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These lectures trace the origin of string theory as a theory of hadronic
interactions (predating QCD itself) to the present ideas on how the QCD
string may arise in Superstring theory in a suitably deformed background
metric. The role of ’t Hooft’s large Nc limit, Maldacena’s String/Gauge
duality conjecture and lattice spectral data are emphasized to motivate
and hopefully guide further efforts to define a fundamental QCD string.

PACS numbers: 11.25.Tq, 11.15.Pg, 11.15.Ha, 12.39.Mk

1. Preface: Not by accident

Sting theory, contrary to conventional lore, was discovered (or invented)
not by accident but by a systematic program to build a relativistic quantum
theory of the hadronic (or strong) interactions without resorting to the use
of local fields. The approach, referred to as “S matrix theory”, sought to
impose a minimal set of consistency conditions directly on the S matrix [1].
At the time, it appeared absurd to consider the known light hadrons (e.g.
pions) as “elementary” fields, particularly with the realization that they were
just the first member of a Regge family of increasingly high mass and spin
(J ≃ α′m2

J + α0). In the language of low energy effective field theory, the
problem for a finite quantum theory of hadrons and gravity are analogous.
The effective low energy theory of hadrons (i.e. the pions) is the chiral
Lagrangian,

S[U ] =

∫

d4x

{

F 2
π

4
Tr[∂µΣ

†∂µΣ]− 〈Ψ̄Ψ〉
2Nf

Tr[MΣ† +M†Σ] + · · ·
}

, (1.1)
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and for gravity, the Einstein–Hilbert Lagrangian,

S[g] =
M2

P

16π2

∫

d4x{√−g (R+ Λ) + · · ·} . (1.2)

Both are beautiful geometric quantum theories, but they are non-
renormalizable with dimensionful coupling constants inversely proportional
to the mass (1/Fπ and 1/MP). In each order of the loop expansion, one
must cancel UV infinities with new high dimensional counter terms. With
the discovery of QCD the analogy appears to be lost. But it is the goal of
these lectures to argue that this is not the case. The only weak coupling
limit for QCD (in the infrared) is the ’t Hooft expansion for small 1/Nc

at fixed QCD scale ΛQCD. This leads to a distinctly string-like hadronic
phenomenology. However the central question of these lectures is not the
existences of a phenomenological QCD string. Rather it is the question:

Is the Yang–Mills theory for QCD exactly equivalent
(i.e. dual) to a fundamental String Theory?

This question goes beyond the existence of a confining QCD vacuum
with stringy electric flux tubes to the question of a mathematically pre-
cise identity between QCD and string theory in the same sense that the
Sine Gordon and Massive Thirring quantum theories are equivalent. In this
example not only does duality exchange strong and weak coupling expan-
sions, but after all non-perturbative effects are included they have identical
S matrix.

The recent progress in superstring theory associated with Maldacena’s
AdS/CFT conjecture, backed up by almost 5 years of consistency checks,
strongly supports the existence of an exact Gauge/String duality between
some (super) Yang–Mills theories and superstrings in non-trivial (asymp-
totically AdS) background. Consequently at long last we have some mathe-
matical support for such dualities. Naturally this has revived the search for
a QCD string and brought many features into much clearer focus. These
lecture will briefly review the history and recent progress in this ancient
quest for the QCD string. It should be added that constructing a hadronic
string is not only of interest in gaining a deeper understanding of QCD but,
if successful, a major step in understanding what constitutes a string theory
itself.

2. Lecture one: Ancient lore
2.1. Empirical basis

The discovery of string theory in the late 1960’s followed from a detail
study of the phenomenology of hadronic scattering, specifically finite energy
sum rules constrained by Regge theory at high energies. The Regge limit
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for the simplest amplitude, π+π− elastic scattering in Mandelstam variable
s = (p1 + p2)

2 and t = (p1 + p3)
2, was traditionally parameterized as

Aπ+π−→π+π−(s, t) ≃ g2
oΓ [1− αρ(t)](−α′s)αρ(t) . (2.1)

The Gamma function prefactor gives cross channel poles for rho exchange
at J=1 and higher spins states. Taking the ratio of width to mass for
the rho (Γρ/mρ ≃ 0.1) as a small parameter, one sought a new perturbative
expansions starting with a zero width approximation. This was traditionally
enforced for all resonance states by using an exactly linear rho trajectory
(α(t) = α′t + α0) so that “resonance” poles at integer J = α(m2) had real
masses [2].

In 1968 Veneziano [3] realized that exact s, t symmetry could be imposed
by assuming an amplitude of the form,

Aπ+π−→π+π−(s, t) = g2
o

Γ [1− αρ(t)]Γ [1− αρ(s)]

Γ [1− αρ(s)− αρ(t)]
, (2.2)

the so called dual resonance model. Here duality referred to Dolan–Horn–
Schmid duality which states that sum over s-channel resonances poles in-
terpolates the exchanged Regge power behavior,

∑

r

g2
r (t)

s− (Mr − iΓr)2
≃ β(t)(−α′s)α(t) . (2.3)

This property is easily derived for the dual pion scattering amplitude (2.2).
The Regge limits follows from the Stirling’s approximation as s → ∞ and
the resonance expansion follows from the integral representation for the
Beta function,

Aπ+π−→π+π−(s, t) = −g2
oαρ(t)

1
∫

0

dxx−αρ(s)(1− x)−1−αρ(t) . (2.4)

Expanding at small x we get,

Aπ+π−→π+π−(s, t)=−g2
o

∞
∑

J=1

(αρ(t))(αρ(t)+1)· · ·(αρ(t)+J−1)

(J−1)!

1
∫

0

dxx−1−α(s)+J

⇒
∞

∑

J=1

g2
oAJ (α′t)

αρ(s)− J
≃ g2

oΓ (−1− αρ(t))(−α′s)αρ(t), (2.5)
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where AJ is a polynomial of order J . In fact the initial enthusiasm for this
model included a surprising feature of chiral symmetry. In the soft pion
limit p1 → 0, the Adler zero,

Aπ+π−→π+π−(s, t) = (1− αρ(s)− αρ(t))
Γ [1− αρ(t)]Γ [1− αρ(s)]

Γ [2− αρ(s)− αρ(t)]

∼ α′(s) + (t)→ 0 , (2.6)

is imposed if we take the phenomenologically reasonable values for the rho
trajectory intercept: αρ(0) = 0.5! Veneziano’s amplitude is the 4 point
function of the NS superstring — ignoring the conformal constraint on the
Regge intercept and the dimension of space time which was not understood
at the time. This led to Neveu–Schwarz’s seminal paper [4]on the N -point
generalization, entitled “Factorizable dual model of pions”.

As we will explain this initial enthusiasm was premature.

2.2. Covariant string formulation

It is surprisingly easy to generalize the 4 point Beta function to get the
N point dual resonance amplitudes and the covariant quantization of the
Bosonic string. The argument goes as follows. Consider the 4 point function
for tachyon scattering [6] in a symmetric form

1
∫

0

x−1−α(s)(1− x)−1−α(t)dx =

x3
∫

x1

dx2

(x4 − x3)(x4 − x1)(x3 − x1)

×
∏

1≤i<j≤4

(xj − xi)
2α′pjpi , (2.7)

where α(s) = α′s + 1 = 2α′p1p2 for α′p2
i = −1 and the three dummy

variables maybe fixed at x1 = 0, x3 = 1, x4 = ∞. Since the integrand is
invariant under Möbius transformations xi → (axi + b)/(cxi + d), this does
not spoil cyclic symmetry. Now there is an obvious guess for the N point
open string tachyon amplitude,

AN (p1, · · · , pN ) = gN−2
o

∫

dx2dx3 · · · dxN−2

(xN − xN−1)(xN − x1)(xN−1 − x1)

×
∏

1≤i<j≤N

(xj − xi)
2α′pjpi . (2.8)

The integration region is restricted to be x1 ≤ x2 ≤ x3 ≤ · · · ≤ xN . Modern
string theory lecture notes generally require hundreds of pages of derivation
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to write down this amplitude if they bother to do it all. (This is not to
imply that you should not learn the fundamentals of string path integral
quantization but the discovery string theory was in large part due to the
simplicity for the final answer for the tree amplitude.)

One can also follow the pioneers of the field and write down the Old Co-
variant Quantized string working “backward” from the answer. One needs to
factorize the N -point function, i.e. introduce a complete set of states. Short
circuiting the full derivation, it amounts to a free (string) field expansion,

Xµ(0, τ) = q̂µ + ip̂µτ +
∑

n

1√
n

(

aµ
n exp[τ ] + aµ†

n exp[−τ ]
)

, (2.9)

into normal mode oscillators,

[q̂µ, p̂ν ] = iηµν and [aµ
n, a

ν†
m ] = ηµνδn,m , (2.10)

acting on the ground state tachyon at momentum p,

p̂µ|0, p〉 = pµ|0, p〉 and aµ
n|0, p〉 = 0 . (2.11)

Then a short algebraic exercise will convince you that the integrand for the
N -point function does factorize as,

〈0, p1|V (x2, p2)V (x3, p3) · · · V (xN−1, pN−1)|0, pN 〉 =
∏

1≤i<j≤N

(xj − xi)
pjpi ,

(2.12)
with

V (x, p) = : exp[ipX] : = exp[ipq̂] exp [pp̂ log(x)] exp

[

ip
∑

n

a†nxn

√
n

]

× exp

[

ip
∑

n

anx
−n

√
n

]

, (2.13)

and x ≡ exp[−τ ]. To calculate the matrix element (i.e. amplitude) one
merely normal orders the operators giving factors,

exp

[

−
∑

n

pipj

n
(
xi

xj
)n

]

=exp [pipj log(1− xi/xj)] =

(

1− xi

xj

)pipj

, (2.14)

for each pair of vertex insertions. The stringy interpretation follows from
identification of world sheet surface co-ordinates (σ, τ) so with z=exp[−τ−iσ]
the general expansion for its space-time position, Xµ(σ, τ),

Xµ(z, z̄) = q̂µ + p̂µlog(zz̄) +
∑

n

1√
n

(aµ
nz

n + b†µn z̄
−n) , (2.15)
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is the normal mode expansion of the free 2-d conformal equations of motion
for a free string,

∂2
τX

µ + ∂2
σX

µ = 0 , (2.16)

in Euclidean world sheet metric.
Nambu–Gotto took this one step further by noticing that this is a gauge

fixed form of the equation of motion for a general co-ordinate invariant world
sheet (Nambu–Gotto) action,

SNG = − 1

2πα′
s

∫

d2ξ
√

−det(h) , where hαβ = ∂αX
µ∂βXµ . (2.17)

At the classical level this is also equivalent to the Polyakov form,

SP = − 1

2πα′
s

∫

d2ξ
√

−det(γ)[γαβ∂αX
µ∂βXµ] (2.18)

with an auxiliary “Lagrange multiplier” 2-d metric, γij . However the
Polyakov form is easier to gauge fix and quantize using BRST technol-
ogy. To get a feeling for the dynamics of the open string, it is interesting
to write down a few classical solutions.

2.3. Two open string solutions

In the static (t = X0 = iτ) orthogonal gauge (h12 = h11 + h22 = 0), the
Euler–Lagrange equations for the Nambu–Gotto string action is linear,

∂2
tX

µ − ∂2
σX

µ = 0 , (2.19)

with the non-linear Varasoro constraints,

∂σX
µ∂tXµ = 0 , ∂tX

k∂tXk + ∂σX
k∂σXk = 1 . (2.20)

Classical solutions must satisfy both Eq. (2.19) and Eqs. (2.20).
Solution # 1: The string stretch along the 3rd axis with (fixed) Dirich-

let boundary conditions, σ ∈ [0, L]: All spatial components Xk = 0 except

X3 = σ , (2.21)

with energy E0 = T0L exhibiting linear confinement with the string tension
T0 = 1/2πα′

s. For future reference the exact quantum solution has energy

En = T0L

√

1− π(D − 2)

12T0L2
+

2πa†nan

T0L2
(2.22)

for D space-time dimensions.
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Solution # 2: The free string rotating in the (X1,X2) plane with Neu-

mann boundary conditions, σ ∈ [0, πL/2]: All spatial components Xk = 0
except

X1 + iX2 =
L

2
cos

2σ

L
exp

i2t

L
, (2.23)

with energy E = πLT0/2 and total angular moment (spin) J = α′
sE

2. This
latter result, which is the key requirement for QCD Regge phenomenology, is
a rather non-trivial property of a relativistic massless string. The end points
always travel at the speed of light, so as the energy increases the string gets
longer (E ∼ L) BUT the angular velocity decreases (ω = 2/L = 1/(πT0E))!
Nonetheless the angular moment increases quadratically because the total
stored energy grows linearly in L and the moment of inertia grows as a
cubic L3. This is in stark contrast with a rigid non-relativist bar where
J ∼ E1/2. Clearly the linear Regge trajectory supports the general picture
of a massless “flux” tube with energy coming entirely from its tension. Again
for future reference the exact quantum state for this leading trajectory is

(

a1
(1) + ia2

(1)

)J
|0, p〉 . (2.24)

2.4. Failure of the old QCD string

We should now take a break from this discourse and learn all of rules of
superstring perturbations theory. With the help of anomaly cancellation,
we would discover 5 consistent perturbation expansions — free of tachyons
and negative norm (i.e. ghost) states. The resulting phenomenology for
perturbative superstrings (in flat space-time) has 4 disasters from the view
point of a QCD string:

1. Zero mass states (i.e. 1− gauge/ 2++ graviton)

2. Supersymmetry

3. Extra dimension: 4 + 6 = 10

4. No Hard Scattering Processes

An abject failure for QCD strings — albeit a very interesting frame-
work for a theory of quantum gravity interacting with matter. A theory of
Everything perhaps. There are two possibilities for the QCD string, either
it has nothing to do with a fundamental superstring or there are dramatic
new effects when non-trivial background metrics are considered.



5934 R.C. Brower

3. Lecture two: Gauge/string duality

In a sense the modern era of the QCD string begins almost immediately
after the discover of QCD itself with ’t Hooft analysis of the large Nc limit
in 1974. One had to understand how the picture of valence quarks attached
to the strings of the dual resonance model might arise, even after you as-
sume electric confinement. Apparently there must be some rather small
parameter to explain the zero width approximation. This insight continues
to guide the attempt to define a QCD string today.

3.1. Large Nc topology

SU(3) Yang–Mills theory has no free dimensionless parameters, except
the mass of the quarks relative to the intrinsics QCD scale mq/ΛQCD and
the θ parameter. Note that there is in fact no coupling constant in the
quantum theory because by dimensional transmutation (or breaking of con-
formal symmetry at zero mass for the quarks) this is eliminated in favor of
ΛQCD. Thus there is no conventional weak coupling expansion, except due
to “asymptotic freedom” as a formal method of expanding in the UV for
large “energies”, E ≫ ΛQCD.

’t Hooft asked the question on whether the rank of the group for SU(Nc)
Yang–Mills theory could be used as a formal expansion parameter gs ∼
1/Nc. In perturbation theory there is a well defined limit for fixing g2

YMNc,
the renormalized ’t Hooft coupling. (Here the “coupling” is just a short
hand for the loop expansion in ~ and fixing g2

YMNc short hand for working
at fixed ΛQCD.) The result is the famous topological restructuring of the
loop expansion as sum over Riemann surfaces. Starting from the action

S =
1

g2
YM

Tr[(∂µAν − ∂νAµ + i[Aµ, Aν ])2] +
1

g2
YM

Ψ̄(γµ∂µ − iAµ)Ψ , (3.1)

and writing down Feynman diagrams in the “double line” form, we get

Gluon Loops : δr
r = Nc ⇒ O(NF

c ) ,

Gluon & Quark Prop : g2
YM = g2

YMNc ×
1

Nc
⇒ O(N−E

c ) ,

Vertices :
1

g2
YM

=
1

g2
YMNc

×Nc ⇒ O(NV
c ) . (3.2)

Using Euler’s theorem the factors of Nc for gluon loops (faces F ), propaga-
tors (edges E), quark loops ( boundaries B) and interactions ( vertices V )
is rewritten,

NF−E+V −B
c = Nχ

c = N2−2H−B
c , (3.3)
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depending only on the topology of the graph as function of the number of
non-planar glueballs propagators ( handles H) and the quark loops (bound-
aries B). This is precisely the topological expansion of string theory in
terms of the genus of the world sheet. Perhaps more significant this topol-
ogy can also be shown to hold on the lattice in the confined phase. On the
lattice the strong coupling expansion is a sum over surfaces of electric flux
so in spite of the extreme breaking of Lorenz invariance due the lattice the
physical mechanism is clearly string-like flux tubes. The argument is quite
analogous to weak coupling. For illustration consider the Wilson form of
the pure gauge action,

S =
1

g2
YM

∑

P

Tr[2− UP − U †
P] ,

UP = Uµ(x)Uν(x+ µ)U †
µ(x+ ν)U †

ν (x) ,

Uµ = exp[iaAµ] .

In strong coupling the action is expanded in a power series and each link is
integrated over its Haar measure, dUµ(x). Every link must be paired with
(at least) one anti-link (U → U †) to get a non-zero result. The Nc counting
is

Plaquettes :
1

g2
YM

=
1

g2
YMNc

×Nc ⇒ O(NF
c ) ,

Links :

∫

dU U l1
r1
U †r2

l2
=

1

Nc
δl1
l2
δr2
r1
⇒ O(N−E

c ) ,

Sites : δr
r = Nc ⇒ O(NV

c ) . (3.4)

Quark loops create boundaries just as before. Thus using Euler’s theorem
again the strong coupling expansion (ignoring self-intersections of surfaces)
yields exactly the same topological result as in weak coupling. However it
should be realized that the meaning is very different. The vertices give the
index sums, the faces are now field strengths and edges are not propagators.
The topology expansion for large Nc Yang–Mills is indeed a robust feature
in need of a deeper explanation.

In a real sense the large Nc limit defines the QCD string perturbative
expansion. But to go beyond this statement of faith and actually take the
large Nc limit to give a mathematical tractable definition of the perturbative
QCD string, even at the lowest order in the string coupling, gs ∼ 1/Nc, has
proven frustrating, except in two dimensional QCD. Also it is interesting to
note that there is more than one large Nc limit. For SU(3), one replace the
quark field by an anti-symmetric color tensor , Φij = ǫijkψk. If one takes
the large Nc limit of Nf = 1 flavor QCD with this tensor representation for
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quark fields the fermion loop is no longer subdominant. In fact the leading
term can be shown to be precisely the same as the large Nc limit of N =∞
SUSY Yang–Mills theory! Should we be alarmed at this in view of the glib
statement that the large Nc limit defines string perturbation theory. I think
not. In fact the full non-perturbative QCD string theory might well have
more than one weak coupling string expansion, just as is the conventional
view of superstrings in 10-d.

3.2. AdS/CFT correspondence for superstrings

String theory has undergone a tremendous transformation in the last
35 years. In the “First String Revolution” perturbative string vacua were
restricted to five alternatives ( IIA, IIB, I, H0, HE) by the requirement to
remove tachyons, ghosts and cancel anomalies. This appeared to restrict
dramatically the space of possible string theory. In the “Second String Rev-
olution” non-perturbative dualities related these 5 cases (and M theory) into
a single connected manifold. However, that is not the end of the story. Soli-
tonic objects called D-brane give rise to a tremendous explosion of possible
vacua so in the infrared the physics of strings in non-trivial backgrounds
are seen to mimic a plethora of effective fields theories.

In 1998 Maldacena realized that at least under certain circumstances
string theories had to be dual (i.e. equivalent) to Yang–Mills theory. While
this is technically still a conjecture consistency relations are now so extensive
that the Sting/Gauge duality is hard to doubt.

Maldacena’s first example is IIB superstrings (or in the low energy limit
IIB supergravity) propagating in an AdS5 × S5 10-d manifold,

ds2 =
r2

R2

3
∑

µ=0

ηµνdx
µdxν +

R2

r2
(dr2 + r2d2Ω5) , (3.5)

which is dual to 4-d N = 4 U(Nc) super Yang–Mills theory. The five
co-ordinates, (xµ, r), forms an AdS manifold with radius R and d2Ω5 is
the metric on S5. To motivate this duality, one must identify it as the
near horizon limit of a black brane metric due Nc parallel massive D3-
branes at r = 0 (see Fig. 1). Evidence had accumulated that there are
two equivalent ways to describe the dynamics of the D3-branes. First by
considering short open strings attached to the branes which at low energies
is SUSY Yang–Mills theory and second by the near horizon fluctuations of
closed superstrings or at low energy supergravity. The leap of faith was to
conjecture that in the near horizon limit these are exactly equivalent. In
sense this is a new manifestation of the old perturbative open/closed string
duality.
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D3-branes

Dynamics of N D3 branes at low
energies is (Super) SU(N) YM.

Their mass curves the  space (near horizon)
into AdS5 and emits closed string (graviton)

gµν   gravitons

Aµ gluons

Fig. 1. Open/closed string duality on Nc D3-branes.

In this dual correspondence the string (or gravity) correlation functions
as you approach the boundary of AdS5 (r → ∞) are equivalent to gauge
invariant correlators in SYM theory. The discrete “Kaluza–Klein” modes in
S5 give the multiplets under SU(4) R symmetry . Note the combination of
holography in r and the Kaluza–Klein mechanism on S5 explains how a 10-d
string can be dual to a 4-d field theory. There is no loss of degrees of freedom.
The ’t Hooft gauge coupling is g2

YMNc = R4/α′2
s where the intrinsic string

length scale is
√
αs = ls. Consequently strong ’t Hooft coupling gauge

theory is weak coupling gravity gravity (ls ∼ lPlanck) and the 1/Nc plays
the role of the closed string coupling constant gs = g2

YM/4π ∼ 1/Nc as one
would expect from the large Nc topological discussion for QCD above.

Although Maldacena’s String/Gauge duality is believed to hold for gen-
eral coupling and general Nc, it is difficult to quantize string theory in this
background which includes a non-zero Ramond–Ramond flux even in the
perturbative limit (Nc → ∞). Consequently most analytic results rely on
the strong ’t Hooft coupling limit (gsNc ∼ g2

YMNc →∞), where the theory
becomes classical IIB gravity. Other special cases, such as the pp-wave limit
and semiclassical limits are tractable as well.

3.3. Confinement

One may view the correspondence in holographic terms. The Yang–Mills
UV (short distance) degrees of freedom are dual to excitations near to the
edge at r →∞, while the IR (long distance physics) is represented by modes
at small r → 0. A concrete illustration of this so called IR/UV correspon-
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dence is provided by the scale breaking instanton solution in Yang–Mills
located at xµ with size ρ. This corresponds exactly to a D0-brane located
at five dimensional co-ordinate xµ, r = 1/ρ in the AdS5 manifold.

Ironically Maldacena’s first example of Yang–Mills/String duality does
not confine because the N = ∞ Yang–Mills field theory is exactly confor-
mal. Wilson loops have pure Coulomb (rather than area law) behavior.
When a rectangular Wilson test loop, L×T is introduced on the boundary
of AdS, the red shift factor r2/R2 of the metric allows the minimal surface
area spanning the loop to remain finite by curving into the interior nearer
and nearer to r = 0 as we increase the area: L× T →∞ .

-

r = rmin (IR) r =∞ (UV)

0

∗ ←−←−←− point defect in AdS at (x, r = 1/ρ)

⇔ Instanton at x radius =ρ

X

Fig. 2. Picture of an AdS black hole with its co-ordinate singularity at the Eu-

clidean horizon at the origin of (r, τ) plane and a D0-brane instanton located at

xµ, 1/ρ.

To look for string models closer to QCD, we must break conformal and
supersymmetries. These models typically modify the metric in the IR cut-
ting it off at a finite value r = rmin. Two simple examples were suggested
by Witten by introducing a Euclidean AdS black hole background with a
compact dimension (called τ) with radius set by the Hawking temperature:

• AdS5 × S5 Black Hole for 10-d IIB string theory;

• AdS7 × S4 Black Hole for 11-d M-theory .

The metric has the general form (see Fig. 2),

ds2 =
r2

R2
ηµνdx

µdxν +
R2

r2[1− (rmin/r)d]
dr2 +

r2

R2
[1− (rmin/r)

d] dτ2 + ds2X .

(3.6)
This introduces a scale breaking cut-off which we can identify roughly as
ΛQCD = 1/rmin or as we will see the scale of the glueball mass.

Now the area of the minimal surface as the Wilson loop increases in
size eventually must grow when it approaches r = rmin. For example in the
AdS5 black hole the proper areas grows like r2min/R

2 giving a QCD tension
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TQCD = 1/2πα′
QCD or

αQCD = α′
sR

2/r2min ∼
√

g2
YMNcΛ

2
QCD . (3.7)

3.4. Hard scattering at wide angles

One of the most baffling features of string theory (in flat space) at
odds with QCD is the lack of hard scattering. As a theory of gravity, the
softening of the short distance physics leads to a finite quantum theory, so
it would seem to be intrinsic to superstrings. However we know that QCD,
even in leading order of large Nc, exhibit asymptotic freedom and hard
parton scattering properties. The fundamental “Rutherford experiment”
for hadrons — scattering them at wide angles — has power law fall off
precisely due to hard processes.

AQCD(s, t) ∼





1
√

α′
QCDs





n−4

, (3.8)

where n =
∑

i τi =
∑

i(di−si) with twist τi and conformal dimension di. In
stark contrast the fundamental superstrings (in flat space) have exponential
damped wide angle scattering

Aclosed(s, t)→ exp

[

−1

2
α′(s ln s+ t ln t+ u lnu)

]

. (3.9)

Polchinski and Strassler made the essential observation on how string scat-
tering in a confining AdS background might avoid this conflict with QCD.

Suppose you have a background that is cut-off for small r < rmin and
approximated by AdS5 ×X5 for large r,

ds2 =
r2

R2
ηµνdx

µdxν +
R2

r2
dr2 + ds2X . (3.10)

A plane wave external glueball, φ(r) exp[ixp], scatters locally in r through
a string amplitude with a red shifted proper distance or equivalently an
effective momenta,

p̂s(r) =
R

r
p .

Relative to the string scale, ls =
√

α′
s, the exponential cut-off at high

momenta (lsps > 1), suppresses string scattering in the IR region (r <
rscatt), leaving a residual amplitude in a decreasing small window in the UV
(ls ps < 1),

r > rscatt ≡
√

α′
sRp .
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Since the tail of the glueball wavefunction, φi(r) ∼ (r/rmin)
−∆

(i)
4 , is entirely

determined in the String/Gauge dictionary by the conformal weight ∆
(i)
4 of

the gauge operator dual to the string state, one is led back to the standard
parton or naive dimensional analysis result used in the wide angle power
counting,

φi(rscatt) ∼
(rscatt
rmin

)−∆
(i)
4 ∼ (

√

α′
QCD p)

−∆
(i)
4 , (3.11)

where we have converted to the hadronic scale, using Eq. (3.7).
In the corresponding M-theory construction, all of this appears to be

upset because the scaling of the wave function in AdS7 changes. For ex-
ample the scalar glueball with interpolating field Tr[FµνFµν ] in AdS5 has

∆4 = 4 as expected but in AdS7 the wavefunction scales with ∆6 = 6 at
large r. This apparent conflict with partonic expectations is avoided when
one realizes that from an M-theory perspective, strings are a consequence of
membranes wrapping the “11th” dimension and that in AdS7 this 11th di-
mension is warped just like another spatial coordinate (xµ) with the proper

size: R̂11(r) = (r/R)R11. To account for this effect, one must also introduce
local values for the effective string length and coupling constant:

l̂2s (r) =
R

r
(l3p/R11) , and ĝ2

s (r) =
r3

R3
(R3

11/l
3
p) .

This additional deformation is precisely what is required. The new defini-
tion of the scattering region at wide angles,

r > rscatt = l̂s(rscatt)Rp =
√

α′
sR

2
3 r

−
1
2

scatt p ,

leads to

φi(rscatt) ∼
(rscatt
rmin

)−∆
(i)
6 ∼

(√

α′
QCD p

)− 2
3
∆

(i)
6
, (3.12)

for each external line. For example, for the 0++ scalar glueball correspond-
ing to the interpolating YM operator Tr[F 2], the factor of 2/3 exactly com-
pensates for the shift in the conformal dimension from ∆4 = 4 for AdS5 to

∆6 = 6 for AdS7 to give the parton results, ni = 2∆
(i)
6 /3. This time, in

converting to the hadronic scale in Eq. (3.12), we must realize the relation-
ship of α′

QCD to the string scale is α′
QCD ∼ (R/rmin)

3α′
s. The 3rd power

is a consequence of the fact that in M-theory the area law for the Wilson
loop really comes from a minimal volume for a wrapped membrane world
volume stabilized at r ≃ rmin rather than a minimal world surface area for
a string which gave quadratic behavior in Eq. (3.7).

Putting all factors together, we can summarizing the results on hard
scattering:
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• Strong coupling AdS5: ∆σ2→m≃ 1
s f(

pi·pj

s )
(
√

g2Nc)m

N2m
c

∏

i

(

√
g2NcΛ2

QCD

s

)ni−1

• Strong coupling AdS7: ∆σ2→m≃ 1
s f(

pi·pj

s ) 1
N2m

c

∏

i

(

1
α′

QCDs

)ni−1

• Weak coupling QCD: ∆σ2→m≃ 1
s f(

pi·pj

s ) (g2N)m

N2m

∏

i

(

g2NΛ2
QCD

s

)ni−1

3.5. Near-forward scattering and Regge behavior

The importance of scattering at large r also implies the presence of a
hard component in the near-Regge limit, t/s → 0 as s → ∞. The as-
sumption of a single local scattering leads to T (s, t) =

∫ ∞

rh
drK(r)A(s, t, r),

where A is a local four-point amplitude, K(r) ∼ r5φ1(r)φ2(r)φ3(r)φ4(r),
up to a constant, and rh is a cut-off, rh ≫ rmin. After converting to local
string parameters as discussed above, the amplitude A(s, t, r) depends only
on α′

sŝ and α′
st̂, where ŝ = (R/r)3s and t̂ = (R/r)3t. In the Regge limit the

amplitude becomes

T (s, t) =

∞
∫

rh

drK(r) β(t̂)(α′
sŝ)

α0+α′

s t̂ . (3.13)

For small t ≃ 0, this corresponds to an exchange of a BFKL-like Pomeron,
with a small effective Regge slope,

α′
BFKL(0) ∼ (rmin/rh)3α′

QCD ≪ α′
QCD. (3.14)

Such an exchange naturally leads to an elastic diffraction peak with lit-
tle shrinkage. In the coordinate space, one finds, for a hard process, the
transverse size is given by

〈 ~X2〉 ∼ (rmin/rh)3α′
QCD log s+ constant . (3.15)

There will be no transverse spread, if the cut-off, rh ∼ log s, which char-
acterizes a hard process, increases mildly with s. In the language of a
recent study by Polchinski and Susskind, this corresponds to “thin” string
fluctuations.

In spite of this progress in seeing some hard effects in the string picture,
there is much more to understand. For instance, we note that, consistent
with the known spectrum of glueballs at strong coupling, the IR-region must
in addition give a factorizable Regge pole contribution,

T (s, t) ∼ A(s, t, rmin) ∼ (α′
QCDs)

αP (0)+α′

QCDt . (3.16)
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The “soft” Pomeron must mix with the corresponding hard component, lead-
ing to a single Pomeron singularity in the large N limit. However, address-
ing this issue requires a more refined treatment for the partonic structure
within a hadron. As emphasized by Polchinski and Strassler, this is also
what is required for treating deep inelastic scattering in a String/Gauge
approach.

4. Lecture three: String vs lattice spectra

Based on the conformally broken backgrounds using Maldacena
Gauge/String duality, we can begin to do some calculation in QCD like the-
ories, at least in the strong coupling limit. We are in the position somewhat
similar to a lattice cut-off theory. The strong coupling limit brings along
non-universal cut-off dependent effects. For AdS models, the “cut-off” does
not break Lorenz invariance but it introduces new charged Kaluza–Klein
modes. Moreover unlike the lattice, we have (as yet) no algorithm (theoret-
ical or numerical) in principle to send the cut-off to infinity. It is a coupled
problem. The world sheet sigma model emits gravitons that perturb the
background which in turn has a back reaction on the sigma model. Even
finding the beta function perturbatively to the next order in 1/α′ is difficult.
Still it is worth while to see if there is a reasonable spectrum in the strong
coupling limit.

On the lattice side, where one can numerical take the weak coupling
(continuum) limit, the spectra for glueballs and the quantum states of a
stretch string are becoming quiet accurately determined including some
studies of the extrapolation to Nc =∞. In short the lattice has given and
is capable of giving accurate spectral data for the quantum QCD string. If
it exists, there can be only one answer. This is a unique opportunity: A con-
crete string theory problem with copious “experimental” data to constrain
its construction.

4.1. Glueball spectra

The first such comparison was the computation of the strong coupling
glueball spectrum in the AdS7 M-theory black hole. The correspondence
for the quantum numbers for the gravity modes in terms of the Yang–Mills
fields are read off the effective Born–Infeld action on the brane,

S =

∫

d5xdet
[

Gµν + e−φ/2(Bµν + Fµν)
]

+

∫

d4x(C1F ∧F +C3∧F +C5) .

(4.1)
The entire spectrum for all states in the QCD super selection sector are now
known and can be compared with lattice data for SU(3). The comparison is
rather encouraging as a first approximation (see Fig. 3). All the states are
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Fig. 3. The AdS glueball spectrum for QCD4 in strong coupling (left) compared

with the lattice spectrum [8] for pure SU(3) QCD (right). The AdS Glueball mass

scale, 1/rmin = ΛQCD is adjusted to the lattice scale 1/r0 = 410 to fit the lowest

2++ tensor state.

in the correct relative order and the missing states at higher J are a direct
consequence of strong coupling which pushes the string tension to infinity.
It appears plausible that the AdS7 black hole phase at strong coupling is
rather smoothly connected to the weak coupling (confined) fixed point of
QCD.

4.2. Stretched string spectra

An even more direct observation of the string spectrum in lattice gauge
data is the quantum modes of a fixed stretch string between infinitely heavy
quarks (see Fig. 4). This is an open QCD string with Dirichlet boundary
conditions. From the AdS/CFT view point starting with the string ends
separated by a small distance L, we are able to see first the short distance
Coulomb regime. Then as we increase L, the minimal surface moves into
the interior probing more and more IR physics. Finally at very large L we
see only the lowest mass transverse “Goldstone modes” of the string leading
to the universal spectrum of Lüscher,

En = T0L−
π(D − 2)

12L
+

2πa†nan

L
. (4.2)
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Indeed at large separation L the lattice data for the stretched string spec-
trum appears to be approaching this form with D−2 = 2 transverse oscilla-
tors (see Fig. 4). A clever lattice algorithm developed by Lüscher confirmed
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the universal “Lüscher term”

E0(L) =
π

12
(1 +

0.12 fm

L
) , (4.3)

from a fit to the ground state (i.e. static potential) in the range L from 0.5
to 1.0 fm.

The challenge to the AdS/CFT approach to the QCD string is to un-
derstand the interpolation between large L and small L. As a first step one
can consider an string inspired model for a “warped” metric

ds2 = V (y)dxµdxµ + dy2 + U(y)d2τ + · · · (4.4)

suggested by an AdSd+2 black hole with V (y) = r2

r2
min

=
[

cosh(d+1
2R y)

]4/(d+1)
.
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The minimal surface for the classical potential obeys the following limits,

E0 →
r2min

2πR2α′
L+O(Le−cL) and E0 → −

8π2
√

2

2πα′Γ (1/4)4
R2

L
, (4.5)

which fits the lattice data almost perfectly after adjusting the mass 1/rmin =
ΛQCD and Regge slope α′

QCD = α′
sR

2/r2min. This is reassuring but also high-
lights the limitation of our present situation. In the continuum limit QCD
will fix the ratio of scales, α′

QCDΛ
2
QCD, so there is only one free parameter.

But at strong coupling in the AdS/CFT (or on the lattice for that mat-
ter) the fundamental string scale, α′

s = R2f(g2
YMNc), and the cut-off, r−1

min,
provides two parameters that can be fit arbitrarily.

One can also investigate the quantized fluctuations in this model for
the “warped” background. Choosing the string stretch symmetrically in
the interval z ∈ [−L/2, L/2] in a gauge with z = X3 = σ, the transverse
fluctuation obey the equation,

−ρ0(z)∂
2
t X⊥ + ∂2

zX⊥ = 0 , (4.6)

and the radial mode,

−ρ0(z)∂
2
t ξ + ∂2

z ξ
′′ = M2(z)ξ , (4.7)

with ρ0(z) = V 2(z)/V 2(0) and M2(z) = V ′′(z)− 3
2

V ′(z)
V (z) ∼ Λ2

QCD. It is clear

that at large L, this will reproduce the Lüscher’s result for aD−2 = 2 string
and as expected the mass of the extra radial mode is set by the mass scale
of the glueballs. Indeed this is essentially just the open string analog of the
close string glueball with amplitude concentrated near r = rmin. However
at best this is just a qualitative model of how a QCD string in warped
space might behave. It is hoped that some insight can be gained by this
comparison with lattice spectral data and that more fully self consistent
string models can be solved in this limited context of low energy spectrum
of fluctuations between infinitely heavy quarks.

5. No conclusions yet

The construction of the QCD string theory remains a tantalizing but
unrealized goal. Recent progress has certainly begun to show how such
a String/Gauge duality may arise. Indeed the intimate relations between
Yang–Mills theory and string theory is a dramatic change in our under-
standing, which might be thought of as the “First String Counter Revolu-
tion” bring the subject back to its earliest roots. In this short lecture notes,
it has not been possible to describe many important issues concerning the
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introduction of dynamical quarks and spontaneous chiral symmetry break-
ing, non-perturbative terms beyond the gs ∼ 1/Nc expansion such as the
giant graviton baryon connection and attempts to identify short distance
QCD physics. There is still much confusion on each of these topics with new
ideas streaming forth. The most definitive progress based on String/Gauge
duality relies on more tractable “toy models” of QCD with some residual Su-
persymmetry or special limits where semi-classical methods can be applied.
This technical progress is of course the fundamental work that is needed to
make real progress.

However it must be admitted that formidable challenges remain. First,
even in the simplest case of pure AdS5×S5 it is not yet possible to quantize
the superstring analytically. So hard evidence for the AdS/CFT duality is
often somewhat indirect. When you break conformal and SUSY symmetries
analysis becomes harder. Second, a basic difficult seems to remain in finding
a way to really lift the mass scale for all charged Kaluza–Klein state outside
the QCD sector above the physical states that should survive at a QCD fixed
point. Perhaps the framework of starting from a critical string is flawed.
Finally, it must be acknowledged that a direct constructive method for the
QCD string (however difficult the mathematics may prove to be) is lacking.
Still the conjecture that QCD is in fact a version of string theory has become
more plausible and we are finding more and more about how such dualities
arise. Let us hope that a young “Veneziano” in the “String Millennium” will
come (quickly) to the rescue.
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