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At very high temperatures Yang–Mills theories can be described through
perturbation theory. At the tree level the time components of the gluon
fields decouple and yield a dimensionally reduced theory. The expectation
value of the Polyakov loop then assumes values of the Z(N) center group.
At intermediate temperatures, however, this is not true anymore. The time
dependence shows up in loops. In a recent work (D.I. Diakonov, M. Oswald,
Phys. Rev. D68, 025012 (2003)) we integrated out fast varying quantum
fluctuations around background Ai and static A4 fields. We assumed that
these fields are slowly varying but that the amplitude of A4 is arbitrary. As
a result we obtained the kinetic energy terms for the Polyakov loop both
for the electric and the magnetic sector of SU(2).

PACS numbers: 11.15.–q, 11.10.Wx, 11.15.Tk

1. Introduction

The partition function of a Yang–Mills theory at finite temperature in
its Euclidean-invariant form is given by

Z =

∫

DAµ exp







−
1

4g2

β= 1

T∫

0

dt

∫

d3xF a
µνF

a
µν







. (1)

The gluon fields obey periodic boundary conditions in the temporal direc-
tion. In this form the theory is usually simulated on the lattice. Yang–Mills
theory is of particular interest since it has a phase transition from a confined
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to a deconfined phase. The order parameter is the so-called Polyakov loop,
which is defined as the trace of the Polyakov line

P (x) = P exp




i

1/T∫

0

dtA4




 . (2)

At very high temperatures the potential energy of the Polyakov line (or of
A4) has its zero-energy minima for values of P (x) at the center of the gauge
group (or for quantized values of A4). High temperature perturbation theory
hence corresponds to the system oscillating around these trivial values of
the Polyakov line, i.e. 〈Tr P 6= 0〉. As the temperature decreases, however,
the fluctuations of the Polyakov line increase and eventually at the critical
temperature Tc the system undergoes a phase transition from a deconfined
to a confined phase which has 〈Tr P = 0〉. In order to approach this phase
transition from the high-temperature side, one needs to study the Polyakov
line in its whole range of possible variation. In our recent paper [1] we
worked with static and diagonal A4 gluon fields and the gauge group SU(2).
In this case the Polyakov line

P (x) = exp

(

i
A4(x)

T

)

(3)

has the gauge invariant eigenvalues

e±iπν , where ν =
√

Aa
4A

a
4/2πT. (4)

We assume that the gluons are varying slowly, but we allow for an arbitrary
amplitude of the A4 fields. We then find the non-trivial effective action for
the eigenvalues of the Polyakov line, interacting in a covariant way with the
spatial gluon fields Ai.

2. The 1-loop action

Since the gluon fields in the partition function Eq. (1) are periodic fields
they can be decomposed into Fourier modes:

Aµ(t, x) =

∞∑

k=−∞

A(ωk, x) eiωkt, ωk = 2πk T, (5)

where the ωk are the so-called Matsubara frequencies, which play the role
of mass. The first step on the way to an effective theory is to integrate
out the non-zero Matsubara modes. This reduces the original 4D Euclidean
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symmetry to a 3D one. This procedure is exact in the T → ∞ limit. At
intermediate temperatures, however, the nonzero modes show up in loops
and produce infinitely many effective vertices. In our work [1] we found all
these vertices, but restricted to low momenta p < T .

2.1. The background field method

In order to calculate the quantum fluctuations we decompose all the
gluon fields into background fields (denoted by a bar) and quantum fluctu-
ations around them:

Aµ = Āµ + aµ. (6)

The fluctuations are not gauge-invariant and we choose the background
Lorentz gauge Dab

µ (Ā) ab
µ = 0, where

Dab
µ (Ā) = ∂µδ

ab + facbĀc
µ (7)

is the covariant derivative in the adjoint representation.
A one loop calculation corresponds to expanding the partition function

to quadratic order in the fluctuations aµ. Doing that one obtains

Z(Ā)=eS=eS̄

∫

DaDχDχ+ exp

{

−
1

2g2(M)

∫

d4xab
µW

bc
µν a

c
ν−

∫

d4xχ+a
(
D2

µ

)
χa

}

,

(8)
where χ, χ+ are ghost fields and

S̄ = −
1

4g2(M)

∫

d4xF a
µν(Ā)F a

µν(Ā) (9)

is the action of the background fields. The quadratic form for aµ is given by

W ab
µν = −[D2(Ā)]abδµν − 2facbF c

µν(Ā) . (10)

For the 1-loop action we have to integrate out the quantum fluctuations of
the gluons and the ghost degrees of freedom. This results in

S1−loop = log (detW )−1/2 + log det
(
−D2

)
. (11)

Since the only gluon fields which are left are the background fields we will
omit the bar from now on.

So far the background fields have been kept arbitrary. One can, however,
always choose the gauge where A4(x) is static. The spatial components are
in principal time dependent, although periodic in the time direction, since
any time-independent gauge transformation will generate a time dependent
Ai(t, x).



5850 M. Oswald

In our calculation, however, it turns out to be easy to reconstruct the
results for a time dependent Ai(t, x) from an original ansatz where the spatial
components are static as well. We hence assume static background fields in
what follows, and will give the more general results at the end.

3. Gradient expansion of S1−loop

The effective action for the eigenvalues of the Polyakov line is given in
terms of a potential term and a kinetic one, where the latter contains electric
and magnetic field strengths. In order to obtain these terms we expand the
1-loop action Eq. (11) in powers of Di using that:

Ei = Fi4 = DiA4 and Ba
k =

1

2
ǫijkF

a
ij =

1

4
ǫijkǫ

cad[Di,Dj ]
cd. (12)

Since for the case of SU(2) only two independent color vectors exist in the
electric (magnetic) sector, namely Ei (Bi) and A4 we expect that the gra-
dient expansion takes the following form:

S1−loop =

∫
d3x

T

[

− T 4V (ν) +E2
i f1(ν) +

(EiA4)
2

A2
4

f2(ν) +B2
i h1(ν)

+
(BiA4)

2

A2
4

h2(ν) + . . .

]

. (13)

Here V (ν) is the potential energy of the eigenvalues of the Polyakov line,
Eq. (4), which are given in terms of the rescaled gluon field variable ν =
√
Aa

4A
a
4/2πT . The potential term has been known previously [2,3], and the

functions f1,2, h1,2 are the new findings of [1].

3.1. Schwinger’s proper time formalism

In order to attack the logarithm of the functional determinants in Eq.(11)
we avail ourselves of a method that was originally introduced by Schwinger
[4]. In addition we want to both normalize and regularize Eq. (11), i.e.

we subtract the free zero-gluon contribution and introduce a Pauli–Villars
cutoff M . For the ghost contribution this results in

log det(−D2)Norm,Reg ≡ log
det(−D2

µ)

det(−∂2
µ)

det(−∂2
µ +M2)

det(−D2
µ +M2)

= −

∞∫

0

ds

s
Sp







(

1 − e−sM2
)

︸ ︷︷ ︸

Pauli−Villars



esD2
µ − es∂2

µ

︸︷︷︸

free










. (14)
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Here M denotes the Pauli–Villars mass, and with Sp we denote a functional
trace. To evaluate the trace we insert a plane wave basis and find:

log det(−D2)Norm,Reg = −

∫

d3x
∞∑

k=−∞

∫
d3p

2π3

∞∫

0

ds

s

(

1 − e−sM2
)

×Tr
{
exp

[
s(A2 + (Di + ipi)

2)
]
− exp

[
−s(ω2

k + p2)
]}

, (15)

where we defined the adjoint matrix Aab = facbAc
4 + iωkδ

ab. Similarly we
obtain for the gluon determinant:

log (detW )
−1/2
Norm,Reg =

1

2

∫

d3x

∞∑

k=−∞

∫
d3p

(2π)3

∞∫

0

ds

s

(

1 − e−sM2
)

×Tr
{

exp
[

s
(

(A2 + (Di + ipi)
2)abδµν +2facbF c

µν

)]

−exp
[
−s(ω2

k + p2)
]}

.

(16)

So far expressions (14), (16) are independent of the gauge group, but it
should be noticed that all matrices are in the adjoint representation.

3.2. Effective potential

In the zero-gradient order one has to set Di = 0. One finds E = B = 0

and
− 1

2

detWµν =
−2
det(−D2

µ). (17)

For the explicit calculation one can choose a gauge where A4 is diagonal in
the fundamental representation, which for the gauge group SU(2) means

Aa
4 = δa3φ = δa32πT ν , ν =

√
Aa

4A
a
4

2πT
. (18)

The resulting potential is well know [2, 3] and reads

V =
1

3(2π)T 4
φ2(2πT − |φ|)2|mod 2πT =

(2π)2

3
ν2(1 − ν)2|mod 1. (19)

This result is plotted in Fig. 1. It is clearly periodic in ν with period
one. This reflects the center symmetry of the theory. At the minima of
the potential A4 has quantized values which corresponds to a Polyakov line
with values at the center of the group, which is Z(N) for SU(N). The
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1 2

Fig. 1. The periodic potential V with period 1 in units of ν.

group Z(N) is a discrete one and has the elements zk = exp(2πik/N), where
k = {0, . . . , N − 1}. For SU(2) this means that

P = exp

(

iAa
4

τa

2T

)

= cos
|A4|

2T
+ i

Aa
4τ

a

|A4|
sin

|A4|

2T
, (20)

|A4| = 0, 4πT, . . . : P =

(
1 0
0 1

)

, (21)

|A4| = 2πT, 6πT, . . . : P =

(
−1 0
0 −1

)

. (22)

3.3. Second derivatives

When we go to higher orders of the covariant derivative the calculation
becomes more elaborate. We want to keep all powers of A4 but expand in
Di. The technique is to expand e.g.

exp s
(
A2+(Di+ipi)

2
)
, Aab = facbAc

4 + iωkδ
ab (23)

in powers of Di using

eA+B = eA +

1∫

0

dα eαAB e(1−α)A (24)

+

1∫

0

dα

1−α∫

0

dβ eαAB eβAB e(1−α−β)A + . . . ,

and drag B = Di,D
2
i to the right using

[B, eA] =

1∫

0

dγ eγA [B,A] e(1−γ)A. (25)
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Then we have to evaluate all the integrals over α, β, γ, . . . , p, s and sum over
the Matsubara frequencies ωk = 2πkT . This should be done separately for
the ghost and gluon determinants.

4. Results for the electric sector

In the expansion of Eqs. (14), (16) by means of Eqs. (24), (25) we identify
the electric field Eq. (12) in the following structures:

[Di,A] = [Di,D4] = −iFi4 = −iEi , (26)

[Di,A
2] = −i {A, Ei} , (27)

where all matrices are in the adjoint representation, e.g. Eab
i = ifacbEc

i . At
this point we can make the generalization to a time dependent background
Ai(t, x) field. Since Aab = Dab

4 + iωkδ
ab the time dependence shows up in

the covariant time derivative Dab
4 = ∂4δ

ab + facbAc
4. The functional form

of Eqs. (26), (27) remains unaltered but from now on all our results will be
valid for a general time dependent electric field:

Ea
i = Dab

i A
b
4 − Ȧa

i = ∂iA
a
4 + ǫacbAc

iA
b
4 − Ȧa

i . (28)

After all integrations and the summation over ωk, both for log det (−D2)
and log(det W )1/2 the coefficients for the electric sector (see Eq. (13)) are
found to be [1]

f1 =
11

48π2

[

2 (log µ− γE) − ψ
(

−
ν

2

)

− ψ
(ν

2

)

+
20

11ν

]

, (29)

f2 =
11

48π2

[

ψ
(

−
ν

2

)

+ ψ
(ν

2

)

− ψ (ν) − ψ (1 − ν) −
20

11ν

]

. (30)

Here ψ is the digamma function,

ψ(z) =
∂

∂ z
log Γ (z) , (31)

γE is the Euler constant and µ is a UV cutoff that we introduced in the sum
over Matsubara frequencies. It is related to the Pauli–Villars mass as

µ =
M

4πT
eγE . (32)

This scale has been previously found in [5] for the running coupling constant
in the dimensionally reduced theory, and our result agrees.

It should be noted here that the above results are valid for 0 ≤ φ ≤ 2πT ,
i.e. 0 ≤ ν ≤ 1. In other intervals the functional forms of f1 and f2 are
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-3 -2 -1 1 2 3

F1

Fig. 2. The function f1(ν) with the constant part subtracted, in different intervals.

different, it is the sum over the Matsubara frequencies that causes this. We
show the results for f1 for a broader range of ν in Fig. (2).

One can clearly see that this result is not Z(2) -symmetric, the same is
true for f2. However, one particular combination, namely

f3 ≡ f1 + f2 =
11

48π2
[2 (log µ− γE) − ψ (ν) − ψ (1 − ν)] (33)

turns out to periodic. We plot it in Fig. (3). The reason for this is the
following: We chose the gauge for the A4 fields where they are static and
diagonal in the fundamental representation. This leaves certain residual
gauge symmetries left, namely

Aµ → S†AµS + iS†∂µS, S(x, t) = exp

{

−i
τ3

2
[α(x) + 2πtTn]

}

. (34)

1 2 3

Fig. 3. The symmetric function in f3, h1,2 without the constant part, in different

intervals.
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Our invariants in the electric sector can be expressed as

Ea
i E

a
i f1 +

(Ea
i A

a
4)

2

Ab
4A

b
4

f2 = E
‖
iE

‖
i f3 + E⊥

i E
⊥
i f1 , (35)

where E
‖
i E

‖
i = (E1

i )2 + (E2
i )2 and E⊥

i E
⊥
i = (E3

i )2 denote the structures
parallel and orthogonal to A2

4.
The time-dependent gauge transformations Eq. (34) now introduce large

time derivatives in the A1,2
i but not in the A3

i fields. The time-dependent

part of the electric field Eq. (28) enters in E⊥
i E

⊥
i , but not in E

‖
i E

‖
i . Hence

one should not expect gauge-invariance in the structure E⊥
i E

⊥
i f1, since it

is only quadratic in Ȧ1,2
i . In order to have gauge invariance one would have

to sum over all powers Ȧ1,2
i /T , which would result in a non-local effective

action.

5. Results for the magnetic sector

Since the magnetic field (12) does not contain any explicit time-
dependence we expect the functions h1,2 to be periodic in ν. Indeed this
turns out to be the case. The functional form of h1,2 depends again on the
interval that we choose for A4. For 0 ≤ ν ≤ 1 we obtain

h1(ν) =
11

96π2

[

4

(

log
M

4πT
+
γE

2

)

− ψ (ν) − ψ (1 − ν)

]

, (36)

h2(ν) = −
11

96π2
[2γE + ψ (ν) + ψ (1 − ν)] . (37)

In Fig. (3) we plot the constant part (which is the same as for f3) for different
intervals. The result is obviously center-symmetric.

6. Renormalization

In the coefficients that multiply E2
i and B2

i Eqs. (29), (36) we had to
introduce a UV cutoff µ, see Eq. (32). This 1-loop divergence is necessary
to cancel the tree level divergence, which comes from the running of the
running coupling constant once we quantize the theory. The point is to set
the scale of the coupling constant equal to the Pauli–Villars mass M :

−
F a

µν F
a
µν

4g2(M)
= −F a

µν F
a
µν

11

3
Nc

1

32π2
log

M

Λ
. (38)

If we add the tree level and the 1-loop results we find for the constant parts
containing the logarithm in the kinetic energy:

11

24π2T
log

Λ

4πT
(Ea

i E
a
i +Ba

i B
a
i ) (39)

which is definitely finite.
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7. Comparison to previous work

In reference [6] the author makes a covariant derivative expansion of the
1-loop Yang–Mills action. While we keep all powers of the background A4

field the author of [6] goes only to quadratic order. For a comparison we
have to expand our functions f1,2 and h1,2 to quadratic order in ν. The
results agree exactly with [6], for details see [1].

We mentioned in the section on the electric sector that one combination
of our functions, namely f3 = f1 + f2 is Z(2) symmetric. This function has
been obtained in [7] in the context of a calculation of the interface tension
of Z(N) instantons, and our result again agrees.

8. Summary

In our recent paper [1] we studied the effective action for the eigenval-
ues of a static SU(2) Polyakov line at high temperatures. In the T → ∞
limit perturbation theory works and dimensional reduction takes place. The
Polyakov loop has values at the center of the gauge group. If one lowers the
temperature, however, the fluctuations of the Polyakov loop around these
perturbative values increase. We studied the fluctuations of P around its
perturbative values and found the 1-loop effective action for its eigenvalues,
interacting with the Ai fields. We find that the the kinetic energy in the
electric sector is not center-symmetric. If one wishes to preserve this sym-
metry one has to sum over all powers of the electric field, which results in a
non-local effective theory.

I would like to thank the organizers for inviting me to Zakopane, and I
am grateful to my supervisor Dmitri Diakonov for providing me with this
interesting problem and for innumerable helpful and useful discussions.
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