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The thermodynamics of the O(N) nonlinear sigma model in 1 + 1 di-
mensions is studied. We calculate the finite temperature effective potential
in leading order in the 1/N expansion and show that at this order the
effective potential can be made finite by temperature independent renor-
malization. We will show that this is not longer possible at next-to-leading
order in 1/N . In that case one can only renormalize the minimum of the
effective potential in a temperature independent way, which gives us finite
physical quantities like the pressure.

PACS numbers: 11.10.Wx, 11.15.Pg

1. Introduction

The nonlinear sigma model is a scalar field theory with an O(N) symme-
try. It is described by a Lagrangian density which only consists of a kinetic
term,

L = 1
2∂µφi∂

µφi , (1)

and a constraint which enforces all the φ fields to lie on a N − 1 sphere:

φi(x)φi(x) =
N

g2
, i = 1 . . . N . (2)

This model has some nice features in 1 + 1 dimensions, which makes it
interesting to study as a toy model for QCD. First it is renormalizable.
Furthermore it is asymptotically free, such that at very high temperatures
it approaches a free field theory. The model also has a dynamically generated
mass for the φ fields. If N = 3 the model has instanton solutions. Finally,
for N = 2 we recover a free field theory, which can be used as a check of the
calculations.
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In this article we will study the thermodynamical properties of the non-
linear sigma model. In particular we will calculate the pressure. In Sec. 2 we
briefly discuss some aspects of thermal field theory. In Sec. 3 we calculate
the pressure in the weak-coupling expansion. In Sec. 4, we calculate the
effective potential and pressure to leading order in the 1/N expansion. The
next-to-leading order (NLO) correction is discussed in Sec. 5.

2. The pressure in a field theory

In this section we briefly review how one calculates the pressure in a
thermal field theory. For a more complete introduction see Refs. [1, 2].

In classical statistical mechanics one can derive all thermodynamic quan-
tities from the partition function. The partition function Z is given by

Z =
∑

n

〈

n
∣

∣

∣
exp[−βĤ]

∣

∣

∣
n
〉

, (3)

where the sum is over all eigenstates of the Hamiltonian Ĥ and β = 1/T ,
the inverse temperature. For example the pressure P is given by

P =
1

β

∂ logZ
∂V

. (4)

We next express the partition function in terms of fields. The easiest way
to do this is to consider a transition matrix element in ordinary field theory.
One can write such a transition element in terms of a path integral in the
following way

〈

φf

∣

∣

∣
exp[−i(tf − ti)Ĥ]

∣

∣

∣
φi

〉

=

∫

Dφ exp






i

tf
∫

ti

dt

∫

ddxL(φ)






, (5)

where L is a Lagrangian density which has a Minkowskian metric and does
not have derivative interactions. Now if one makes the identification t = −iτ
one finds

〈

φf

∣

∣

∣
exp[−βĤ]

∣

∣

∣
φi

〉

=

∫

Dφ exp



−
β

∫

0

dτ

∫

ddxL(φ)



 , (6)

where we from now on denote the zero component of a (d + 1)-vector by τ
and hence use a Euclidean metric. The last equation enables us to write the
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partition function in terms of a path integral,

Z =

∫

Dφ exp



−
β

∫

0

dτ

∫

ddxL(φ)





φ(τ=0)=φ(τ=β)

, (7)

where one implicitly integrates over all states which obey the periodicity
condition φ(τ = 0, ~x) = φ(τ = β, ~x). So equilibrium thermal field theory is
in essence a Euclidean field theory, where one dimension (τ) is compactified
to a circle. As a consequence, the Fourier transform of a field becomes a
sum over modes,

φ(τ, ~x) =
1

β

∑

n

∫

ddk

(2π)d
eiωnτ+i~k·~xφ̃(k) ≡

∑

∫

K

eiωnτ+i~k·~xφ̃(k) , (8)

where ωn = 2πnT . This implies that in a loop diagram one should not take
the integral over internal momentum but rather the sum-integral Σ

∫

.
Now for example the partition function of the nonlinear sigma model is

given by

Z =

∫ N
∏

i=1

Dφi

∏

x

δ(φi(x)φi(x) − N/g2) exp



−
β

∫

0

dτ

∫

dxL(φ)



 , (9)

where from now on we work in one spatial dimension. To obtain the pressure
we have to calculate Z. We will follow two paths. The first one is making
an expansion around g2 = 0. This will only give us the leading term of
the pressure. The second way is an expansion in 1/N which will generates
additional contributions which are non-analytical in g2.

3. The pressure in the weak-coupling expansion

One can get rid of the constraint by integrating out one of the φ fields,
which results in

Z =

∫ N−1
∏

i=1

Dπi

∏

x

θ
(

N/g2 − πiπi

)

exp



−
β

∫

0

dτ

∫

dxLeff(π)



 , (10)

where θ(x) is the step function and the effective Lagrangian density Leff is
given by

Leff(π) =
1

2
∂µπi∂

µπi +
g2

2

(πi∂µπi)
2

N − g2πiπi
+

1

2
δ(2)(0)

(

N

g2
− πiπi

)

. (11)
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For small values of g2 the θ(x) function is only vanishing when π(x) is large.
Since large values of π give a small contribution to the path integral we
approximate θ(N/g2 − πiπi) ≈ 1 which gives

Z =

∫ N−1
∏

i=1

Dπi exp



−
β

∫

0

dτ

∫

ddxLeff(π)



 . (12)

We will not calculate Z but rather 1
βV

logZ, where V is the volume of our

1 dimensional space. Because logZ is an extensive quantity, i.e. it is linear
in V , the pressure is equal to 1

βV
logZ. Since in general 1

βV
logZ does not

vanish at zero temperature, we subtract the zero temperature contribution
to normalize the pressure to zero at zero temperature.

If g2 = 0 it can be seen from Leff that one has N − 1 noninteracting π
fields. Hence it is easy to show that leading term is equal to the pressure of
N − 1 free fields

P = −N − 1

2





∑

∫

K

log(K2) −
∫

K

log(K2)



 = (N − 1)
π

6
T 2 , (13)

where K = (ωn, k ) is a Euclidean two-vector and we defined

∫

K

≡
∫

d2k

(2π)2
. (14)

By calculating the loop diagrams, one can show that up to and including
order g4 one only finds the pressure of a free gas in d = 1+1 [3,4]. However
one finds corrections to the free pressure in a 1/N expansion. This may
indicate that the pressure is completely non-analytical in g2.

4. The effective potential in leading order in 1/N

Another way to implement the constraint on the φ fields is by using a
Lagrange multiplier field which we will denote by α. This gives the following
expression for the partition function,

Z =

∫ N
∏

i=1

DφiDα exp







−1

2

β
∫

0

dτ

∫

dx ∂µφi∂
µφi

− 1

2

β
∫

0

dτ

∫

dxα(x)[φi(x)φi(x) − N/g2]







. (15)
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In this way the action still is quadratic in the φ fields, so one can easily
integrate them out. This gives

Z =

∫

Dα exp







−S[α] +
N

2g2

β
∫

0

dτ

∫

dxα(x)







, (16)

where

S[α] =
N

2
Tr log[−∂2 + α(x)] . (17)

The pressure is equal to the minimum of the effective potential, which
one can calculate by expanding the α field around its vacuum expectation
value m2. By considering the propagator of the φ fields, one can show that
to leading order in 1/N , m is equal to the physical mass of the φ fields. This
is, however, not longer the case at NLO, [5, 6]. The effective potential can
be obtained from the effective action by division by βV . To calculate the
effective potential we write α = m2 + α̃/

√
N and expand the action around

m2 [7],

S[α] =
N

2
Tr log[−∂2 + m2] +

√
N

2
Tr

(

1

−∂2 + m2
α̃

)

+
1

4
Tr

(

1

−∂2 + m2
α̃

)2

+ O(1/
√

N) . (18)

From this equation it can easily be seen that the effective potential can be
calculated in a 1/N expansion. The leading order effective potential is given
by the classical action. The corrections are obtained by integrating over the
α̃ field.

To calculate the leading order effective potential we introduce a momen-
tum cutoff Λ and subtract m and T -independent constants from the effective
potential. This subtraction will not change the physics, since it only shifts
the whole effective potential by a constant. One finds for the effective po-
tential at leading order in 1/N

V(m2) =
Nm2

2g2
b

− N

2





∑

∫

P

log(P 2 + m2) −
∫

P

log(P 2)



 (19)

=
N

2

[

m2

g2
b

− m2

4π

(

1 + log
Λ2

m2

)

+
T 2

4π
J0(βm)

]

, (20)

where gb is the bare coupling constant. J0(βm) is given by

J0(βm) =
8

T 2

∞
∫

0

dp
p2n(ωp)

ωp
, (21)
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where n(ωp) = 1/(eβωp − 1) and ω2
p = p2 + m2. One is able to renormalize

the leading order effective potential in a temperature independent way by
replacing g2

b → Zg2g2(µ), where

1

Zg2

= 1 +
g2

4π
log

Λ2

µ2
. (22)

and g2 = g2(µ). From this equation it follows that the β-function of g2 is
given by

β(g2) ≡ µ
dg2(µ)

dµ
= −g4(µ)

2π
. (23)

The leading order β-function is exact in g2. Since the β-function is negative,
g2 approaches zero for large values of µ. This shows that the theory is
asymptotically free.

With use of the renormalization of the coupling constant one finds the
following finite expression for the effective potential

V(m2) =
N

2

[

m2

g2
− m2

4π

(

1 + log
µ2

m2

)

+
1

4π
T 2J0(βm)

]

. (24)

One can easily show that the effective potential is independent of the renor-
malization scale µ. This is expected since the choice of µ is completely
arbitrary.

To obtain the pressure, one has to minimize the effective potential with
respect to m2. Minimization gives the so-called gap equation

1

g2
=

∑

∫

P

1

P 2 + m2
=

1

4π
log

(

µ2

m2

)

+
1

4π
J1(βm) ≡ 1

4π
log

(

µ2

m̄2

)

, (25)

where J1(βm) is defined by

J1(βm) = 4

∞
∫

0

dp
n(ωp)

ωp
. (26)

The solution of the gap equation determines the leading order physical mass
of the φ fields as a function of temperature. At T = 0 one can solve this
equation to show that the mass is completely non-analytical in g2,

mT=0 = µ exp

(

−2π

g2

)

. (27)



Heating the O(N) Nonlinear Sigma Model 5863

We can use Eq. (27) to normalize the minimum of the effective potential at
T = 0 to be zero which gives

V(m2) =
N

2

[

m2

g2
− m2

4π

(

1 + log
µ2

m2

)

+
1

4π
T 2J0(βm) +

m2
T=0

4π

]

. (28)

The effective potential as a function of m for different temperatures is shown
in Fig. (1), for the arbitrary choice g2(µ = 500) = 10. The quantities T , m,
µ, V/T and P/T are all in the same arbitrary units. The solid curve which
is the minimum of the effective potential is equal to the pressure.

T = 0T = 200T = 400T = 600Pressure
m

VN
1 � 1038 � 1026 � 1024 � 1022 � 1020

1 � 1058 � 1046 � 1044 � 1042 � 1040
Fig. 1. The leading order effective potential as function of m for different temper-

atures with g2(µ = 500) = 10.

5. Next-to-leading order correction in 1/N

The term linear in α in Eq. (18) gives no contribution to the effective
potential since it gives rise to a tadpole [8]. The first 1/N correction to
the effective potential stems from the last term of Eq. (18). By going to
momentum space one can show that the correction is given by

V1(m
2) = −1

2

∑

∫

P

log







∑

∫

Q

1

Q2 + m2

1

(P + Q)2 + m2






. (29)

We calculated this correction in Ref. [6]. In the limit Λ → ∞, one obtains

V1(m
2) = − 1

8π

(

Λ2 ln ln
Λ2

m̄2
− m̄2 li

Λ2

m̄2

)

−m2

4π

(

ln ln
Λ2

m̄2
− ln

Λ2

4m2

)

+ F (m,T ) , (30)
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where m̄ is defined in Eq. (25). In Eq. (30), we have subtracted m and
T -independent constants and dropped terms that vanish in the limit Λ → ∞.
F (m,T ) is a finite term and the logarithmic integral li(x) is defined by

li(x) = P
x

∫

0

dt
1

log t
, (31)

where P stands for principal value. The first two terms of Eq. (30) are
problematic. It is impossible to remove these divergences by renormalizing
g2 in a temperature independent way or by subtracting m and T -independent
constants. However this is possible at the minimum of the effective potential.
At the minimum, one can use the leading order gap equation, Eq. (25), to
show that m̄ is independent of T . So one could add

Λ2

8π

{

ln
4π

g2
b

− exp

(

−4π

g2
b

)

li

[

exp

(

4π

g2
b

)]}

(32)

to the effective potential which yields an effective potential that can be
renormalized at the minimum. Using this renormalization at the minimum
we have calculated the pressure P as a function of N . The result is depicted
in Fig. (2). One clearly sees a crossover which is not a phase transition. This
is in accordance with the Mermin–Wagner–Coleman theorem [9, 10] which
forbids spontaneous breakdown of a continuous symmetry in 1 + 1 dimen-
sions. The figure furthermore shows that the 1/N expansion is relatively

N = 4N = 8N = 16N = 32N =1
10logT

PNT 2
100101

0.50.40.30.20.10
Fig. 2. Pressure P normalized to NT 2 as a function of temperature for different

values of N with g2(µ = 500) = 10 [6].
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good since the corrections are really of order 1/N . Finally, it can be seen
from the figure that the theory is asymptotically free, because in the limit
T → ∞ the pressure approaches the pressure of a free gas, Eq. (13).

6. Summary and conclusions

We find that the pressure of the nonlinear sigma model in the weak-
coupling expansion through order g4 only consist of the free term. Further-
more, we showed that in a 1/N expansion we can renormalize the leading
order effective potential in a temperature independent way. This is, how-
ever, impossible for the effective potential at next-to-leading order in 1/N .
In that case one can only renormalize in a temperature-independent way a
physical quantity, like the pressure.

This work has been carried out in collaboration with Jens O. Andersen
and Daniël Boer.
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