2] the phase diagram of this theory is plotted. Only positive
couplings are of interest to us.
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Fig. 4. Schematic phase diagram of three-dimensional Z(4) spin model from

Eq. (3.13) on a simple cubic lattice, taken from Ref. [2], where it was extracted

from series analysis and Monte Carlo data. Dashed and solid lines indicate first

and second-order transitions respectively. Dotted lines indicate cases where the

nature of the transition has not been unambiguously determined. The phases are

labeled disordered (〈z〉 = 〈z2〉 = 0 ); Baxter (ferromagnetic with 〈z〉, 〈z2〉 both

non-zero); “〈st〉” (where 〈z2〉 is ferromagnetically ordered but 〈z〉 = 0).
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The VEV of the z spin corresponds to the VEV of the Wilson line P (A0)
[12], the VEV of z2 to that of P (A0)

2). The region in between the two second
order transition lines corresponds to the subgroup Z(2) already broken, but
not yet Z(4). That would imply two Debye masses (not very natural from
the plasma point of view), one corresponding to P (A0) and still zero in
that region. Another corresponding to P (A0)

2 and already non zero in that
region.

But Nature has decided differently: in the gauge system the transition
is first order [10,7], and, from the phase diagram, that corresponds to both
order parameters jumping at the same time. This is what has been con-
firmed [10] in gauge theory within errors.

Recent data [24] show that the first order transition becomes stronger
with increasing N . This is consistent with the idea that quasi-particles
govern the behaviour of the plasma from very high T down to just above
the critical temperature.

3.3. Electric flux and the spatial ’t Hooft loop

The phenomenon of deconfinement involves the breaking of the electric
flux tubes, and the appearance of quasi-particles, the gluons. This reflects
itself in the change in the force law between test charges, discussed above.

How does it manifest itself in other measurable quantities? A natural
candidate is the spatial loop that measures the electric flux, as we discussed
in the first section. This loop is formed by a closed magnetic flux line, the
’t Hooft loop [13].

What will perspire [3, 17] is that the behaviour of this loop in the de-
confined phase is again quite different from that in the confined phase. The
quantitative behaviour of the loop at very high T can be computed along
the same lines as in Section 2. This is what we will do below.

We start with a definition of the loop as a magnetic flux loop, i.e. as a
gauge transformation exp iωL(~x)Yk with a discontinuity exp ik 2π

N when going
around the loop. Here Yk = diag (k, k, ..., k, k − N, ...k − N) with N − k
entries k and k entries k−N , so that it generates the center group element:

exp

(
i
2π

N
Yk

)
= exp ik

2π

N
= zk. (3.14)

ωL(~x) is half the solid angle defined by the loop.
In the Hilbert space this operator reads:

Ṽk(L) = exp i

∫
d~x

1

g
Tr~E(~x) · ~DωL(~x)

Yk
2N

. (3.15)
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A representation which has the same effect in the physical Hilbert space
is:

Vk(L) = exp i
2π

g

∫

S(L)

d~STr ~E(~x)
Yk
N

. (3.16)

Using the canonical commutation relations you can check that Vk(L) and

Ṽk(L) have the same effect on physical states. That is, they multiply Wilson
loops with the center group factor if the latter intersects with S(L).

So Eq. (3.16) is the dual Stokes version of Eq. (3.15).
In the confined phase the particles are colour neutral so will at most

contribute a perimeter law.
Let us now repeat the quasi-particle argument for the area law in the

average of the flux loop in the deconfined phase:

〈Vk(L)〉 = exp−ρk(T )A(L) . (3.17)

The gluons are in the adjoint representation, so their Yk charge follows
from the differences of the diagonal elements of Yk. So there are 2k(N − k)
gluons with charge ±gN , and the remaining gluons have charge 0.

Again, the total flux of a gluon inside the slab of thickness lD = m−1
E

on both sides of the loop as seen by the loop is 1
2gN . The other half is

lost on the loop. So the contribution of a fixed gluon species with non-zero
charge is −1. As we suppose the gluons to be independent, the probability
distribution for all the species inside the slab will factorize into single species
distributions P (l), l the number of gluons of that species inside the slab.
Only the 2k(N − k) species with non-zero flux will contribute. Because of
the factorization:

〈Vk(L)〉 =

(
∑

l

P (l)(−1)l

)2k(N−k)

(3.18)

and with the Poisson distribution for P (l) we get
∑

l P (l)(−1)l = exp−2l̄,
with l̄ = n(T )lDA(L) the average number of the gluon species in the slab.
It follows from Eq. (3.17) that the tension equals:

ρk = 4lDn(T )k(N − k) . (3.19)

It is the dependence on the strength k of the loop, which is typical for
the quasi-particle picture. We have checked in perturbation theory that
deviations of this behaviour start to develop only to three loop order [18].
Just above the transition we have no reason to trust the loop expansion.
If the strong first order transition found at N ≥ 6 really implies a quasi-
particle picture one should simulate the loop just above the transition for
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its k-dependence. Paraphrasing Ref. [24] such a behaviour just above Tc

would suggest that the upper limit to the interface tension τc,d will scale
like N , in accordance with a strong first order transition! To understand
this argument, consider the complex plane with the possible phase of the
Wilson line P = exp ik 2π

N on the unit circle. In the deconfined phase the
effective potential has degenerate minima in the Z(N) vacua. At T = Tc

one has another degenerate minimum in P = 0, the confined phase, which
in coexistence with any of the Z(N) phases, will have the same tension τc,d
because of the obvious symmetry in the plane. A region of space with P = 1
is separated from a region where P = exp ik 2π

N by a wall given by ρk, for
which the tension ∼ N from Eq. (3.19). If just above the transition Tc the
deconfined phase with P = 0 starts to form in between the two Z(N) phases
(so-called “wetting”) we have 2τc,d ≤ ρk. If wettting is to be true for all
Z(N) interfaces the upper limit follows. If we know the Z(N) spin model,
that falls in the same universality class as our gauge theory, we can check
these statements quantitatively1.

4. Magnetic screening mass and spatial Wilson loop

Not only the force law between heavy electric charges like the heavy
quark, but also the force between heavy magnetic charges tells us about
the medium. The original idea of ’t Hooft and Mandelstam was that of a
dual superconductor, with the electric Cooper pairs replaced by some form
of magnetic condensate. This condensate would be expected to screen the
colour-magnetic field.

In Section 2 we constructed an operator Vk(L) creating a magnetic flux
of strength exp ik 2π

N , Eq. (3.15). This loop was space like.
To get the monopole anti-monopole pair at points (0, r) we have the

vortex end at 0 and r on the positive z-axis. The vortex is given by a
gauge transformation Vk(~x) which is discontinuous modulo a center group
element exp ik 2π

N when going around the vortex. The vortex is like the Dirac
string in QED. It is unobservable by scattering with particles in the adjoint
representation, as long as it has center group strength.

Vk = exp i ~D(A)vk(x, y) ~E (4.1)

with vk(x, y) =
arctan( y

x
)

N Yk. When encircling the point x = y = 0 the gauge

transformation exp ivk(x, y) picks up a factor exp i2π
N Yk = zk. This gauge

transformation remains, by definition, unchanged along the z-direction and
will be denoted by Vk(r). We say that Vk(r) creates a vortex or “Z(N)

1 It is known that in the N state Potts model ρk = ρ = τc,d at the first order phase

transition.
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Dirac string” of length r. That means, a Wilson loop W in the fundamental
representation that encircles the vortex will pick up the zk factor:

VkWV †
k = zkW . (4.2)

Any Wilson loop with non-zero N -allity l will pick up a factor (zk)
l. But

Z(N) neutral loops will not sense the Z(N) Dirac string, hence the name.
On the lattice the Hamiltonian operator will have magnetic plaquette

operators. These will pick up the zk factor and it is not hard to see that the
Gibbs trace can be worked into a path integral along the usual lines, and on
the lattice the latter takes the form:

exp−FM(r)

T
=

∫
DA exp−S(k)(A)∫
DA exp−S(A)

. (4.3)

The action S(k) is the usual lattice action, except for those plaquettes
pierced by the Dirac string. Those plaquettes are multiplied by a factor
exp ik 2π

N , as in Fig. 5. This string is repeated at every time slice between
τ = 0 and τ = 1/T .

Fig. 5. Monopole antimonopole pair induced by twisting the plaquettes pierced by

the Dirac string.

Screening is expected in both confined and deconfined phases:

FM(r) = FM0 − cM
exp−mMr

r
. (4.4)

All parameters are function of T . In the cold phase the screening is a conse-
quence of the electric flux confinement. This is natural because the ground
state contains a condensate of “magnetic Cooper pairs”, according to the
dual superconductor analogy. It is a screening mechanism whose details are
not understood. We dropped for notational reason the dependence on the
strength k of the monopole in the coefficient cM.

The magnetic mass does probably not depend on the strength k of the
source, just like the Debye mass does not, as discussed in the previous sec-
tion.

In the hot phase there are indications from spatial Wilson loop sim-
ulations that there is additional thermal screening from magnetic quasi-
particles, as discussed in Section 5.
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Analogous to the Wilson line correlator we consider the Hamiltonian
Ĥ in the fictitious system of (x, y, τ) variables. We search the operator
Vk acting on the Hilbert space of physical states of this Hamiltonian, that
reproduces the path integral Eq. (4.3) 2 . So Vk should create a vortex in the

(x, y) plane at every time slice τ and the Hamiltonian Ĥ should propagate
every one of these vortices in the z-direction over a distance r. So Vk is the
’t Hooft vortex operator discussed around Eq. (4.1):

Vk = exp i

∫

x,y,τ

Tr ~D(A)vk(x, y) ~E. (4.5)

with vk(x, y) = arctan
( y
x

)
1
N Yk.

Both under parity (remember: only y → −y!) and charge conjugation
the vortex Vk transforms into V 1

k †. Its spin J equals 0, despite the ap-
pearance of the rotated singularity line. On physical states the location of
the singularity does not matter. Hence the operator ImVk excites spin zero
states with P = C = −1. The magnetic screening mass should correspond
to the self-energy of a magnetic gluon, just like the correlator of the thermal
Wilson line had to correspond to the self energy of a temporal gluon, So
we choose the negative charge conjugation component ImVk. The magnetic
screening mass distinguishes itself from the electric screening mass by the
opposite parity. This will prove important!

Perturbation theory is not reliable and we need lattice simulations [22].
Up to now these simulations are four dimensional and have limited accu-
racy. They need to be repeated, also in dimensionally reduced form. Once
they reproduce the mass levels of the fictitious Hamiltonian with sufficient
accuracy, we can use them with more confidence for determining the tension
of the space like ’t Hooft loops.

At high T where reduced calculations are valid we expect to find the
mass level of the 0−− of the reduced Hamiltonian. From Teper’s work [19]
the lowest 0−− mass in units of the string tension for SU(N) (N ≥ 3) gives
in a large N expansion (see his table 34):

m−−

√
σ

= 5.91(21)(1 + 0.88(70)/N2 + 1/N4) . (4.6)

For N = 3 one finds for this ratio 6.48(9).

2 We use the same notation as for the vortex operator in (x, y, z) space as there is no

risk for confusion.
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4.1. The spatial Wilson loop

The spatial Wilson loop is of interest because it monitors the magnetic
activity in the plasma. At zero temperature it obeys an area law identical
to that of time-like loop, controlled by the zero temperature string tension.

The tension stays constant throughout the confined phase, and starts to
rise about the critical temperature, indicating a new source of magnetic flux
activity.

Let us begin with some basics: a representation built from k fundamental
representations is said to have N -allity k. A center group transformation
exp i2π

N is mapped into exp ik 2π
N in such a representation. Write a Wilson

loop formed with such a representation as Wk(L). Its average will then give
an area law with tension σk. At high T one can integrate out the hard
modes, as they do not determine the string tension. One can also integrate
out the electrostatic modes, and wind up with a path integral controlled by
the magnetostatic action:

exp−σk(T )A(L) =

∫
D ~AWk(L) exp−SM(A)
∫

D ~A) exp−SM(A)
. (4.7)

The hard and electrostatic free energies fh and fE drop out in the ratio.
The only dimensionfull scale in the magnetostatic action is g2

M. So the

tension, having dimension (mass)2, can be written as:

σk(T ) = ckg
4
M

(
1 + O(g3)

)
. (4.8)

So the dominant contribution to the tension is entirely from the magne-
tostatic sector. In Fig. 6 you see a fit of the tension data to this parametric
expression for SU(3).

The authors took for the magnetic coupling g2
M = g2

E, so neglected renor-
malization effects of the scale gT , which are a few percent at T = 2Tc. On
the other hand they included two loop renormalization effects. Dropping
those effects, and taking into account the uncertainty in the relation be-
tween ΛMS and Tc there is still consistency between data and the one loop
formula Eq. (3.3).

Notably the value of the tension at the critical temperature is within
errors equal to the tension at zero temperature. So the tension of the spatial
Wilson loop does not change within errors in the hadron phase.

The conclusion is quite clear: down to temperatures a few times Tc, the
loop behaviour is determined by leading order magnetic sector effects! These
effects are embodied in the dimensionless number ck=1. The number ck=1 is
within errors equal to the purely 3D simulation of the loop.

The spatial Wilson loop measures in a sense to be specified later the
magnetic flux in the system. The tension is flat from T = 0 to T = Tc,
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Fig. 6. The temperature over the square root of the spatial string tension versus

T/Tc for SU(3). The dashed line shows a fit according to a two loop scaling formula

for the coupling, see text below Eq. (4.8). From Ref. [14].

according to the data. In all of the confined phase the magnetic activity
does not change.

Above Tc it starts to grow like g4
MT 2. Apparently beyond the transi-

tion the activity goes up, and comes, as the data tell us, entirely from the
magnetostatic sector.

5. A simple model

In close analogy with the ’t Hooft loop one can do a quasi-particle cal-
culation for the k-tension of the Wilson loop. But what are the magnetic
quasi-particles?

We are making the simplest possible assumptions:

•The magnetic quasi-particles have a screening length lM ∼ g2T much
smaller than their average distance.

•The magnetic quasi-particles are in the adjoint representation of SU(N).

Note here that the magnetic screening length defines a volume in which
many elementary quanta are present, just like the Debye screening length.
We assume here that the magnetic screening defines non-perturbative lumps,
called magnetic quasi-particles.
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We should have, like for the ’t Hooft loop, a magnetic flux representation
for the k-Wilson loop. One can argue that its average can be computed from:

〈Wk(L)〉 =

〈
exp ig

∫
d~S · Tr ~B

Yk
N

〉
, (5.1)

where, as before, Yk = diag (k, k, ..., k, k −N, ...k −N) with N − k entries k
and k entries k − N , so that it generates the center group element:

exp

(
i
2π

N
Yk

)
= exp ik

2π

N
= zk. (5.2)

The Yk-charge of a magnetic quasi-particle is ±2πN
g with the same mul-

tiplicity 2k(N − k). It contributes −1 to the Wilson loop Eq. (5.1) because
only one-half of its flux goes through the loop.

With our assumptions we can now, in precise analogy with the calcula-
tion of the ’t Hooft loop, understand why the k-tension scales like:

σk = c(N)k(N − k)lMnM . (5.3)

As in the gluon case nM is the density of one quasi-particle species.
The coefficient c(N) would be O(1) for all N with the simple Poisson

distribution used in Eq. (3.19). And this would contradict the result from
all orders in perturbation theory, that the Wilson loop tension is O(1) for
large N ! This is easily repaired by insisting on a distribution with a width
w(N) of O(N−1) and noting that c(N) ∼ w(N).

So for k = 1 and large N we learn from Eq. (5.3) that :

l2Mσ1 = cl3MnM, (5.4)

and from Eq. (4.6) we find that l2Mσ1 = 0.028(2) for N large. This is an
a posteriori justification of our assumption that the magnetic quasi-particle
gas is dilute. Another justification comes from the lattice data for the ratios
σk

σ1
in which the c(N) drops out.

The ratios found by simulation [20] are close — within a percent for the
central value — :

SU(4) : σ2/σ1 = 1.3548 ± 0.0064 ,

SU(6) : σ2/σ1 = 1.6160 ± 0.0086;σ3/σ1 = 1.808 ± 0.025 .

The results are that precise, that you see a two standard deviation, except
for the second ratio of SU(6). As we said, magnetic quasi-particles are dilute
but only approximately free.

There is a less precise determination of the ratio σ2/σ1 = 1.52 ± 0.15 in
SU(5) [21]. But the central value is within 1 to 2% of the predicted value 3/2.
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6. Conclusions

In these lectures we concentrated on the order of the transition, and
on the quasi-particle picture of the magnetic sector. The lattice data are
consistent with the predictions within a few percent, the typical order of
magnitude of their diluteness.

At large N the strong first order results suggest a quasi-particle picture
down to the critical temperature and can be put into evidence by simulating
at Tc spatial Wilson and ’t Hooft loops. The simulation of the latter is now
getting in a new stage, where we start to learn [25] the systematic errors
from comparison with the known screening masses. From these results one
could infer the corresponding Z(N) spin model.

How can one view the mechanism of the transition and the disappearance
of the quasi-particles? First, as the densities of magnetic quasi-particles and
gluons start to match as g → 1, one might expect just above Tc a binding of
the quasi-particles into dyons. This is because in our quasi-particle picture
there is no correlation between electric and magnetic colour fields. From
measurements of the topological susceptibility we know it should get restored
in the critical region T+

c . A reasonable gues is that this happens through
binding of electric and magnetic quasi-particles into dyons. Whatever the
details of this binding, it would be witnessed by the equality of spatial
Wilson and ’t Hooft loops. At Tc the Wilson loop tension equals to a good
approximation the zero temperature string tension. Hence the ’t Hooft loop
tension has to drop from this value to zero at T−

c and signals a first order
transition. This binding fails for SU(2), where we know from [9] that the
’t Hooft tension tends to zero.

For the screening lengths the same is true.

I thank the organizers for the opportunity to present this material, for
their hospitality, and Pierre Giovannangeli, Ben Grypaios, Harvey Meyer,
Rob Pisarski, David Skinner, Mike Teper and Urs Wenger for useful discus-
sions. A Royal Society grant permitted me to write down these notes in the
pleasant atmosphere of the Oxford Dept of Theoretical Physics.
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