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Last year or so has seen a revival of interest in the dynamics of super-
symmetric gauge theories. In this review we give (i) an introduction and a
review of the earlier results in the field; (ii) discuss a more recent work of
my own and of my collaborators on non-Abelian monopoles, vortices and
confinement; and in the last lecture, we discuss (iii) the latest development
in the dynamics of N = 1 gauge theories.
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1. Introduction and review of earlier results

1.1. Basics of SUSY gauge theories

Supersymmetric gauge theories continue to surprise us for deep insights
they give us about the dynamics of non-Abelian gauge theories. We start
with the basics of the supersymmetric theory [1].

The basic SUSY algebra contains

{Qα, Q̄α̇} = 2σµ
α,α̇Pµ .

In order to construct supersymmetric theories it is convenient to introduce
superfields

F (x, θ, θ̄) = f(x) + θψ(x) + . . . ,

Qα =
∂

∂θα
− iσµ

α,α̇θ̄
α̇∂µ , Q̄α̇ =

∂

∂θ̄α̇
− iθασµ

α,α̇∂µ .
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In general they are reducible with respect to supersymmetry transforma-
tions. We construct smaller irreducible multiplets. Chiral superfields are
defined by the constraint D̄Φ = 0 ( DΦ

† = 0 ) so that

Φ(x, θ, θ̄) = φ(y) +
√

2θ ψ(y) + θθ F (y) , y = x+ iθσθ̄ ,

Dα =
∂

∂θα
+ iσµ

α,α̇θ̄
α̇∂µ , D̄α̇ = − ∂

∂θ̄α̇
− iθασµ

α,α̇∂µ .

Vector superfields are defined to be real V † = V. They are conveniently
expressed in terms of a chiral (fermionic) superfield

Wα = −1

4
D̄2e−VDαeV = −iλ +

µ,

2
(σµ σ̄ν)βα Fµν θβ + . . . .

Supersymmetric Lagrangian (
∫

dθ1 θ1 = 1, etc.) can then be written simply
as

L =
1

8π
Im τcl

[∫

d4θΦ
†eV

Φ +

∫

d2θ
1

2
WW

]

+

∫

d2θW(Φ) , (1)

where W(Φ) is the superpotential and τcl = θ
2π + 4 π i

g2 . The scalar potential

is the sum of the F -term and D-term:
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For SQCD, {Φ} → Q ∼ N, Q̃ ∼ N∗ of SU(N)

GF = SU(nf ) × SU(nf ) × UV (1) × UA(1) × Uλ(1) .

Flat directions (CMS) e.g., for nf < nc,

Q = Q̃† =













a1 0 . . . 0

0
. . .

0 . . . anf

0 0 . . . 0
. . . . . .













The problem is: is superpotential generated? Is CMS modified?
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1.2. Nonrenormalization theorem

A crucial ingredient of the analysis is a set of so-called nonrenormaliza-
tion theorems. Perturbative nonrenormalization theorem follows from the
supergraph technique [1]

L =

∫

d2θd2θ̄
(

Φ̄Φ + 1
2Φ

2δ2(θ̄) + h.c.
)

,

〈TΦ(x, θ, θ̄)Φ(x′, θ′, θ̄′)〉
= −mδ2(θ − θ′) e−i(θσµ θ̄−θ′σµθ̄′)∂µ∆c(x− x′) ,

etc. By using a particular property of Grassmannian delta functions (which
encodes the known cancellation mechanism between bosonic and fermionic
loops) one easily finds the standard result that only D-terms (of the form of
∫

d2θd2θ̄(. . .)) get generated. No F -terms arise from radiative corrections.

.
.

.

.

=  0

.

..
.

If there exists an exact non-anomalous symmetry G then no terms vio-
lating G can be generated even non-perturbatively.

There are subtleties, however. Certain perturbative anomaly has been
discovered in [2] which however all turns out [3] to be a fake F -term of the
type

∆L =

∫

d2θ d2θ̄ Φ
2D

2

2
Φ ∼

∫

d2θΦ
3 .

No such nonlocal term simulating F -term arise in the Wilsonian action SW.
Terms protected only by anomalous (e.g. UA(1)) symmetries can be gen-

erated by instantons.
Generalized non-renormalization theorem [3] tells that the gauge kinetic

term
∫

d2θWαW
α =

∫

d2θ d2θ̄
[(

e−VDαeV
)

Wα
]

,

being a kind of D-term, can be generated, but by 1 loop corrections only.
This leads immediately to the so-called NSVZ exact β functions [4]. For
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instance, for SU(N) SQCD:

L =
1

4

∫

d2θ

(

1

g2(M)
− b0

8π2
log

M

µ

)

W aW a

+

∫

d4θ
∑

i

Zi(µ,M)Φ†
i e

2ViΦi ,

where b0 = −3Nc +
∑

i TF i. A re-normalization of the matter fields Φ Φi →
Z

−1/2
i Φi leads to the NSVZ β function

βh(g) ≡ µ
d

dµ
g(µ) = − g3

16π2

(

3Nc −
∑

i

TF i(1 − γi)

)

,

where γi(g(µ)) = −µ ∂
∂µ logZi(µ,M)|M,g(M). Actually by rescaling the fields

further [5] (see [6] for discussion) Aµ = gcAcµ, λ = gcλc, one gets a more
frequently cited form of the NSVZ beta function

β(gc) = − g3
c

16π2

3Nc −
∑

i TF i(1 − γi)

1 −Ncg2
c/8π

2

where gc is the “canonical” coupling constant, related to the more natural
“holomorphic” coupling constant defined above by

1

g2
=

1

g2
c

+
Nc

8π2
log g2

c .

1.3. SUSY Ward–Takahashi identities

SUSY transformation of components of the chiral superfield Φ(x, θ, θ̄) =
φ(y) +

√
2θψ + θθF (y),

[Q̄α̇, φ] = 0 , {Q̄α̇, ψα} = −
√

2σ̄µ∂µφ ,

implies that the chiral n-point function

G = 〈Tφ1(x1)φ2(x2) . . . φk(xk)〉
is independent of the spacetime argument [4]

σ̄µ∂x1
µ G = 〈T [ Q̄α̇, (ψ1(x1)φ2(x2) . . .)]〉 = 0 ,

so that G is equal to
∏

i〈φi〉. Also they depend analytically on gi,mi etc.
(W(Φ) = mΦ

2 + g2Φ
3 + . . .)

∂G

∂m∗
= 〈T [ Q̄α̇, (W̄|θ̄ φ1(x1)φ2(x2) . . .)]〉 = 0 ,
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Fields ∆ qV qλ qX

Q, Q̃ 1 1,−1 1 nc − nf

ψQ, ψQ̃ 3/2 1,−1 0 nc

λα
3

2
0 1 −nf

gl 2 − l −(l + 1) 1 − l 2

Λ
2N 2N 2N 4N

3
0

1.4. Anomalies and instanton

The anomaly plays an important role in many aspects of physics. The
classical example is the UA(1) anomaly

∂µJ
µ
5 =

e2

16π2
Fµν F̃

µν

which, applied for QCD, yields the reasonable π0 → 2γ decay rate. The
UA(1) anomaly due to QCD interactions is

∂µJ
µ
L =

g2

32π2
GµνaG̃a,µν

which leads to a chirality non conservation

∆Q5 = 2nf

∫

d4x
g2

32π2
GµνaG̃a,µν 6= 0 .

This UA(1) breaking leads to the solution of the “U(1)” problem (mη ≫ mπ?
Why NO UA(1) Goldstone boson) [7].

Actually, the fact that g2

32π2GµνaG̃a,µν = ∂µK
µ means that its integral

is a topological invariant. In fact, a finite energy configuration must be
asymptotically of the form

Aµ ∼ U−1(x)∂µU(x), x→ ∞

representing the homotopy class Π3(SU(2)) = Z, with the Pontryagin num-
ber,

∫

d4x
g2

32π2
GµνaG̃a,µν = n, n = 0,±1,±2, . . . .

The configuration of minimum action with n = 1 is known as the instan-
ton

Aµ = − 2i

g2

τµν(x− x0)ν
(x− x0)2 + ρ2

, τµν =
τµτ̄ν − τν τ̄µ

4
.
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The instanton (’t Hooft) yields in QCD the effective Lagrangian

Leff ∼ ǫ
i1...inf ǫj1...jnf

ψ̄j1
L (x) . . . ψ̄

jnf

L (x)ψR,i1(x) . . . ψR,inf
(x),

leaving UA(1) broken to Z2nf
while SUL(nf )× SUR(nf ) remains unbroken.

Equivalently, the 2nf point function

dL

sL

uL

dR

sR

uR

I

〈ǫi1...inf ǫj1...jnf
ψ̄j1

L (x1) . . . ψ̄
jnf

L (xnf
)ψR,i1(y1) . . . ψR,inf

(ynf
)〉 6= 0

is nonvanishing (while zero to all orders in perturbation theory). The pres-
ence of the instanton effects means that the θ term is possible in QCD:

L = θ
g2

32π2
GµνaG̃a,µν

which is renormalizable. The experimental limit (dn < 10−28 e cm) means
that

|θ| < 10−9

which is the “Strong CP Problem” (why is |θ| so small?) A possible solution
is the Peccei–Quinn symmetry (axions); another possibility is that mu = 0.
Another problem, possibly related to the instanton effects is the so-called

∆I = 1
2 problem (why is the ratio A(K→ππ)∆I=1/2

A(K→ππ)∆I=3/2 ∼ 25 so large?)

1.5. Instanton calculation in SUSY QCD

In the so-called strong coupling (standard) instanton method [9] one
calculates

〈λλ(x1)λλ(x2) . . . λλ(xnc)〉 = const.Λ3nc

which gives

L.H.S. = const. =
∏

〈λλ〉 = 〈λλ〉nc .

The fact that the Z2nc discrete symmetry is not broken by the instanton
effect means that one must disentangle the vacuum sum to get the vacuum
expectation value (VEV) of the gluino condensate.
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In the weak coupling instanton method [10] one considers:

(i) SQCD with massless (Q, Q̃)’s with flat direction, and computes;

(ii) the instanton corrections at large 〈Q〉 ≫ Λ, which yields the Affleck–
Dine–Seiberg effective superpotential;

∆W(ADS) = (nc − nf )
Λ

(3nc−nf )/(nc−nf )

(detQQ̃)1/(nc−nf )
, (2)

(iii) adds then the mass term Wmass = mQQ̃ and computes the minimum
of the potential;

(iv) then decouple the quarks m→ ∞, Λ
∗
YM = mΛ

∗, to get 〈λλ〉 = Λ
3.

There is a numerical discrepancy (“4/5 puzzle”) between the results ob-
tained in the two methods, which led to various speculations. Other meth-
ods, all involving computation of the gluino condensate in a single vacuum,
give WCI results. For SU(r + 1), SO(2r + 1), USp(2r), SO(2r) SYM, the
result is [11, 12]

〈

Trλ2

16π2

〉

SU(r+1)

= Λ
3 ,

〈

Trλ2

16π2

〉

SO(2r+1)

= 2
4

2r−1
−1

Λ
3 ,

〈

Trλ2

16π2

〉

USp(2r)

= 21− 2
r+1Λ

3 ,

〈

Trλ2

16π2

〉

SO(2r)

= 2
2

r−1
−1

Λ
3 .

1.6. U(1)-related (Konishi) anomaly

Another useful ingredient is the anomalous identities related to the axial
(or chiral) U(1) anomaly.

• For SQCD it reads, in the superfield form,

−1

4
D̄2(Q†eVQ ) = mQ̃Q+

g2

16π2
TrWαW

α .

The imaginary part of the F -component of the both sides corresponds
to the UA(1) anomaly;

• the lowest component instead gives

{Q̄α̇, ψ̄
α̇Q} = mQ̃Q− g2

16π2
Trλαλ

α
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which leads to an exact relation

〈miQ̃iQi〉 =

〈

g2

16π2
Trλαλ

α

〉

(no sum) i = 1, . . . nf ,

(cf. 〈ψ̄iψi〉 = −Λ
2 ( i = u, d, s) in QCD).

• In a general chiral gauge theory with superpotential W(Φi) the corre-
sponding identity is

−1

4
D̄2(Φ

†
i e

V
Φi ) = Φi

∂W
∂Φi

+ C(Φi)
g2

16π2
TrWαW

α .

• These relations can be used as a check of dynamical calculation (in-
stantons), of various approximations or of general arguments.

• To obtain the Konishi anomaly, one considers the functional change
of variables, δΦi = iA(z)Φi (A(z) arbitrary chiral superfields): the
Jacobian is

J = det

(

δΦ′
z′

δΦz

)

= det〈z′|iA(z)

(

−D̄
2

4

)

|z〉 = eTriA(z)−D̄2

4 .

Regularizing the high frequency modes by (L ≡ D̄2e−VD2eV /16) gives

Tr

[

iA(z)
−D̄2

4

]

→ lim
M→∞

Tr

[

iA(z)eL/M2 −D̄2

4

]

.

• To compute it, note that L can be written, acting on −D̄2

4 , as

L = P 2 − 1

2
WαDα + CµPµ + F ,

where

Wα = −1

4
(D̄2e−VDαeV ) ,

Cµ = −1

2
σµ

αα̇(D̄α̇e−VDαeV ) ,

and

F =
(D̄2e−VD2eV )

16
.
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• Each power of terms in L is accompanied by a factor M−1 as M → ∞;
on the other hand one needs at least two powers of D’s:

〈θθ̄|DDD̄2|θθ̄〉 6= 0 .

The net result is that only terms quadratic in 1
2W

αDα contribute.
Computing that term by going to a plane wave basis yields the anomaly.

• Although the Konishi anomaly has been obtained in almost all known
methods, such as Pauli–Villars regularization, explicit 1-loop calcu-
lation, point-splitting, BPHZ, both in component and superfield for-
malisms, the functional integral method seems to be particularly ade-
quate for generalization (see Section 3).

1.7. Phases of SQCD; Seiberg’s duality

These analyses and Seiberg’s duality [14] have established the following
picture of the vacuum in the massless SQCD.

• The dynamically generated superpotential (2) implies the vacuum run-
away (nf < nc); while no superpotential is generated for nf > nc.

• For nf = nc the moduli space (space of vacua) is quantum mechani-
cally modified as

detM −B B̃ = Λ
2nf .

• 3nc
2 < nf < 3nc (conformal window), the system is in an infrared fixed

point (SCFT): the low energy physics is described either as the original
SQCD or as the dual SU(ñc) = SU(nf − nc) theory with dual quarks.

g*

g*D

g( )
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Nf Deg. freedom Eff. gauge group Phase Symmetry

0 (SYM) — — Confinement —

1 ≤ Nf < Nc — — no vacua —

Nc M, B, B̃ — Confinement U(Nf )

Nc + 1 M, B, B̃ — Confinement Unbroken

Nc + 1 < Nf < 3Nc

2
q, q̃, M SU(Ñc) Free-magnetic Unbroken

3Nc

2
< Nf < 3Nc q, q̃, M or Q, Q̃ SU(Ñc) or SU(Nc) SCFT Unbroken

Nf = 3Nc Q, Q̃ SU(Nc) SCFT (finite) Unbroken

Nf > 3Nc Q, Q̃ SU(Nc) Free Electric Unbroken

2. Non-Abelian monopoles, vortices and confinement

2.1. SU(N) YM

The test charges in SU(N) YM theory take values in (Z
(M)
N , Z

(E)
N ) where

ZN is the center of SU(N) and Z
(M)
N , Z

(E)
N refer to the magnetic and electric

center charges. (Z
(M)
N , Z

(E)
N ) classification of phases (’t Hooft) follows (see

figure).

ZN

ZN

Q Q

Confinement

M

SU(N)/ZN)  ~ ZN
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2.2. SU(N) YM and solvable cousins

• If field with x = (a, b) condense, particles X = (A,B) with

〈x,X〉 ≡ aB − bA 6= 0 (mod N)

are confined (e.g. 〈φ(0,1)〉 6= 0 → Higgs phase).

• Quarks are confined if some field χ exist, such that

〈χ(1,0)〉 6= 0 .

• In the softly broken N = 4 (to N = 1) theory (often referred to as
N = 1∗) all different types of massive vacua, related by SL(2, Z),
appear; the chiral condensates in each vacua are known.

• In softly broken N = 2 Gauge Theories, dynamics turns out to be
particularly transparent.

The questions we wish to address are: What is χ in QCD? How do they

interact? Is XSB related to confinement? θ vacua?; ǫ
′

ǫ ; ∆I = 1
2 ?

2.3. QCD as dual superconductor

A familiar idea is that the ground state of QCD is a dual superconductor
[15]. There exist no elementary nor soliton monopoles in QCD; however,
monopoles can appear as topological singularities (lines in 4D) of Abelian
gauge fixing, SU(3) → U(1)2. Alternatively, one can assume that certain
configuration similar to Wu–Yang monopole (SU(2))

Aa
µ = σ̃(x)(∂µn× n)a + . . . , n(r) =

r

r
⇒ Aa

i = ǫaij
rj

r3

dominate [16]. Although there are some evidence in lattice QCD [17] for
“Abelian dominance”, there are several questions to be answered. Do Abelian
monopoles carry flavor? (Leff?) What about the gauge dependence? Most
significantly, does dynamical SU(N) → U(1)N−1 breaking occur? That
would imply a richer spectrum of mesons (T1 6= T2, etc.) not seen in Nature
and not expected in QCD. Both in Nature and presumably in QCD there is
only one “meson” state

meson ∼
N
∑

i=1

| qi q̄i 〉

i.e., 1 state vs
[

N
2

]

states (SU(N) → U(1)N−1 × Weyl not enough).
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q1 q1

q2 q2

T1

T2

qN qN

TN

2.4. Dirac’s monopoles

As is well known QED admits pointlike magnetic monopoles if Dirac’s
quantization condition

g e =
n

2
, n ∈ Z , (3)

is satisfied. In the presence of a magnetic monopole, there cannot be a
gauge vector potential which is everywhere regular. A possible singularity
(Dirac string) along (0, 0, 0) → (0, 0,−∞) is invisible if (3) is satisfied. A
proper formulation is to cover S2 by two regions a (0 ≤ θ < π

2 + ǫ) and b

(π
2 − ǫ < θ ≤ π) [18]

(Aφ)a =
g

r sin θ
(1 − cos θ) , (Aφ)b = − g

r sin θ
(1 + cos θ) ,

so that in each neighborhood the vector potential is regular. The two de-
scriptions are related along the equator by a gauge transformation

Aa

i = Ab

i − U † i

e
∂iU , U = e2igeφ.

The gauge transformation is well-defined if the condition (3) is met. More
generally, for dyons (e1, g1), (e2g2), the quantization condition reads

e1 g2 − e2 g1 =
n

2
, n ∈ Z . (4)

The topology involved is: Π1(U(1)) = Z.
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2.5. Non-Abelian gauge theories

In the case of a non-Abelian gauge group, one might embed Dirac’s
monopole in a U(1) subgroup. However, the homotopy group properties
such as

SU(2) ∼ S3 , Π1(SU(2)) = 1 , (5)

SO(3) ∼ S3

Z2
, Π1(SO(3)) = Z2 , (6)

show that there are no monopoles in SU(2), SU(N); there is only one type
of monopole in SO(3), and so on [18].

In spontaneously broken gauge theories, instead, there are (’t Hooft–
Polyakov) monopoles [19]

SU(2)
〈φ〉6=0−→ U(1)

Dφ r→∞−→ 0, ⇒ φ ∼ U · 〈φ〉 · U−1 ;

Ai ∼ U · ∂iU
† ⇒ Fij = ǫijk

rk
r3
m
τ3
2

which are regular, finite energy soliton-like solutions, with topology
Π2(SU(2)/U(1)) = Π1(U(1)) = Z. The static energy can be written as
(Bogomolny)

H =

∫

d3x

[

1

4
(F a

ij)
2 +

1

2
(Diφ

a)2 +
λ

2
(φ2 − v2)2

]

=

∫

d3x

[

1

4
(F a

ij − ǫijkDkφ
a)2 +

1

2
F a

ijǫijkDkφ
a + pot.

]

,

where 1
2F

a
ijǫijkDkφ

a = ∂iSi; Si = 1
2ǫijkF

a
ijφ

a : the second term in the square
bracket is a topological invariant. It follows that in a given sector

H ≥
∫

d3x∇ · S =
4πv

g
m , m = 1, 2 , . . . .

If λ = 0 the configuration of the minimum energy is given by the solution
of the linear (Bogomolny) equations

F a
ij − ǫijkDkφ

a = 0 ; Ba
i = Diφ

a

whose solutions are known in analytic form.
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A more general situation is the spontaneously broken gauge theory with

G
〈φ〉6=0−→ H ,

where H is non-Abelian [20, 21]. The asymptotic behavior is

Dφ r→∞−→ 0, ⇒ φ ∼ U · 〈φ〉 · U−1 ∼ Π2(G/H) = Π1(H) ;

Ai ∼ U · ∂iU
† → Fij = ǫijk

rk
r3
βℓTℓ ,

where Ti ∈ Cartan S.A. of H. Topological quantization leads to 2α ·β ⊂ Z,
where βi = weight vectors of H̃ = dual of H. Examples of the dual of several
groups are given in the Table.

H̃ ⇔ H

SU(N)/ZN ⇔ SU(N)

SO(2N) ⇔ SO(2N)

SO(2N + 1) ⇔ USp(2N)

They reduce to singular Dirac-like monopoles (Wu–Yang) for |φ| → ∞;
’t Hooft–Polyakov monopoles for G = SU(2), H = U(1).

2.6. Seiberg–Witten, N = 2 gauge theory

The Lagrangian of a N = 2 YM theory is Eq. (1) with W(Φ) = 0. For
SU(2) the vacuum degeneracy (moduli space) is parametrized as

〈Φ〉 =

(

a 0
0 −a

)

,

u =u =

u

Massless
 (1,0)  monopole

Massless
 (1,1)  dyon

u = < Tr  
Semi-cl

u = 2

- 
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a 6= 0 breaks SU(2) → U(1): at IR,

Leff = Im

[
∫

d4θ Ā
∂Fp(A)

∂A
+

∫

1

2

∂2Fp(A)

∂A2
WαW

α

]

,

where Wα, A describe N = 2 U(1) theory, Fp(A) is the prepotential. Define

the dual of A, AD ≡ ∂Fp(A)
∂A : then

dAD

du
=

∮

α

dx

y
,

dA

du
=

∮

β

dx

y
,

where the curve is (u ≡ Tr 〈Φ2〉 describes the quantum moduli space —
QMS)

y2 = (x− u)(x+ Λ
2)(x− Λ

2) .

The exact mass formula (BPS) following from the N = 2 SUSY algebra is

mnm,ne =
√

2 |nmAD + neA | .

The above four formulae constitute the Seiberg–Witten solution [22–24].
The adjoint scalar mass (µΦ

2 perturbation) leads to the low-energy ef-
fective superpotential near the singularity, u ≃ Λ

2:

Weff =
√

2ADMM̃ + µU(AD) .

Minimization of the potential leads to the condensation of the monopole
〈M〉 ∼ √

µΛ (confinement).
It is interesting to note that at the singularities u = ±Λ

2, instanton sum
diverges

〈TrΦ2〉 =
a2

2
+

Λ
4

a2
+ . . . = . . .+ 1 + 1 + 1 + . . . .

The discussion can be generalized to N = 2 pure YM theories with
other gauge groups. In general, dynamical abelianization occurs near the
monopole singularities, for instance, SU(N) gauge group gets dynamically
broken as SU(N) → U(1)N−1 (cf. QCD).

It is important to realize that these light “monopoles” are indeed ’t Hooft–
Polyakov monopoles becoming light by quantum corrections. This can be
proven by studying the charge fractionalization [25]. For instance, the elec-
tric charge of the monopole is known to behave as

2

g
Qe = ne +



− 4

π
Arg a+

1

2π

Nf
∑

f=1

Arg (m2
f − 2a2)



 nm + . . . .
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in the semi-classical region. The Seiberg–Witten exact solution, when ex-
trapolated back to the semi-classical domain, reproduces exactly the pre-
viously known one-loop results. An analogous check has been done for
the quark number fractionalization. There is an interesting phenomenon
of quantum quenching of quark numbers of massless, condensing monopole.
Also, the non-Abelian flavor quantum number of the quantum monopoles
as encoded in the Seiberg–Witten solution is consistent with the well-known
Jackiw–Rebbi mechanism.

2.7. More general N = 2 models

The study of the more general class of N = 2 theories [27,28] has shown
that there are variety of confining vacua (see figure):

r=1

r=nf /2
- -

-

Non Abelian monopoles

Abelian monopoles

(Non-baryonic)
    Higgs Branches

Baryonic
Higgs Branch

Coulomb
     Branch

Dual
  Quarks

QMS of N=2 SQCD  (SU(n) with nf  quarks)

r=0

<Q>

<Q>

N=1  Confining vacua  (with     perturbation)

N=1  vacua  (with     perturbation) in free magnetic phase

SCFT

1. There are vacua (r = 0, 1) in which the low-energy effective action is
an Abelian (dual) gauge theory. Upon the adjoint scalar mass per-
turbation µΦ

2, the magnetic monopole condenses (confinement); the
system displays dynamical abelianization, a feature not shared by the
real world QCD.
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2. In a series of r-vacua, the effective action is Geff ∼ SU(r)×U(1)nc−r−1;
with nf dual quarks in r of the low-energy SU(r) group. The “dual
quarks” can be identified with the standard non-Abelian monopoles.

3. These r-vacua exist for r ≤ nf

2 .

4. Superconformal theory (SCFT) occurs at r =
nf

2 . Here the question
is what (mutually nonlocal) degrees of freedom describe the SCFT
(which confines upon the perturbation µΦ

2).

Physics of USp(2nc) ( SO(nc) similar ) theory is even more interesting.
All r vacua (at finite m) collapse into a single SCFT at m → 0; in other
words, all confining vacua (with µΦ

2 ) are of this type; also, the global
SO(2nf ) → U(nf ) symmetry breaking pattern (in the case of USp(2nc)

theory) is very reminiscent of what happens in QCD (cf. 〈ψ̄ ψ〉(QCD) 6= 0).

Non Abelian monopoles

    Higgs Branches

Special
Higgs Branch

Coulomb
     Branch

Dual
  Quarks

QMS of N=2 USp(2n) Theory with nf  Quarks

<Q>

<Q>

N=1  Confining vacua  (with     perturbation)

N=1  vacua  (with     perturbation) in free magnetic phase

SCFT
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2.8. More about non-Abelian monopoles

Consider the system with gauge symmetry breaking

SU(3)
〈φ〉−→SU(2) × U(1), 〈φ〉 =





v 0 0
0 v 0
0 0 −2v



 .

By making use of the ’t Hooft–Polyakov solutions in SUU (2),USV (2) ⊂
SU(3) one finds two degenerate SU(3) solutions. Analogously, for the system

monopoles S̃U(2) Ũ(1)

q̃ 2 1

with symmetry breaking

SU(n)
〈φ〉−→SU(r) × Un−r(1) , 〈φ〉 =









v11r×r 0 . . . 0
0 v2 0 . . .

0 0
. . . . . .

0 0 . . . vn−r+1









one finds the following set of the minimal monopoles:

monopoles S̃U(r) Ũ0(1) Ũ1(1) Ũ2(1) . . . Ũn−r−1(1)

q r 1 0 0 . . . 0

e1 1 0 1 0 . . . 0

e2 1 0 0 1 0 0

... 1 0 . . . 0

en−r−1 1 0 0 . . . . . . 1

We note [26] that

• they represent a degenerate r-plet of monopole solutions (q);

• they have the same charge structure as that of the “dual quarks” ap-
pearing in the r-vacua of N = 2 SQCD;

• they have the correct flavor quantum numbers due to the Jackiw–Rebbi
mechanism.
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2.9. Subtleties

There are however certain subtleties about the non-Abelian monopoles.

• No “colored dyons” are known to exist [29]. In other words, no charge
fractionalization is possible for non-Abelian quantum numbers. This
being so, it does not preclude the non-Abelian monopoles of our inter-
est: magnetic particles having Abelian and non-Abelian charges, both
magnetic, can perfectly well exist, and do appear in the r-vacua of the
softly broken N = 2 SQCD [26]!

• It is not justified to study the system G
〈φ〉6=0−→ H as a limit of maxi-

mally broken cases as sometimes done.

• Non Abelian monopoles are never really semi-classical, even if

〈φ〉 ≫ ΛH .

For H were broken it would produce an approximately degenerate set
of monopoles as, for instance, in the pure N = 2, SU(3) theory. Only if

H remains unbroken do non-Abelian monopoles in irreps of H̃ appear.

• This option is realized in the r-vacua of N = 2 SQCD with SU(r) ×
U(1)nc−r+1 gauge group, where r <

Nf

2 . This last constraint can be

understood from a renormalization-group consideration: for r <
Nf

2
there is a sign flip in the beta functions of the dual magnetic gauge
group, with respect to that in the underlying theory:

b
(dual)
0 ∝ −2 r + nf > 0, b0 ∝ −2nc + nf < 0 .

• In fact, when such a sign flip not possible (e.g., pure N = 2 YM)
dynamical abelianization occurs!

• The quantum behavior of non-Abelian monopoles thus depend critically
on the presence of massless fermions in the underlying theory.

• r =
nf

2 is a boundary case: the corresponding vacua are SCFT (non-
trivial IR fixed point). Non Abelian monopoles and dyons still show
up as low-energy degrees of freedom, but their interactions are nonlo-
cal and strong. The possible mechanism of confinement in these vacua
has been recently studied [31].
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2.10. ZN vortices

In the Abelian dual superconductor picture of confinement in a SU(N)
YM theory, the quarks would be confined by Abelian Abrikosov–Nielsen–
Olesen vortices of U(1)N−1. However, this leads to the difficulty mentioned
at the end of the Subsection 2.3. The quarks must be confined by some sort
of non-Abelian chromoelectric vortices.

The simplest type of vortices involving a non-Abelian gauge group is the
ZN vortex, which occurs in a system with gauge symmetry breaking as

SU(N) ⇒ ZN .

An analogous vortex appear in a system with a general symmetry breaking
pattern, H ⇒ C, a discrete center. Vortices represent nontrivial elements of
Π1(H/C), e.g. Π1(SU(N)/ZN ) = ZN . The asymptotic behavior of the fields
is

Ai ∼
i

g
U(φ)∂iU

†(φ); φA ∼ Uφ
(0)
A U†, U(φ) = exp i

r
∑

j

βjTjφ ,

where Tj are the generators of the Cartan subalgebra of H. The quantization
condition is (α = root vectors of H)

U(2π) ∈ ZN , α · β ∈ Z :

the vortices are characterized by the weight vectors of the group H̃, dual of H
[30]. It seems as though the vortex solutions thus appear in the irreps of H̃ =
SU(N). Actually, the fact that the topology involved is Π1(SU(N)/ZN ) =
ZN means that the stable vortices are characterized by ZN charge (N -ality)
only.

These ZN vortices are non BPS and this makes the analysis of these
objects so far relatively little explored. However there are interesting quan-
tities which characterize these systems such as the tension ratios for which
certain intriguing proposal (sine formula) [32, 33]

Tk ∝ sin
π k

N

and which can be measured on the lattice.

6*

3

T

H

H=0

6 6*

6 6*

3 3

8 8

T6

T3
*
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2.11. Non-Abelian BPS vortices; non-Abelian superconductors

Systems with BPS vortices with a non-Abelian flux — non-Abelian su-
perconductors — have been recently proven to exist [34, 35]. Consider a
gauge theory in which the gauge group is broken at two different scales

G
〈φ〉6=0−→ H

〈φ′〉6=0−→ ∅ , 〈φ〉 ≫ 〈φ′〉 ,

where the unbroken (non-Abelian) group H gets broken at a much lower
scale, 〈φ′〉. We are interested in the physics at scales between the two scales
〈φ〉 and 〈φ′〉. When Π1(H) 6= ∅ the system develops vortices. If the theory
contains an exact continuous symmetry GF , respected both by the inter-
actions and by the vacuum (not spontaneously broken), but broken by a
vortex solution, then there is a nontrivial degeneracy of vortex solutions
(zero modes).

An example [35] is the SU(3) N = 2 theory with nf = 4, 5 quark flavors
with large common (bare) mass m, with the N = 2 symmetry broken softly
to N = 1 by the adjoint mass term, µTr Φ

2. We consider a particular
vacuum, the “r = 2” vacuum of this system, which is characterized by the
VEVs

Φ = − 1√
2





m 0 0
0 m 0
0 0 −2m



 ,
〈

qkA
〉

=
〈

¯̃q
kA
〉

=

√

ξ

2

(

1 0
0 1

)

.

At the mass scales below m (but above ξ =
√
µm) the system has an exact

SU(2) × U(1)/Z2 gauge symmetry as well as an SU(nf ) global symmetry.

The action has the form, after the Ansatz Φ = 〈Φ〉; q = q̃†; and q → 1
2q:

S =

∫

d4x

[

1

4g2
2

(

F a
µν

)2
+

1

4g2
1

(

F 8
µν

)2
+
∣

∣∇µq
A
∣

∣

2

+
g2
2

8

(

q̄Aτ
aqA
)2

+
g2
1

24

(

q̄Aq
A − 2ξ

)2
]

. (7)

The tension can be rewritten à la Bogomolny:

T =

∫

d2x

(

3
∑

a=1

[

1

2g2
F

(a)
ij ± g2

4

(

q̄Aτ
aqA
)

ǫij

]2

+

[

1

2g1
F

(8)
ij ± g1

4
√

3

(

|qA|2 − 2ξ
)

ǫij

]2

+
1

2

∣

∣∇i q
A + i ε ǫij∇j q

A
∣

∣

2 ± ξ

2
√

3
F̃ (8)

)

,
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where the first three terms are positive definite and the fourth term is a
topological invariant, U(1) flux. The non-Abelian Bogomolny equations

1

2g2
F

(a)
ij ± g2

4

(

q̄Aτ
aqA)ǫij = 0 , (a = 1, 2, 3);

1

2g1
F

(8)
ij ± g1

4
√

3

(

|qA|2 − 2ξ
)

ǫij = 0 ,

∇i q
A + iεǫij∇j q

A = 0 , A = 1, 2 (8)

follow from the last formula. The equations (8) have Abelian (n, k) solutions
of the type (where n, k are integers) studied in [36]

qkA =

(

ei n ϕφ1(r) 0
0 ei k ϕφ2(r)

)

,

A3
i (x) = −εǫij

xj

r2
((n− k) − f3(r)) ,

A8
i (x) = −

√
3 εǫij

xj

r2
((n+ k) − f8(r)) (9)

can be seen to exist, where φ1(r), φ2(r), f3(r), f8(r) are profile functions
with appropriate boundary conditions.

The crucial observation is that the system (7) has an exact SU(2)C+F

symmetry, which is neither broken by the interactions nor by the squark
VEVS. However, an individual vortex configuration breaks it as SU(2)C+F →
U(1) therefore the vortex acquires zero modes parametrizing

SU(2)

U(1)
∼ CP1 ∼ S2 .

For instance, a minimum vortex of generic orientation can be explicitly con-
structed as

qkA = U

(

eiϕφ1(r) 0
0 φ2(r)

)

U−1 = e
i
2
ϕ(1+naτa) U

(

φ1(r) 0
0 φ2(r)

)

U−1,

Ai(x) = U

[

−τ
3

2
ǫij

xj

r2
[1 − f3(r)]

]

U−1 = −1

2
naτaǫij

xj

r2
[1 − f3(r)] ,

A8
i (x) = −

√
3 ǫij

xj

r2
[1 − f8(r)] , (10)

where U is an SU(2) matrix.
The (massive) non-Abelian monopoles resulting from the gauge symme-

try breaking SU(3) → SU(2)×U(1)/Z2 by the adjoint Φ VEV, are confined
by these non-Abelian vortices.
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(0,1)

(1,1)

(1,0)

(1,-1)

(0,2) (2,0)

(1,0)(0,1)

(0,2) (2,0)(1,1) Level 2

Level 1

Remarks [35]:

• The reduction of the vortex spectrum (meson spectrum): (figures) is
due to the topology change

Π1

(

U(1) × U(1)

Z2

)

= Z
2 → Π1

(

SU(2) × U(1)

Z2

)

= Z;

• The transition from the Abelian (mi 6= mj) to the non-Abelian
(mi = m) superconductivity is here reliably and quantum mechan-
ically analyzed (it is important to have nf = 4 or nf = 5 for this);

• Our findings provide an (indirect) solution to the “existence problem”
of non-Abelian monopoles, as the latter act as the sources of the
non-Abelian vortices (see figure below);

• The dynamics of vortex zero modes can be shown to be equivalent to
the two-dimensional O(3) = CP

1 sigma model (n → n(z, t)):

S(1+1)
σ = β

∫

dz dt
1

2
(∂ na)2 + fermions.

It is dual [37,38] to a chiral theory with two vacua. The exact SU(2)C+F

symmetry is not spontaneously broken. The dual (N = 1 ) SU(2) the-
ory is in confinement phase and has, correctly, two vacua (Witten
index).
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• The whole picture generalizes naturally to the case of SU(N) →
SU(N−1)×U(1)

ZN−1

→ ∅ system with 2N > Nf ≥ 2(N − 1) flavors. It

has vortices with 2(N − 2)-parameter family of zero modes represent-
ing

SU(N − 1)

SU(N − 2) × U(1)
∼ CP

N−2 .

• The analysis was made at large m (large 〈φ〉) where the system is semi-
classical. Though more difficult to analyze, the situation at small m
where the non-Abelian monopoles condense and the quarks are con-
fined by non-Abelian chromoelectric vortices, is related smoothly to
the non-Abelian superconductor studied here, via holomorphic depen-
dence of the physics on m and though the isomonodromy (in which
quarks become monopoles and vice versa).

Monopole

A

Vortex

H

2.12. Lessons from N = 2 SQCD

Softly broken N = 2, SU(nc) gauge theories with nf quarks ⇒ confining
vacua with: physics quite different for

(i) r = 0, 1 ⇒ Weakly coupled Abelian monopoles;

(ii) r <
nf

2 ⇒ Weakly coupled non-Abelian monopoles;

(iii) r =
nf

2 ⇒ Strongly coupled non-Abelian monopoles.

Both at generic r-vacua and at the SCFT (r = nf/2) vacua,

〈Mi
α〉 = δi

α v 6= 0, (α = 1, 2, . . . , r; i = 1, 2, . . . , nf )

(“Color–Flavor-Locked Phase”). Gauge invariant condensates are

ǫα1α2...αrMi1
α1
Mi2

α2
. . .Mir

αr
∼ U(1) monopole?
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2.13. Hint for QCD

• Dynamical abelianization neither is observed in the real world nor is
believed to occur in QCD.

• QCD with nf flavor and its possible dual have the beta function coef-
ficients (ñc = 2, 3, nf = 2, 3)

b0 = 11nc − 2nf vs b̃0 = 11 ñc − nf

so no sign flip (no weakly-coupled non-Abelian monopoles) is possible.

• It leaves the possibility of a strongly-interacting non-Abelian super-
conductor.

• Taking a hint from supersymmetric models one might assume that non-
Abelian magnetic monopoles condense in a color-flavor-locked form

〈Mi
L,α〉 = δi

α vR 6= 0 , 〈Mα
R,i〉 = δα

i vL 6= 0 ,

(α = 1, 2, . . . ñc; i = 1, 2, . . . nf ) .

• A better picture might be

〈Mi
L,α Mα

R,j〉 = const. δi
j 6= 0 ;

which yields for ñc = 2, nf = 2 the correct symmetry breaking pattern

GF = SUL(2) × SUR(2) ⇒ SUV (2) .

3. Recent developments in N = 1 gauge dynamics

An exciting new development in the analysis of the dynamics of su-
persymmetric gauge theories has been initiated by the work by Dijkgraaf–
Vafa [39], Cachazo–Douglas–Seiberg–Witten [40] and others. Here we shall
review briefly the field-theoretic approach of the latter.

3.1. Veneziano–Yankielovicz effective action

The Veneziano–Yankielovicz in the N = 1 SUSY SU(N) Yang–Mills

(Wα = −iλ + i
2 (σµ σ̄ν)βα Fµν θβ + . . . )

Lbare =

∫

d2θ
1

g2
0

WW =

∫

d2θ
1

g2
0

S ,

where

S ≡WαWα = −λλ+ . . . − 1

2
F 2

µν − iλσνDν λ̄+ . . . ,
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has the form

LVY = kin. term −
∫

d2θ S

[

log
SN

Λ3N
−N

]

+ h.c.

It basically represents the exact, one-loop renormalization effect

[

1

g2
0

+ b0 log
M

S1/3

]

S =
1

g(S)2
S = b0 S log

S1/3

Λ
, b0 = 3N.

The minimization of the potential leads to the well known N vacua, 〈S〉 =
Λ

3 exp 2πik/N, with k = 1, 2, . . . N (Z2N ⊂ UA(1) broken to Z2); It was
constructed in order to reproduce correctly the anomaly under λ→ eiαλ

∆LVY = 2N αFµν F̃
µν .

Actually,
∫

ei S invariant under Z2N .

3.2. Chiral rings in theory with adjoint field Φ

Consider now N = 1 SUSY U(N) gauge theory

L =
1

8π
Im τcl

[∫

d4θΦ
†eV

Φ +

∫

d2θ
1

2
WW

]

+

∫

d2θW(Φ) + h.c. ,

τcl ≡ θ0
π

+
8πi

g2
0

(N = 1) multiplets Φ = φ+
√

2θψ+ . . . ; Wα = −iλ+ i
2(σµσ̄ν)βαFµνθβ + . . .

and the superpotential is taken to be of the form,

W(Φ) =
n
∑

k=0

gk

k + 1
Tr Φ

k+1. (11)

Gauge invariant chiral composite can be taken, modulo {Q̄, . . .} to be the
set

{Tr Φ
k, TrWα Φ

k , TrWαWα Φ
k} .

Perturbatively (for k > N), there are relations such as,

Tr Φ
k = P({ui}) , ui = Tr Φ

j , j ≤ N ,

∂

∂Φ
W(Φ) = D̄2(. . .) = 0 , SN = 0 .

We wish to know how these get modified by the quantum effects.
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3.3. Problem

Classically if {ai} = eigenvalues of Φ,

W ′(z) = gn

n
∏

i

(z − ai)

the gauge group is broken as U(N) ⇒ ∏

i U(Ni). The low-energy effective
degrees of freedom are

Si =
1

16π2
TrWα

i Wαi , wαi =
1

4π
TrWαi :

∫

DΦ ei S = ei
∫

Leff , Leff =

∫

d2θWeff(Si, wαi, gk) + . . . .

The problem is to compute Weff(Si, wαi, gk).
The idea of the solution is to observe that

∂

∂gk
Weff(Si, wαi, gk) =

〈

Tr
Φ

k+1

k + 1

〉

, (12)

namely the problem is reduced to that of determining all the chiral conden-
sates as functions of Si, wαi, gk.

3.4. Symmetries

The first ingredient is the use of the symmetries (Table) which implies
that, apart from the anomalous one-loop contribution, the effective action
must depend on the field variables and on the coupling constants as

Fields ∆ QΦ QR Qθ

Φ 1 1 2

3
0

Wα
3

2
0 1 1

gl 2 − l −(l + 1) 2

3
(2 − l) 2

Λ
2N 2N 2N 4N

3
0

Weff = W 2
α F

(

gk W
k−1
α

g
(k+1)/2
1

)

,

or
[

∑

k

(2 − k) gk
∂

∂gk
+

3

2
Wα

∂

Wα

]

Weff = 3Weff .
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On the other hand, the number of the index loops (L), of the vertices (ki),
and the genus (g ) of the two-dimensional surface (upon which the Feynman
diagram can be embedded without crossing the index lines) are related as

L = 2 − 2g +
1

2

∑

i

(ki − 1) :

the same relation used by ’t Hooft in deriving his 1/N expansion. It follows

that only planar diagrams contribute to Weff (proof of the conjecture by
Dijkgraaf–Vafa), which is remarkable as it involves no large N expansion.

A second ingredient is the observation that U(1) ⊂ U(N) is free —
Weff(Si, wαi, gk) is invariant under

Wα →Wα − 4πψα .

The general form of Weff is then determined to be

Weff =
∑

Ni
∂Fp(Sk, gk)

∂Si
+

1

2

∑

i,j

∂2Fp(Sk, gk)

∂Si ∂Sj
wαiw

α
j

=

∫

d2ψ Fp(Si, gk) ,

where

Si = −1

2
Tr

(

1

4π
Wαi − ψα

)(

1

4π
Wα

i − ψα

)

= Si +ψαw
α
i −Niψαψ

α . (13)

Note that the idea is similar to the way supersymmetric Lagrangians are
constructed as the highest components of products of various superfields. It
follows that

∂Weff

∂gk
=

∫

d2ψ
∂Fp(Si, gk)

∂gk
=

〈

Φ
k+1

k + 1

〉

Φ

= − 1

2(k + 1)

∫

d2ψ

〈

Tr

(

1

4π
Wα − ψα

)2

Φ
k+1

〉

Φ

.

So

∂Fp(Si, gk)

∂gk
= − 1

2(k + 1)

∫

d2ψ

〈

Tr

(

1

4π
Wα − ψα

)2

Φ
k+1

〉

Φ

and the problem is to find the right-hand side.
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3.5. Generalized Konishi Anomaly

The last ingredient is the generalized Konishi Anomaly. The anomaly in
its original form reads

D̄2Tr{Φ̄eV
Φ} = Tr Φ

∂W
∂Φ

+
1

32π2
Tr (adWα adW

α) ,

D̄2Tr{Φ̄eV
Φ} = Tr Φ

∂W
∂Φ

+
N

16π2
Tr (WαW

α) − 1

16π2
TrWαTrWα (14)

which are just the supersymmetrized form of the chiral UΦ(1) anomaly.
Taking the VEVS of the both sides

〈

Tr Φ
∂W
∂Φ

〉

= − N

16π2
〈Tr (WαW

α)〉 .

But the left-hand side is equal to
〈

Tr
∑

k

gkΦ
k+1

〉

=
∑

k

(k + 1)gk
∂

∂gk
Weff

which are precisely a kind of quantity one wants to know.
The original Konishi anomaly follows à la Fujikawa (Shizuya–Konishi)

by a functional change of variables, δΦ = αΦ. As noted Cachazo, Douglas,
Seiberg and Witten, the Konishi–Shizuya derivation straightforwardly gen-
eralizes to the anomalous Ward identities for more general current Jf =
Tr{Φ̄eV f(Φ,Wα)}:

δΦ = f(Φ,Wα); (15)

which leads to the identities

D̄2Jf = Tr f(Φ,Wα)
∂W
∂Φ

+
1

32π2

∑

ij

[

Wα,

[

Wα,
∂f

∂Φij

]]

ij

. (16)

The 〈R.H.S.〉 = 0 leads basically to the solution of the problem.
Define

R(z, φ) = −1

2
Tr

(

1

4π
Wα − ψα

)2 1

z − Φ
,

= R(z) + ψαw
α(z) − ψ1ψ2T (z) , (17)

where generating functions are

T (z) = Tr
1

z − Φ
, wα =

1

4π
TrWα

1

z − Φ
,

R(z) = − 1

32π2
TrWαW

α 1

z − Φ
.



5976 K. Konishi

By choosing f(Φ) = WαW
α 1

z−Φ
in (15):

〈

− 1

32π2

∑

ij

[

Wα,

[

Wα,
∂

∂Φij

(

WβW
β 1

z − Φ

)]]

ij

〉

=

〈

Tr

[

∂W
∂Φ

WαW
α 1

z − Φ

]〉

.

By identity
∑

ij

[

χ1,

[

χ2,
∂

∂Φij

χ1 χ2

z − Φ

]]

ij

=

(

Tr
χ1 χ2

z − Φ

)2

(valid if χ2
1 = χ2

2 = 0, [χi,Φ] = 0 ) one gets

R(z, ψ)2 = Tr (W ′(Φ)R(z, ψ)) .

Analogously, with f(Φ) = R (r.h.s of (17) without trace)

R(z, ψ)2 = Tr (W ′(Φ)R(z, ψ)) (18)

which can be rewritten as

R(z, ψ)2 = Tr (W ′(z)R(z, ψ)) +
1

4
f(z, ψ), (19)

or

R2(z) = W ′(z)R(z) + 1
4f(z);

2R(z)wα(z) = W ′(z)wα(z) + 1
4ρ

α;

2R(z)T (z) +wα(z)wα(z) = W ′(z)T (z) + 1
4c(z).

with

f(z, ψ) =
1

8π2
Tr

(W ′(z) −W ′(Φ))(Wα − 4πψα) (Wα − 4πψα)

z − Φ

= f(z) + ψα ρ
α(z) − ψ1ψ2 c(z) ,

where f(z) is an nth order polynomial in z.
Solving the quadratic equation

2R(z, ψ) = W ′(z) −
√

W ′(z)2 + f(z, ψ)

or
2R(z) = W ′(z) −

√

W ′(z)2 + f(z)
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etc. Namely, R(z) = − 1
32π2 TrWαW

α 1
z−Φ

has been determined in terms of
fi where

f(z) =

n−1
∑

i=0

fi z
i.

The relations among {fi} and (Si, w
α
i ) are given by

Si = Si + ψαw
α
i −Niψαψ

α =
1

2πi

∮

Ci

dzR(z, ψ) .

Finally,

∂Fp(Si, gk)

∂gk
= − 1

2(k + 1)

∫

d2ψ

〈

Tr

(

1

4π
Wα − ψα

)2

Φ
k+1

〉

Φ

= − 1

2(k + 1)

∮

dz zk+1R(z, φ) .

By integrating over gk and adding integration constant — gk independent,
1-loop, contribution (VY), we get Weff in terms of (Si, w

α
i ,Λi).

3.6. Matrix model (Dijkgraaf–Vafa)

In the matrix approach one considers an integral over N̂ × N̂ Hermitian
matrices M

exp−N̂
2

g2
m

Fm.m. =

∫

dN̂2

M exp− N̂

gm
TrW(M) .

By considering the matrix change of variable δM = ǫMn+1 one gets

0 =

∫

dN̂2

M e−
N̂

gm
TrW(M)

[

Tr
∂

∂M
Mn − N̂

gm
TrW ′Mn

]

from which a relation

〈Rm(z)2〉 = 〈W ′(z)Rm(z)〉 + 1
4fm(z) , where Rm(z) =

gm

N̂

〈

Tr
1

z −M

〉

follows. Take now N̂ → ∞ and use the known factorization property to
obtain

〈Rm(z)〉2 = 〈W ′〉〈Rm(z)〉 + 1
4fm(z)

but this is identical to Eq. (19)! By

Si =
1

2πi

∮

Ci

Rm(z) dz ,
∂Fm.m.

∂gk
=

〈

TrMk+1

k + 1

〉

and by identification of Fm.m.(Si, gk) with Fp(Si, gk) one gets Weff(Si, w
α
i ,Λi).
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3.7. Further development

The class of the models being studied

LU(N) =
1

8π
Im τcl

[
∫

d4θΦ
†eV

Φ +

∫

d2θ
1

2
WW

]

+

∫

d2θW(Φ) ,

where W(Φ) =
∑k

r=0
gr

r+1Tr Φ
r+1 has in its basis the structure of the N =

2 theory (W(Φ) = 0) which was not obvious in the result so far discussed. A
much deeper analysis becomes possible by fully taking into account of such
a structure (Cachazo, Seiberg, Witten [40]).

When W(Φ) = 0 the theory has N = 2 and as is well known the gauge
group is (dynamically) broken as G ∼ U(1)N−1 on a generic point of QMS.
At special points where some N − n monopoles become massless (conden-
sation and Higgs mechanism for N − n dual gauge bosons), however, the
low-energy gauge group is smaller: G ∼ U(1)n. At such points the curve
factorizes (cond. on QMS)

y2 = P 2
N (x) − 4Λ2 = F2nH

2
N−n(x) . (20)

Classically, if the VEV of Φ has the form,

diag Φ = {a1, . . . a1, a2, . . . , . . . , an, . . . , an} , W ′(z) = gk

k
∏

i

(z − ai) ,

the low-energy gauge group is

U(N) ⇒
n
∏

i

U(Ni) ⇒ U(1)n n ≤ k (21)

as the SU(Ni) parts become strong. The problem is to find, quantum me-
chanically, the relation

vacua (21) ⇐⇒ W(Φ) .

The answer is the factorization condition (20) with (for k = n)

F2n(x) =
1

g2
n

W ′(x)2 + fn(x)

fn(x) = O(xn−1) with n unknown coefficients. For more general choice of k
see [40].

It is now possible to obtain the generalized Konishi anomaly relations
(which are written in terms of the electric variables) starting from N = 2
curves (whose singularities can be characterized by magnetic variables). This
is a kind of link which was earlier not fully exploited1.

1 Such a link was used in N = 2, nf = 1, SU(2) theory by Gorsky–Vainshtein–Yung
[41].
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3.8. Confinement index

A quantity which characterize a particular confining vacuum is the con-

finement index which is equal to the smallest possible r ∈ Z
(E)
N for which

Wilson loop displays no area law. For instance, for SU(N) YM, r = N in
the vacuum with complete confinement; r = 1 in the totally Higgs vacuum.
Another example is that r = 1 in a theory with

SU(N) → SU(N − 1) × U(1).

A third example is the N = 1 SUSY SU(N) theory broken (by adjoint VEV)
as

SU(N) → SU(N1) × SU(N2) × U(1).

Then
r = l.c.d. {N1, N2, r1 − r2} ,

where
r1 = 0, 1, 2, . . . N1 − 1 , r2 = 0, 1, 2 , . . . N2 − 1

label the vacua in which (nm, ne) = (1, r1) and (nm, ne) = (1, r2) are con-
densed.

3.9. Multiplication map

Such a concept can be used to define highly nontrivial maps between
the vacua of a pair of gauge theories such as U(N)⇔U(tN) with the same
superpotential W(Φ). In particular it can be shown that

• the vacua with the low-energy symmetry
∏n

i=1U(Ni) of the U(N) the-
ory are mapped to the vacua with

∏n
i=1U(tNi) of the theory U(tN);

• the confinement index r gets simply multiplied by t in such a corre-
spondence;

• all confining vacua with r = t in the U(tN) theory, arise from the
Coulomb vacua of U(N) theory;

• the chiral condensates are related as
〈

Tr
1

x− Φ

〉

= t

〈

Tr
1

x− Φ0

〉

.

These and other relations lead to deep understanding of the vacua in
supersymmetric gauge theories, their unexpected structures and new types
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of dualities, etc. A remarkable new example of this kind is the USp(N) ⇔
U(N + 2n) map found by Cachazo [42], with the order n + 1 (common)
superpotential W(Φ)

n
∏

i=1

USp(Ni) ⇔
n
∏

i=1

U(Ni + 2) :

〈

Tr
1

z − Φ

〉

=

〈

Tr
1

z − ΦU

〉

− d

dz
log(W ′(z)2 + f(z)) .

4. Summary

Many more consequences of the ideas discussed in the last section are
being explored these days, and it is not easy to foresee where these efforts
take us. It is hoped that one day the improved understanding in the non-
Abelian dynamics in the context of supersymmetric gauge theories such as
these would, perhaps combined with the insights obtained in the approach
discussed in Section 2, shed light in the mechanism of confinement and
dynamical symmetry breaking in Quantum Chromodynamics.
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