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It is recalled that a ten year old calculation of all meson masses may
explain the low value of the recently discovered Ds(2317) meson. This cal-
culation was based on a fully relativistic quasiparticle theory, which has
been applied to a large number of bound state problems and scattering
processes. In this paper we want to show that also for one-dimensional sys-
tems the theory can be formulated in a compact way. After discussing the
Lippmann–Schwinger equation for two nonrelativistic particles on a line, we
show how to extend this momentum–space formulation to a Poincaré in-
variant theory. We then apply this theory to a simple example and compare
the reflection and transmission coefficients, as well as the total diffusion and
the bound state spectrum, to the results obtained from the nonrelativistic
case. Also the relativistic corrections to the spectrum of two harmonically
bound particles are calculated. It is found that especially the higher excited
states become less massive.

PACS numbers: 03.65.Pm, 11.30.Cp

1. Motivation

After the discovery of the Ds(2317) meson [1], the question arises whether
a new theory is required to explain the unexpectedly low value of its mass,
or whether existing quasiparticle theories can explain this meson as a cs
bound state. In the SLAC press release the former point of view was taken
and the theorists ( [2, 3]) were advised to return to their drawing boards.

However, it should be realised that the above mentioned theories

. . . did not carry out a relativization from first principles, but
rather constructed a quark potential motivated by the expected
relativistic properties [2].
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Another difficulty is the appearance of an ultraviolet divergence, which

. . . is due to the inconsistency of a static point-like source
(the heavy quark) within a relativistic framework [3].

Therefore, before jumping to the conclusion that a new chapter of the
physics book has been opened, it is advisable first to construct a relativistic
two-particle theory in which these difficulties are solved in a natural way.

Many years ago such a manifestly Poincaré invariant theory has been
developed by the author ( [4–6] and references therein). It was applied
to many physical systems, of which the article by Hersbach [7] on meson
spectroscopy is the most relevant one for the present discussion.

He calculated the masses of all mesons and compared them with the ex-
perimental values known at that time. For the mass of the Ds(2317) seen
as a cs bound state of type 0+ 3P0, he predicted 2436 MeV, 2366 MeV and
2349 MeV, depending on the choice of potential. These numbers should be
compared to 2480 MeV from [2] and 2487 MeV from [3]. The Regge slope
for his best solution was β = 1.18 ± 0.05, compatible with the experimen-
tal value. For the same solution he found the running coupling constants
αs(34 GeV) = 0.141 and αs(MZ = 91 GeV) = 0.1164, in good agreement
with the experimental values of 0.14±0.02 and 0.1134±0.0035, respectively.

These encouraging results are reasons not yet to reject all quasiparticle
theories when it comes to understanding the Ds(2317) meson. It is believed
that a consistent incorporation of relativity is absolutely necessary. The
author′s ideas, most fully explained in [4], provide such a theory. Whether
potentials can be found that explain the data remains to be seen.

In the present paper we want to repeat the formulation of the theory,
but now for the much simpler one-dimensional case. The application to the
harmonic oscillator in Section 4 shows that the incorporation of relativity
leads to a lowering of the mass of each of the bound states.

2. The nonrelativistic equations

2.1. The general formulation

Since the relativistic equations are written in the momentum represen-
tation, we will begin by also writing the nonrelativistic equations in this
form. In particular it will be shown that also for the one-dimensional case
the scattering problem can be cast in the form of the Lippmann–Schwinger
equation [8].

As basis of our Hilbert space we take the states |α〉 = | q1, q2〉 of two
free spinless particles with masses m1 and m2 and one-dimensional momenta
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q1 and q2. In the coordinate representation these states are given by plane
waves

〈x1, x2| q1, q2〉 =
1

2π
ei(q1x1+q2x2) .

The basis states |α〉 = | q1, q2〉, |β〉 = | k1, k2〉, etc. form a complete and
orthonormal set i.e.

〈α |β〉 = δ(q1 − k1) δ(q2 − k2) ≡ δ(α − β) and

∫

α

|α〉〈α |ψ〉 = |ψ〉 ,

where
∫
α
· · · ≡

∞∫
−∞

dq1dq2 · · · . They are also eigenstates of the free particle

Hamiltonian H0

H0 |α〉 = Eα |α〉 , with Eα = ε1(q1) + ε2(q2) =
q21

2m1
+

q22
2m2

.

Units are chosen in such a way that ~ = 1. Supposing that in the coordinate
representation the local and translational invariant potential W is given by

〈x′1, x′2 |W |x1, x2〉 = V (x1 − x2) δ(x
′
1 − x1) δ(x

′
2 − x2) ,

then, in the momentum representation, this potential will be equal to

〈k1,k2|W | q1, q2〉 = V̂ (k1 − q1) δ(k1 + k2 − q1 − q2) ,

with V̂ (k) =
1

2π

∞∫

−∞

e−ikxV (x) dx. (1)

Since we will restrict ourselves to potentials V (x), which are real and sym-

metric in x, it follows that also V̂ (k) will be real and symmetric in k.
As in the standard formulation we first have to find the stationary scat-

tering states |α〉±, defined as the in- and outgoing eigenstates of the total
Hamiltonian

H |α〉± = Eα|α〉± , with H = H0 +W . (2)

Although they do not form a complete set when bound states exist, they
can be taken as orthonormal ±〈α |β〉± = δ(α − β). Writing the scattering
states in a standard way which exhibits the singularities explicitly,

|α〉± = |α〉 − 1

H0 − Eα ∓ i0
|χ(α)〉± , (3)
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we find on substitution into Eq. (2) that |χ(α)〉±has to satisfy

|χ(α)〉± = W |α〉 −W
1

H0 − Eα ∓ i0
|χ(α)〉± = W |α〉± . (4)

With i0 we indicate an infinitesimally small positive imaginary number.
Defining

Wβα = 〈β |W |α〉 and Tβα(±) = 〈β |χ(α)〉± , (5)

we obtain from Eq. (4), after left multiplication with 〈β |, the Lippmann–
Schwinger equation for the T -matrix

Tβα(±) = Wβα −
∫

γ

WβγTγα(±)

Eγ − Eα ∓ i0
. (6)

Taking advantage of the special form of the potential as shown in Eq. (1),
and putting Tβα(±) = Mβα(±) δ(Pβ − Pα), Eq. (6) becomes

Mβα(±) = Vβα −
∫

γ

VβγMγα(±)

Eγ − Eα ∓ i0
δ(Pγ − Pα) for Pα = Pβ , (7)

where the total momenta of the states |α〉 = | q1, q2〉, |β〉 = | k1, k2〉 and
| γ〉 = | p1, p2〉 have been written as Pα = q1 + q2, Pβ = k1 + k2 and Pγ =
p1 + p2 .

In order to show the connection between the scattering amplitudes
Mβα(±) and the S-matrix, we follow the presentation of Van Hove [9], with-
out repeating the proofs.

1. The solution of the Schrödinger equation i∂ |φ(t)>
∂t = (H0 +W )|φ(t)〉,

which for t → −∞ approaches the free particle solution |ψ+(t)〉 =∫
α
d+(α) e−iEαt|α〉, is given by |φ(t)〉 =

∫
α
d+(α) e−iEαt|α〉+.

2. The same solution can be expanded in terms of the stationary scatter-
ing states |α〉−, giving |φ(t)〉 =

∫
α
d−(α) e−iEαt|α〉−. For t→ +∞ this

approaches the free particle solution |ψ−(t)〉 =
∫
α
d−(α) e−iEαt|α〉.

3. The S-matrix is defined by d−(α) =
∫
β

Sαβ d+(β).

4. Using

ei(Eα−Eβ)t

Eα − Eβ − i0
=⇒ 2πi δ(Eα − Eβ) for t → +∞
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it can be shown that

lim
t→+∞

〈ψ+(t) |φ(t)〉 =

∫

α

d∗+(α)d−(α)

=

∫

αβ

d∗+(α)d+(β) {δ(α − β) − 2πiTαβ(+)δ(Eα − Eβ)} .

5. Comparing the expressions under (3) and (4) it is seen that

Sαβ = δ(α − β) − 2πiMαβ(+) δ(Pα − Pβ) δ(Eα − Eβ) .

6. It can be proved that this S-matrix is unitary
∫
γ
S∗

γαSγβ = δ(α − β),

from which one derives the unitarity relation

M∗
αβ(+)−Mβα(+)=2πi

∫

γ

M∗
γβ(+)Mγα(+)δ(Pγ−Pβ)δ(Eγ−Eβ) . (8)

For the one-dimensional case many of these formulas can be further
simplified by introducing the total momentum and the relative momentum
K = k1 + k2 and k = (m2k1 −m1k2)/M, and by writing the total energy as

Eβ = ε1(k1) + ε2(k2) =
k2
1

2m1
+

k2
2

2m2
=
K2

2M
+

k2

2m
,

wherem = m1m2/(m1+m2) is the reduced mass. Since the total momentum
is conserved, the potential and also the scattering amplitude only depend on
the relative momenta. The Lippmann–Schwinger equation (7) can, therefore,
be simplified to

M+(k|q) = V̂ (k − q) − 2m

∞∫

−∞

V̂ (k − p)M+(p|q)
p2 − q2 − i0

dp . (9)

From the unitarity relation (8) one derives

ImM+(q|q) = −π m|q|
{
|M+(q|q)|2 + |M+(−q|q)|2

}
(10)

and

ImM+(q|− q)=−π m|q|
{
M∗

+(q|q)M+(q|− q)+M+(q|q)M∗
+(q|− q)

}
. (11)
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The relation between the ingoing and outgoing amplitude becomes

d−(q) =

[
1 − 2πim

|q| M+(q|q)
]
d+(q) − 2πim

|q| M+(q| − q)d+(−q) .

By writing the same relation for the opposite value of q we see that the
S-matrix can be written in the form of a 2 × 2 matrix

S =

(
σ ρ
ρ σ

)
,

σ = 1 − 2πim

|q| M+(q|q) and ρ = −2πim

|q| M+(−q|q) ,

where we have used the obvious symmetry of the scattering amplitudes
M+(q|q) = M+(−q|−q) and M+(q|−q) = M+(−q|q). The relations (10) and
(11) imply the unitarity of this S-matrix. The coefficients for transmission,
reflection and total diffusion are defined in the usual way

T = |σ|2 , R = |ρ|2 and I = |σ − 1|2 + |ρ|2 .

From the unitarity of the S-matrix it is easy to derive

the conservation of probability T +R = 1 ,

the optical theorem I = −2Re(σ − 1) .

Since the S-matrix is unitary its eigenvalues have unit magnitude. They
can easily be expressed in terms of σ and ρ (see e.g. Galindo and Pascual [10]
Section 4.5), with the result

e2iδ0 = σ + ρ and e2iδ1 = σ − ρ . (12)

The above mentioned coefficients can be expressed in terms of these phase
shifts and we find

T = cos2(δ0 − δ1) , R = sin2(δ0 − δ1) and I = 2(sin2 δ0 + sin2 δ1) .

For the numerical calculation of these phase shifts one first has to solve
the Lippmann–Schwinger equation (9). This task is simplified by introducing
the K-matrix. This is done by first defining the functions

Z±(k, q) ≡ M+(k | q) ±M+(−k | q) ,
W±(k, q) ≡ V̂ (k − q) ± V̂ (k + q) .
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From Eq. (9) one then easily derives the equations for Z±(k, q):

Z±(k, q)=W±(k, q)

[
1− iπm

| q| Z±(q, q)

]
−m

∞∫

−∞

W±(k, p)Z±(p, q)

(p2 − q2)P
dp , (13)

in which the principle value of the integral has to be taken. If we now define

K±(k, q) ≡ −πm| q|
Z±(k, q)

1 − iπm
| q | Z±(q, q)

and U±(k, q) ≡ −πm| k |W±(k, q) ,

it follows from Eq. (13) that the K-matrix must satisfy

K±(k, q) =
| k |
| q| U±(k, q) +

| k |
π

∞∫

−∞

U±(k, p)K±(p, q)

(p2 − q2)P
dp . (14)

This equation has the advantage that it relates real quantities and is there-
fore easier to solve numerically. Moreover, it can easily be checked that the
values on the energy shell immediately give the phase shifts:

K+(q, q) = tan δ0 , K−(q, q) = tan δ1 .

For the bound state problem the separation of the centre of mass motion
and the relative motion can be done in the standard way. In the momentum
representation the eigenvalue problem then takes the form

(ε(q) − En)ψn(q) +

∞∫

−∞

V̂ (q − p)ψn(p) dp = 0 with ε(q) =
q2

2m
. (15)

Other quantities which can also be expressed in terms of the phase shifts
δ0(q) and δ1(q) are the time delays τT and τR of the transmitted and reflected
parts of an incoming wavepacket, which is well localised in space and also
in momentum q. After writing σ = |σ| e2iδT and ρ = |ρ| e2iδR , it is shown
in [10] (Vol. I, p. 154 and 155), that

τT = 2
d δT
dε

, τR = 2
d δR
dε

with ε =
q2

2m
.

In the formula for τR a constant term is omitted, which would be present if
the potential were not centred around the origin of the coordinate system.
Using the definitions Eq. (12) of the phase shifts δ0(q) and δ1(q), it simply
follows that

2 δT = δ0(q) + δ1(q) + ϕT , 2 δR = δ0(q) + δ1(q) + ϕR .
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The phases ϕT and ϕR are given by

ϕT =

{
π if cos(δ0 − δ1) > 0
0 if cos(δ0 − δ1) < 0

, ϕR =

{
π/2 if sin(δ0 − δ1) > 0

−π/2 if sin(δ0 − δ1) < 0
.

The time delays become equal to

τ ≡ τT = τR =
m

q

1

1 + tan2(δ0 + δ1)

d

dq
tan(δ0 + δ1) .

2.2. Example

The simplest case for which the scattering and the bound state problem
can be solved exactly is for the potential

V (x) = − κ

m
δ(x) for which V̂ (k) = − κ

2πm
. (16)

As is well known there is one bound state if κ > 0

ψ(p) =
κ3/2

√
2(p2 + κ2)

with energy E = − κ2

2m
. (17)

The solution of Eq. (14) is

K+(k, q) =
κ

| q| and K−(k, q) = 0 .

For the phase shifts we obtain

tan δ0 =
κ

| q| and δ1 = 0 .

The transmission, reflection and diffusion coefficients become

T =
q2

q2 + κ2
, R =

κ2

q2 + κ2
, I =

2κ2

q2 + κ2
, τ =

−κm
|q| (q2 + κ2)

, (18)

where τ is the time delay.

3. The relativistic equations

3.1. The general formulation

In the 3+1 dimensional case [4] the essence in changing the Lippmann–
Schwinger equation into a relativistic equation was to replace the conserva-
tion of total three-momentum for intermediate states, by the conservation
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of the total three-velocity, which for a state of two particles with momenta
p1 and p2 is defined as

v =
p1 + p2

p0
1 + p0

2

=
P

P 0
with p0

i =
√
p2

i +m2
i . (19)

Repeating the same procedure for the one-dimensional case leads us from
Eq. (7) to

Mβα(s±i0) = Vβα−
∫

γ

VβγLγ(v, s±i0)Mγα(s±i0) for vα = vβ ≡ v. (20)

In this equation we have defined the relativistic propagator by

Lγ(v, s ± i0) =

∞∫

0

ds′

s′ − s∓ i0
δ2

(
P γ − s′

s
P

)
, (21)

in which the two-dimensional Lorentz vectors P γ and P are given in terms
of the velocities vγ and v by the expressions

P γ =

√
sγ

1 − v2
γ

(1, vγ) and P =

√
s

1 − v2
(1, v) ,

so that sγ = P 2
γ = (P 0

γ )2 − (Pγ)2 and s = P 2 = (P 0)2 − (P )2 coincide with
the usual Mandelstam variables. From here on 2-vectors will be written in
bold face: P = (P 0, P ).

The propagator of Eq. (21) is manifestly Lorentz invariant. By perform-
ing the s′-integration it takes the form

Lγ(v, s ± i0) = L0
γ(s)L1(vγ , v) (22)

in which

L0
γ(s) =

1
√
sγ (

√
sγ −√

s∓ i0)
, L1(vγ , v) = (1 − v2) δ(vγ − v) .

The latter formula clearly exhibits the velocity conservation. From Eq. (21)
we easily derive

ImLγ(v, s + i0) = πδ2(P γ − P ) ,

which, together with the hermiticity of Vαβ, guarantees the unitarity of the
S-matrix.
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The integration over the states γ = (p1,p2), occurring in Eq. (20), with
p1 and p2 both being 2-vectors, is defined by

∫

γ

· · · =

∫
dp1dp2

2∏

j=1

δ(p2
j −m2

j ) θ(p
0
j) · · · =

∞∫

−∞

dp1

2p0
1

dp2

2p0
2

. . . .

If we take the velocities of the individual particles as integration variables,
this integration element can be written as

∫

γ

· · · =
1

4

∗∫

γ

· · · =
1

4

∞∫

−∞

γ2(v1) dv1γ
2(v2) dv2 · · · , γ2(v) =

1

1 − v2
. (23)

Using this notation and writing the propagator in its product form (22),
Eq. (20) becomes

Mβα(s ± i0)

= Vβα − 1

4

∞∫

−∞

Vβγ Mγα(s ± i0)(1 − v2) δ(vγ − v)
√
sγ(

√
sγ −√

s∓ i0)
γ2(v1) dv1γ

2(v2) dv2 ,

for vα = vβ ≡ v. (24)

The nonrelativistic limit of this equation is obtained by neglecting the ki-
netic energies of the particles making up the state γ, as compared to their
total mass M. If their relative momentum is k, one can show, using the con-
servation of the total momentum, to which velocity conservation gives rise
in this limit, that

√
sγ ≃ M + k2/(2m), in which m is the reduced mass.

If we now would replace Vαβ by 4m1m2V
NR
αβ and Mαβ by 4m1m2M

NR
αβ , it

is seen immediately that Eq. (24) becomes identical to the nonrelativistic
Lippmann–Schwinger equation (7). So this minimal requirement is satisfied.

In addition, we want Eq. (20) to be invariant under space and time
translations and under Lorentz transformations, i.e., under boosts. The
latter can be satisfied, because the integration element

∫
γ and the propagator

Lγ(v, s ± i0) are both manifestly Lorentz invariant, so that we only have
to choose Vβα as a function of the scalars that can be formed out of the
momentum 2-vectors, which occur in the states α and β. Moreover, we want
this potential to be local, so that it should be a function of the momentum
transfer only. Strictly speaking this is impossible for the following reason.
The relativistic form for the square of the momentum transfer is equal to t1
or t2(see figure 1 for the definition of the variables), where

t1 = (p′
1 − p1)

2 , t2 = (p′
2 − p2)

2 .
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Vaba s' b s

p1 ' m 1

p2 ' m 2

p1 m1

p2 m2

Fig. 1. Definition of momentum variables. (a) for α and (b) for β.

In the usual case where 2-momentum is conserved, p1 + p2 = p′
1 + p′

2, we
see that the momentum transfers in the upper and in the lower vertex are
equal, i.e., t1 = t2 ≡ t. In the present case, however, we have replaced
the momentum conservation by velocity conservation, so that it is not clear
which of the t1 and t2 should be chosen as variable for the momentum
transfer. This problem is solved as follows.

According to Eq. (19) the conservation of velocity can be written as

p1 + p2

p0
1 + p0

2

=
p′1 + p′2
p′01 + p′02

,

or, what amounts to the same, as

p1 + p2√
s

=
p′

1 + p′
2√

s′
with s = (p1 + p2)

2 and s′ = (p′
1 + p′

2)
2 .

Only on the mass shell, i.e., when s = s′, momentum is conserved and
t1 = t2 ≡ t. In that case q1 = p′

1 − p1 and q2 = p2 − p′
2 are equal. In order

to be able, also for the off-shell case, to define a Lorentz invariant expression
for the potential, we first define other Mandelstam like variables

s = (p′
1 + p′

2) · (p1 + p2) ,

t̄ = (p′
1 − p1) · (p2 − p′

2) = q1 · q2 ,

u = (p′
1 − p2) · (p1 − p′

2) ,

which satisfy the relations

s =
√
s′s , s+ t+ u = 2

(
m2

1 +m2
2

)
−
(√

s′ −
√
s
)2

.

As general prescription for the definition of the relativistic potential we now
take

Vαβ = 4m1m2V
NR
αβ (−t̄) . (25)

Here we have replaced the square of the relative momentum transfer, by−t̄.
For any two states α and β we take this as our definition of the potential Vαβ.
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In this way we now have guaranteed the Lorentz invariance of the theory.
Although the strict locality of the interaction is sacrificed, we have shown
in [6] that this has no measurable effect on the causality of the theory.

We still must prove that in the nonrelativistic limit, where the momenta
are small as compared to the particle masses, −t̄ indeed becomes equal to
the square of the relative momentum transfer. In order to show this we
define the relative and the total 2-momenta for α and β

kα =
1

M
(m2 p

′
1 −m1 p

′
2) , kβ =

1

M
(m2 p1 −m1 p2) ,

and
Kα = p′

1 + p′
2 , Kβ = p1 + p2 .

In terms of these momenta we obtain

t̄=−m
M

(Kα−Kβ)2 +
m1 −m2

M
(Kα−Kβ) · (kα−kβ)+(kα−kβ)2 ,

or

t̄=−m
M

(
√
s′−

√
s)2+

m1 −m2

M

(√
s′

s
−1

)
Kβ · (kα−kβ)+(kα−kβ)2 .

If (particle momentum)/(particle mass) is of order ε one easily sees that
the first and second term on the right are of order ε4. Also the time part
of (kα − kβ)2 is of order ε4, so that we are left with the space part t̄ ≃
−(kα − kβ)2, which is of order ε2. This finally shows that for low energies
the nonrelativistic theory is recovered if we make the substitution of Eq. (25)
into Eq. (24).

In order to prove that the theory is also invariant under space and time
translations, it is of some advantage to use stationary states.

3.2. Poincaré invariance

The discussion of Poincaré invariance will be simplified if we first in-
troduce a Hilbert space, which is spanned by a set of free particle states
|α〉 = |v1, v2〉 with given velocities. The normalisation we choose such that

〈α′|α〉 =

2∏

i=1

L1(v′i, vi) ≡ δ(α′ − α) , (26)

in which δ(α′−α) has all the usual properties of a δ-function under the
∗∫
γ

-integration as defined in Eq. (23). The completeness of these states is
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expressed by
∗∫

α

〈χ |α〉〈α |ψ〉 = 〈χ |ψ〉 .

By defining

Wβα =
Vβα

4(sβsα)1/4
, Tβα =

Mβα

4(sβsα)1/4
, G0(sγ , s) =

1
√
sγ −√

s
, (27)

Eq. (24) takes the more symmetrical form

Tβα(s)=Wβα−
∗∫

γ

Wβγ G0(sγ , s)L
1(vγ , v)Tγα(s) , for vα =vβ =v , (28)

in which s can now have any complex value. This equation can also be
written in operator form when we first define the mass operator M, the
propagator G0(s), the interaction operator W and the scattering operator
T (s) by giving their matrix elements

〈γ |M| γ′〉 =
√
sγ〈γ | γ′〉 and G0(s) =

1

M−√
s

and

〈β |W |α〉 = Wβα L
1(vβ , vα) and 〈β |T (s)|α〉 = Tβα (s)L1(vβ , vα) . (29)

In terms of these operators Eq. (28) becomes

T (s) = W −W G0(s)T (s) .

The formal solution is

T (s) = W −W G(s)W with G(s) =
1

M +W −√
s
.

The discrete spectrum of invariant masses Mn is now defined by those
values sn = M2

n of s, for which the full Green function G(s) becomes singu-
lar. This leads to the following eigenvalue equation for the states |n, v〉

(M +W ) |n, v〉 = Mn |n, v〉 , (30)

in which the velocity has an arbitrary given value. This is not changed by
the action of the operator W , because that is velocity conserving, due to the
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appearance of L1(vβ , vα) in Eq. (29). If in the velocity representation the
wave functions ψn

γ are defined by

〈γ |n, v〉 = ψn
γ L

1(vγ , v) ,

the eigenstates can be expanded in free-particle states

|n, v〉 =

∗∫

γ

ψn
γ L

1(vγ , v) | γ〉 .

From Eq. (30) we then obtain the eigenvalue equation for the wave functions

(√
P 2

β −Mn

)
ψn

β +

∗∫

γ

WβγL
1(vγ , v)ψ

n
γ = 0 . (31)

The hermiticity of M and W in Eq. (30) guarantees the orthogonality of
the eigenfunctions. If we also require the states |n, v〉 to be normalised in
the same way as the single free-particle states, compare Eq. (26), then we
should have

〈n′, v′|n, v〉 = δn′n L
1(v′, v) .

For the wave functions this implies the following normalisation

∗∫

γ

ψn′∗
γ ψn

γ L
1(vγ , v) = δn′n . (32)

Eq. (31) is the basic manifestly Lorentz invariant equation, from which the
mass spectrum can be calculated.

If, in analogy with Eqs. (3)–(5), we define the stationary scattering states
in the relativistic case by

|β〉+ = |β〉 −G0(s+ i0)T (sβ + i0) |β〉 = |β〉 −G(s + i0)W |β〉 ,

for a prescribed, but not shown velocity v, it can simply be proved that
these states are also eigenstates of the operator M +W :

(M +W ) |β〉+ =
√
sβ|β〉+ .

Again the velocities of |β〉 and |β〉+ are equal, because W is velocity con-
serving. We now define the operator for the total 2-momentum as

P µ = (M +W ) uµ , with u =
(1, v)√
1 − v2

and µ = 0, 1 .
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Both the bound states and the stationary scattering states are eigenstates of
this operator with eigenvalues Mnuµ and

√
sβuµ for energy and momentum.

We consider P0 and P1 as the generators for infinitesimal time and space
translations, which can now be used to calculate the effect of a translation
over a time t, or over a distance a of an arbitrary state | v〉 with a given
velocity:

| v, t〉 = eiP0t | v〉 and | v, a〉 = e−iP1a | v〉 .
The operators P0 and P1 commute

[P µ,P ν ] = 0 ,

which is the first requirement for Poincaré invariance. For the full Pon-
caré invariance to hold we must still define the generator J for infinitesimal
boosts, which must satisfy the commutation rules

[J, P0] = iP1 and [J, P1] = iP0 . (33)

This is simply done by taking for J the same operator as for free particles.
In that case P0 and P1 do not contain the interaction W , so that Eq. (33)
is satisfied. Since, however, W (and also M) is a scalar under Lorentz
transformations, it commutes with J . Therefore, we only have to show that

[J, u0] = i u1 and [J, u1] = i u0 . (34)

But this follows from the fact that u = (u0, u1) transforms like a 2-vector
under boosts. It can also be shown explicitly by taking the momentum
representation of J

J = iP0
∂

∂P1
with P0 =

√
P 2

1 +m2 ,

which in the velocity representation becomes

J = i (1 − v2)
∂

∂v
.

Then Eqs. (33) and (34) follow easily.
When J is applied to a state |u〉= |u0, u1〉 the result is J |u〉= i|u1, u0〉.

A simple calculation shows that a finite boost results in

e−iξJ |u〉 = |u′〉 ,

where

u′0 =
1√

1 − w2
(u0 + w u1) , u′1 =

1√
1 − w2

(w u0 + u1) , w = tanh ξ .
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This new 2-vector can also be written as

u′
=

(1, v′)√
1 − v′2

with v′ =
v + w

1 + v w
,

which gives the usual velocity transformation of the boosted system.
We close this section with the observation that our choice of the infinites-

imal generators of the Poincaré group is an example of the “point-form” of
Dirac [11]. In this form of a relativistic classical theory the interaction was
introduced by adding terms to the four components of the momentum,
while the generators for rotations and boosts remained unchanged. For this
classical case nobody, so far, has succeeded in constructing a potential such
that the Poincaré brackets were all satisfied. The reason probably is that,
in efforts to build such a construction, different kinds of tacit assumptions
were made, like e.g., the Lorentz invariance of world lines, which may be
incompatible with a point like interaction. A discussion of these aspects can
be found in [12].

3.3. Example

In order to see the relativistic theory at work we consider the same
example as in Section 2.2, where in Eq. (16) the interaction in the momentum

representation was given by V̂ (k) = −κ/2πm. Since this is independent of
the momentum transfer, the prescription Eq. (25) for the construction of the
relativistic potential is very simple and leads via Eq. (27) to

Wβα = − κM

2π(sβsα)1/4
.

The eigenvalue equation (31) takes its simplest form in the centre of mo-
mentum system. The wave function will then depend only on the relative
momentum p. Defining

χn(p) = s1/4(p)ψn(p) , with s1/2(p) =
√
p2 +m2

1 +
√
p2 +m2

2 ,

the eigenvalue problem for Mn becomes

[√
q2+m2

1+
√
q2+m2

2−Mn

]
χn(q)=

κM

2π

∞∫

−∞

χn(p)√
(p2+m2

1) (p2+m2
2)
dp . (35)

By taking s(p) as independent variable, instead of p, this equation reads

[√
s−Mn

]
χn(s) =

κM

π

∞∫

M2

χn(s′)√
s′λ(s′,m2

1,m
2
2)
ds′ ≡ Cn , (36)
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with the triangle function

λ(s,m2
1,m

2
2) = (s− s+)(s − s−) and s± = (m1 ±m2)

2 .

Since the rhs of Eq. (36) is a constant independent of s, the wave function
takes the form

χn(s) =
Cn

[
√
s−Mn]

.

When this is substituted into the integral expression for Cn, we get

∞∫

M2

ds√
s λ(s,m2

1,m
2
2)(

√
s−Mn)

=
π

κM
, (37)

which is the equation from which the mass Mn of the only bound state must
be solved. The normalisation constant Cn follows from Eq. (32), which in
terms of χn(s) is

∞∫

M2

|χn(s)|2 ds√
s λ(s,m2

1,m
2
2)

=
1

2
.

In the nonrelativistic limit, when
√
q2 +m2

1 ≃ m1 + q2/(2m1) Eq. (35)
becomes identical to Eq. (15), if we write Mn = M +En.

For two equal masses, m1 = m2 = 2m = 1
2M, Eq. (37) simplifies con-

siderably. The integral can be calculated explicitly and the equation for Mn

becomes
4M

π
√
M2 −M2

n

arctan

√
M +Mn

M −Mn
= 1 +

Mn

κ
. (38)

In order to find the mass of deeply bound states we expand the lhs in powers
of Mn/M and then obtain the solution

Mn

M
= − 4

π
+

2M

κ
+ O

((
M

κ

)2
)
.

This shows that for values of κ larger than a critical value κcr = 1
2πM ,

the total mass becomes negative. Although in the non-relativistic theory
this phenomenon already occurs for values of κ larger than 1

2

√
2M , it is not

altogether removed from the relativistic theory.
For small values of κ/M we expand the lhs of Eq. (38) in powers of

x = (M −Mn)/M = ε(κ)/M . Up to the next to lowest order we then find
for the binding energy

ε(κ) =
κ2

2m

[
1 −

(
1

2
+

1

π

)
κ

m
+ . . .

]
,
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which is slightly less then the value in Eq. (17) from the non-relativistic
theory. The general dependence of the bound state mass Mn on the strength
κ of the potential is shown in Fig. 2. The full line results from the present
relativistic theory, the dashed line from the Schrödinger equation.

0.2 0.4 0.6 0.8 1

1

2

3

4

5

6

Fig. 2. Mn/M (horizontal axis) versus κ/m (vertical axis).

Also the scattering problem, described by Eq. (24), can easily be solved
for the potential Vβα = −2κM /π. The scattering amplitude turns out only

to depend on the total energy
√
s0 =

√
q2 +m2

1 +
√
q2 +m2

2, in which q is
the relative momentum of the two particles in the initial state:

M(s0) = − 2κM

π(1 − κM
π C(s0))

,

C(s0) =

∞∫

M2

ds√
sλ(s,m2

1,m
2
2)[

√
s−√

s0 − i0]
. (39)

By comparing with Eq. (37) we see that for the bound state energy
√
s0 =

Mn this scattering function indeed becomes singular. From the unitarity
condition

ImM(s0) = − π |M(s0)|2√
λ(s0,m2

1,m
2
2)
,

which one easily proves from Eq. (39), it follows that M(s0) can be written
in the form

M(s0) = −
√
λ(s0,m2

1,m
2
2)

π
ei δ(s0) sin δ(s0) .

Eq. (39) now enables us to derive the following equation for the phase shift

tan δ(s0) =
2κM√

λ(s0,m2
1,m

2
2)(1 − κM

π Q(s0))
,
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in which Q(s0) is the principal value integral

Q(s0) = ReC(s0) =

∞∫

M2

ds√
s λ(s,m2

1,m
2
2)[

√
s−√

s0]P
.

For a given strength κ of the potential the reflection coefficient R(s0) =
sin2 δ(s0) = (tan2 δ)/(1 + tan2 δ) can now be calculated for any value of the
energy

√
s0. In the case of two equal masses and with κ = m, the result

of such a calculation is shown in Fig. 3. For comparison we also plotted
the reflection coefficient from the nonrelativistic theory Eq. (18) for the
same value of κ. We see that for high energies the reflection is considerably
suppressed.

1.1 1.2 1.3 1.4 1.5

0.2

0.4

0.6

0.8

1

Fig. 3. Reflection coefficients for the relativistic theory (full curve) and the nonrel-

ativistic theory (dashed line) for κ=m, as functions of the energy in units ofM .

With this value of κ we also calculated the delay time τ = d δ/(dE). In
Fig. 4 this delay time is shown as a function of the energy (in units of M),
together with the value obtained from Eq. (18) from the nonrelativistic the-
ory. The relativistic effect is largest for low energies.

1.01 1.02 1.03 1.04 1.05

-30

-25

-20

-15

-10
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Fig. 4. Delay times (in units of M−1) for the relativistic theory (full curve) and the

nonrelativistic theory (dashed line) for κ=m, as functions of energy in units ofM .
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4. The relativistic harmonic oscillator

The nonrelativistic potential for the interaction between two particles
with masses m1and m2 is V NR(x1, x2) = 1

2mω
2(x1 −x2)

2, in which m is the
reduced mass. In order to write the relativistic eigenvalue equation Eq. (31)
in a more explicit form, first the Fourier transform Eq. (1) of this harmonic
potential must be calculated. Since this does not exist, a cutoff potential is
introduced

V NR
R (x) = mω2R2

[
1 − e−

x2

2R2

]
,

which has the correct limit when R → ∞ and which does have a Fourier
transform

V NR
R (k, k′) = mω2R2

[
δ(q) − R√

2π
e−

1

2
q2R2

]
, (40)

where q = k′ − k.
With Eq. (25) the potential V (k, k′) is determined, which figures in the

eigenvalue equation obtained from Eq. (31). In the centre of momentum
system this equation takes the form

[√
k2+m2

1
+
√
k2+m2

2
−Mn

]
χn(k)+

1

4

∞∫

−∞

V (k, k′)√
(k′2+m2

1
)(k′2+m2

2
)
χn(k′) dk′=0 ,

where the following substitution was made

χn(k) =

[√
k2 +m2

1 +
√
k2 +m2

2

]1/2

ψn(k) .

The ortho-normality of the eigenfunctions Eq. (32) is now expressed by

1

4

∞∫

−∞

χ∗
l (k)χm(k)√

(k2 +m2
1)(k

2 +m2
2)

dk = δlm .

It must be kept in mind that in the expression for the potential V (k, k′), in
which V NR

R (k, k′) of Eq. (40) occurs, the replacement q2 → −t̄must be made.
The details of this replacement were explained in [5], Eqs. (111)–(115). Since
for large R the potential V (k, k′) is very much peaked around k′ ≈ k, the
integrand, including the function χn(k′), can be expanded in powers of k′−k.
This then gives rise to a second order differential equation for χn(k) with
only finite terms, because those which tend to infinity with R→ ∞, cancel.
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In the static case, in which m1 is kept finite, but M = m1 +m2 → ∞, this
equation takes the form

d2χn(x)

dx2
− xP (x)

dχn(x)

dx
+Qn(x)χn(x) = 0 , (41)

with

P (x) =
2g

1 + gx2
,

Qn(x) =
g(1 − 2gx2)

(1 + gx2)2
− 2

g

√
1 + gx2

{√
1 + gx2 −

√
1 + gx2

n

}
.

The following abbreviations have been introduced

x =
k√
mω

, g =
ω

m
, Mn = M −m+ εn , εn = m

√
1 + gx2

n .

The nonrelativistic approximation is obtained by letting g → 0. In that case
Eq. (41) becomes

−d
2χ̃n(x)

dx2
+ x2 χ̃n(x) = x̃2

n χ̃n(x) ,

which is the Schrödinger equation for the harmonic oscillator. The eigenval-
ues are x̃2

n = 2n+ 1 and correspondingly

ε̃n = m

(
1 +

1

2
g x̃2

n

)
= m+

(
n+

1

2

)
ω .

For a range of g-values the ground state and the first five excited states
were calculated by numerically solving Eq. (41). The difference in mass as
compared to the nonrelativistic case

ε̃n − εn = m

[
1 +

(
n+

1

2

)
g −

√
1 + gx2

n

]

is plotted in Fig. 5.
The picture shows that relativistic effects are important in explaining

the mass of bound states. Especially the higher excited states experience
a tighter binding and are therefore lighter than expected from a nonrela-
tivistic theory.
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Fig. 5. Decrease of mass in units of m.

Concluding it can be said that, as suggested by the results of the present
paper, the mass of the Ds(2317) meson can perhaps still be understood
on the basis of a quasipotential theory, provided relativity is included in
a consistent way.
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