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We characterize neural networks as approximators of functions and dy-
namic systems. Neural approximations, leading to nonlinear minimization
in highly dimensional spaces, require effective gradient calculation typically
realized by gradient backpropagation. We discuss the use of gradient back-
propagation for static and for dynamic systems. We also show the essential
difference between the common chain rule and backpropagation, which is
rarely acknowledged.

PACS numbers: 84.35.+i

1. Introduction

An area of neural networks can be broadly defined as the modeling in-
spired by biological neural mechanisms. It embraces neural modeling, di-
rected into understanding the biological neural systems. It also includes
neural computations inspired by biology but often having very little to do
with the biological reality, with the main effort directed into solving par-
ticular computational problems better, and having typical applications in
function approximation, pattern classification, global optimization etc.

The most popular understanding of neural networks is yet much nar-
rower, and is related to multilayer perceptrons used as function approxi-
mators. These networks gained their popularity thanks to their numerous
successful applications in a broad spectrum of problems. In this paper we
characterize properties of neural networks as approximators of functions and
dynamic systems. Neural approximations typically lead to nonlinear mini-
mization in highly dimensional spaces of network parameters, realized with
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gradient minimization. Effective gradient calculation is thus of utmost im-
portance, and is typically realized by gradient backpropagation. We discuss
the use of gradient backpropagation for static as well as for dynamic sys-
tems. We also explore the essential difference between the common chain
rule and backpropagation, which is rarely acknowledged.

Notational remarks: We typically use lower case bold, upper case bold,
and lower case italic letters to denote vectors, matrices, and their elements,
resp.; T denotes the transposition. ℓ is the Lebesgue measure. q−1 denotes
the unit delay operator, namely q−1x(t) = x(t − 1), and q−n denotes the
vector of the present and n−1 consecutive delayed values, namely q−nx(t) =
[x(t) . . . x(t− n+ 1)]T .

2. Function approximation ability of neural networks

2.1. Structure of multilayer perceptrons

We first shortly summarize the basic entities used in neural networks [3].
The most popular artificial neuron equation is a concatenation of an affine
and nonlinear transformations of the input signal u = [u1 · · · un] (Fig. 1)

y = g

(
b+

n∑

i=1

wi ui

)
, (1)

where wi are the weights, b is the bias, and g : R 7→ R is called the acti-
vation function. Typical representatives of continuous activation functions
are bounded, continuous, and monotone increasing nonconstant functions,
called the sigmoidal functions. The sigmoid, defined as g(u) = 1

1+exp(a u) ,

and the hyperbolic tangent functions are the most common examples of the
sigmoidal functions.

To create a multi-output structure out of the single-output neurons cer-
tain number of neurons receiving the same input signal are collected in
parallel, thus forming the layer (Fig. 1)

yi = gi(bi +wT

i u), i = 1, . . . ,m ,

where u is the common input to all neurons of the layer, y = [y1 · · · ym]T

is layer’s output, and wi is the vector of weights of i-th neuron. This trans-
formation can be compactly written as

y = g(b+Wu) , (2)

where g(z) = [g1(z1) · · · gm(zm)]T groups all activation functions, b =
[b1 · · · bm]T is the vector of biases, and the weight matrixW = {wi,j}i=1,...,m

j=1,...,n

contains all weights.
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Fig. 1. A layer, with the structure of one neuron shown in details. Note that each

neuron receives the same input vector u.

The layers can be combined to form complex computational units called
the networks. The simplest such construction is called the multi-layer per-
ceptron, where k−1-th layer output yk−1 is used as the input to k-th layer,
namely

yk = Nk(yk−1), k = 1, . . . , L , (3)

where y0 = u is the network input, y = yL is the network output, andNk is
the transformation performed in k-th layer. The signal transformation in the
network can thus be presented as a concatenation of layer transformations
(Fig. 2)

y = Nu = NL · · · N 2N1 u .

A more general combination of layers can be obtained by forming the input
to k-th layer from the outputs of layers 1 up to k − 1 (Fig. 3).

Fig. 2. Multi-layer perceptron.
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Fig. 3. Ordered system of functions.

2.2. Approximation problem

The basic application of multi-layer perceptrons is function approxima-
tion on the basis of function samples. Loosely speaking, approximation of

an unknown function f ∈ F consists of choosing a function f̂ from a family

of approximating functions F̂ such that f and f̂ are as close as possible,
with a given sense of two functions being close.

The question to be addressed is whether the approximating family F̂ is
rich enough to approximate every function in F with an arbitrary accuracy.
We say that, for a given F and a given metric d, a family F is a universal

approximator, if for any ǫ > 0 and every f ∈ F , there exists f̂ ∈ F̂ such

that d(f, f̂) < ǫ.
We will discuss the approximation properties of feedforward neural net-

works. While, initially, there existed only experimental evidence of approx-
imation properties of neural networks, at present their approximation abil-
ities are well recognized. Loosely speaking, it is known that a two-layer
perceptron with linear output layer is the universal approximator for vari-
ous families of functions and the related metrics, provided that the activation
functions of the hidden layer fulfill certain conditions.

2.3. Standard approximating network

We consider approximation of functions f : U ⊂ R
n 7→ R, since a general-

ization to multiple output function is immediate. Standard neural networks
used for approximation purposes have a form of a two-layer perceptron, with
linear output layer of zero bias and the hidden layer with identical activation
functions g (Fig. 4)

Nw(u) =
h∑

i=1

wig




n∑

j=1

w̄i,j uj + bi



 , (4)

where the size h of the hidden layer and w includes both the network weights
and biases. We denote by N [g] the family of such networks, with all possible
values of h and w, and a fixed activation function g.
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Fig. 4. Standard approximating network.

2.4. Approximation of continuous functions

Consider approximation of continuous functions f : U ⊂ R
n with the

distance induced by the sup norm

‖f‖∞ = sup
u∈U

|f(u)| . (5)

The N [g] networks with sigmoidal hidden layer activation functions g are
called the sigmoidal networks. The first general approximation result was
proven by Cybenko [2] who showed that for any f continuous on compact
domain U and arbitrary ǫ > 0, there exists a N [g] network such that

sup
u∈U

|f(u) − f̂(u)| < ǫ

provided the activation function g is sigmoidal. The condition for the ac-
tivation function was subsequently relaxed. As proven by Hornik [5], N [g]
of sufficiently large hidden layer can arbitrarily well (in a supremum sense)
approximate any continuous function on a compact subset of R

n, provided
the activation function g : R 7→ R is continuous, bounded, and non-constant.
These conditions were finally weakened by Leshno et al. [6] who provided
a necessary and sufficient condition for the activation function. A function
g : R 7→ R is said to be locally essentially bounded if it is essentially bounded
almost everywhere on every compact subset of R. The distance in the set of
essentially bounded functions may be induced by the norm

ess supX |g(x)| = inf
{
δ : ℓ{x : |g(x)| ≥ δ} = 0

}
. (6)
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Theorem 2.1. (Leshno et al. [6]) If the activation function g is locally
essentially bounded and the closure of its discontinuity set is of Lebesgue
measure zero then N [g] of sufficiently large hidden layer can arbitrarily well
approximate (in the sup norm (6) sense) any continuous function on a com-
pact subset of R

n if and only if g is not a polynomial almost everywhere.

Basically, the activation function can thus be of any type except the poly-
nomial. A polynomial nonlinearity is “reproduced” in multi-layer networks
as polynomial, hence this type of nonlinearity is not “rich enough” to ap-
proximate any continuous function. Note that it is not required for g to be
bounded, only to be locally bounded, i.e. bounded on every compact subset
of its domain. It also does not need to be continuous, and for instance, may
have a finite number of discontinuities.

The above results were extended to simultaneous approximation of a
function together with its derivatives [4, 5].

2.5. Approximation of integrable functions

Similar results were obtained for approximation of functions in Lp (in-
tegrable with p-th power, 1 ≤ p < ∞, on a bounded domain U ∈ R

n, with
the distance induced by the norm

‖f‖p =




∫

U

|f(u)|p du




1/p

. (7)

It results from Hornik’s theorem [5] that for any function in Lp defined
on a compact set U ∈ R

n and any ǫ > 0 there exists a N [g] network for

which ‖f − f̂‖p < ǫ, provided the activation function g is bounded and
non-constant. These conditions for the activation function were relaxed by
Leshno et al. [6] who also established the necessary and sufficient conditions.
In fact, under the same conditions as specified in Theorem 2.1, N [g] of
sufficiently large hidden layer can arbitrarily well approximate (in the ‖f‖p

norm sense) any function integrable with p-th power defined on a compact set
in R

n. The above theorems can be extended to simultaneous approximations
of a function continuous together with derivatives.

2.6. Approximation of measurable functions

By Luzin’s theorem, a real function f defined on U is measurable if and
only if for every ǫ > 0 there exists a continuous function g such that

ℓ{u : f(u) 6= g(u)} < ǫ . (8)
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In other words, for any measurable function on a compact domain and ar-
bitrary ǫ > 0 there exists a N [g] network and a compact set Uǫ ⊂ U close

to U in a sense that ℓ(U − Uǫ) ≤ ǫ, for which supu∈Uǫ
|f(u) − f̂(u)| ≤ ǫ.

Consequently, if the activation function g is continuous, bounded, and non-
constant then a N [g] network of sufficiently large hidden layer can almost
everywhere arbitrarily well approximate (in the sup sense) any measurable
function on a compact domain.

2.7. Approximation of random functions

Assume that u is a random variable defined on a compact subset U ⊂ R
n

and denote its distribution by P . Assuming that

E|f(u)|p <∞ (9)

we can take
‖f‖p,P =

p√E|f(u)|p, 1 ≤ p <∞ (10)

as the norm and define the distance accordingly. By [5], if the activation
function g is bounded and non-constant then for any f satisfying (7) and
arbitrary ǫ > 0 there exists a N [g] network for which

E|f(u) − f̂(u)|p < ǫ .

A necessary and sufficient condition results from a theorem proven in [6]. In
fact, under the conditions for the activation function g specified in
Theorem 2.1, N [g] of sufficiently large hidden layer can arbitrarily well ap-
proximate (in the sense of (10)) any function of a continuous random variable
defined on a compact set in R

n and satisfying (9).

2.8. No curse of dimensionality?

The famous result of Barron [1] gives an upper bound on the size of
the hidden layer that does not depend on the dimension of the input space,
thus implying no “curse of dimensionality” for neural approximators. As-
sume that the distribution of u is concentrated over ‖u‖ ≤ r and con-
sider approximation of a function f : R

n 7→ R for ‖u‖ ≤ r. Denote by
f̄(ω) =

∫
exp(j ωTu) f(u) du, ω ∈ R

n, the (n-dimensional) Fourier trans-
form of f . The integral

Cf =

∫
‖ω‖2 |f̄(ω)| dω (11)

can be regarded as a function complexity index. Barron [1] states that if
the complexity index Cf of the approximated function f is finite then there
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exists a N [g] network with h hidden neurons such that the approximation

error d(f, f̂) =
(
E |f − f̂ |2

)1/2
is bounded by

ε ≤ 2 r Cf√
h

. (12)

In other words, for an approximation error bounded by ε0, the number of
hidden neurons

h ≤
4 r2 C2

f

ε20
(13)

does not depend on the input dimension n. This result shows a computa-
tional advantage of neural networks over other approximations like polyno-
mial approximations, splines, etc., for which the required number of param-
eters grows exponentially with the input space dimension. Barron’s result
does not yet solves fully the dimensionality issue for neural networks, since
the bound (13) depends on the function complexity index Cf that may de-
pend on n.

2.9. Approximations of dynamic systems

To discuss local neural input-output approximations of nonlinear plants,
we follow the approach of Levin and Narendra [8, 9]; for global representa-
tions see [7]. Consider the nonlinear plant

x(t+1) = f
(
x(t),u(t)

)
,

y(t) = h
(
x(t)

)
. (14)

To simplify the notation we consider single-input single-output case, u = u,
y = y. Assume the f and h are continuously twice differentiable and have
stationary points at the origin, i.e. f(0,0) = 0, h(0) = 0. If the linearized
plant

x(k+1) = Ax(k) + bu(k) ,

y(k) = cT x(k) , (15)

where

A =
∂f(x, u)

∂x

∣∣∣∣
(0,0)

, b =
∂f(x, u)

∂u

∣∣∣∣
(0,0)

, cT =
∂h(x)

∂x

∣∣∣∣
0

(16)

is observable (the observability matrix Wo = [c ATc · · · An−1T

c]T is nonsin-
gular), then locally around the equilibrium the nonlinear system admits the
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NARX (for: Nonlinear AutoRegression with eXogeneous term) representa-
tion, namely (Fig. 5)

y(t+1) = ψ
(
q−ny(t), q−nu(t)

)
, (17)

where q−n denotes the tapped delay line operators (cf. Sec. 1). The nonlinear
function ψ can be arbitrarily well approximated by a neural network N ,
hence we obtain a neural NARX approximation of the dynamic system (14)
in the form

y(t+1) = N
(
q−ny(t), q−nu(t); w

)
, (18)

where w denotes a vector of the network parameters that include the weights
and biases. Note that while N can approximate ψ in an arbitrary region,
ψ approximates the nonlinear system only locally around the origin, hence
the neural approximation remains local [12].

Fig. 5. NARX representation for nonlinear locally observable plants.

3. Algebra of gradients

Neural approximations are realized through an incremental modification
of parameters to minimize a cost Q =

∑N
t=1 q(y(t))| of the discrepancy be-

tween the samples of the network value y(t) and the desired output value
yo(t), where t indexes the samples. Typically, the momentary cost q has
a form of the quadratic index q(y) = ‖y − yo‖2. This problem leads to
nonlinear minimization in highly dimensional space, realized with gradi-
ent minimization methods. Effective gradient calculation is thus of utmost
importance for neural networks, and is typically realized by gradient back-
propagation. While the gradient backpropagation was popularized by Rum-
melhart, Hinton, and Williams [11], it was earlier invented by Werbos and
first described in his 1974 Ph.D. thesis [13]. Later, it was also independently
developed by other researchers (Parker in 1985, LeCun in 1986).

We discuss the use of gradient backpropagation for static as well as
for dynamic systems. We also derive the essential difference between the
common chain rule and backpropagation, which is rarely acknowledged.
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3.1. Layered systems of functions

A family of functions

xk = fk(xk−1), k = 1, . . . , n (19)

with appropriately defined domains, will be called the layered system of
functions, Fig. 2. A typical example of the layered system is the multilayer

perceptron (3). We discuss algorithms of calculation of the derivative
dxn

dx0
.

Denote f ′k =
dfk

dxk−1
for i = 1, . . . , n, and for x0, . . . xℓ−1 fixed, ℓ < k, denote

x′k|ℓ =
dxk

dxℓ
. Obviously, by the chain rule

dxn

dx0
= f ′n(xn−1) f

′
n−1(xn−2) . . . f

′
2(x1) f

′
1(x0) . (20)

The derivative (20) can be calculated recursively in two ways, namely with
the forward propagation algorithm and the backpropagation algorithm.

3.2. Forward vs backward gradient propagation

The forward propagation (FP) algorithm is just a direct implementation
of the traditional chain rule and results from grouping the intermediate
results, illustrated as

x′n|0 =
dxn

dx0
= f ′n(xn−1) f

′
n−1(xn−2) . . . f

′
2(x1) f

′
1(x0) .︸ ︷︷ ︸
x′
1|0︸ ︷︷ ︸

x′
2|0︸ ︷︷ ︸

x′
n−1|0

(21)

The algorithm resulting from the above approach can be written in the form

x′0|0 = 1 ,

x′k|0 = f ′k(xk−1) x
′
k−1|0 ,

xk = fk(xk−1) , k = 1, . . . , n . (22)

Note that both the derivatives as well as the function values are calculated
in a single pass of recursion, with k = 1, . . . , n.
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The second method of derivative calculations, which is called the back-
propagation (BP) results from a different grouping of terms in (20), according
to

x′n|0 =
dxn

dx0
= f ′n(xn−1)︸ ︷︷ ︸

x′
n|n−1

f ′n−1(xn−2)

︸ ︷︷ ︸
x′

n|n−2

. . . f ′2(x1)

︸ ︷︷ ︸
x′

n|1

f ′1(x0) . (23)

This leads to an algorithm that can be realized in two passes: the forward
pass of arguments calculation

xk = fk(xk−1) , k = 1, . . . , n

and the backward pass of the derivative calculation (output-to-input), namely

x′n|n = 1 ,

x′n|ℓ = x′n|ℓ+1 f
′
ℓ+1(xℓ) , ℓ = n− 1, . . . , 0 . (24)

3.3. Ordered system of functions

It is useful to consider a more general construction, namely the ordered
family of functions, defines as a family of functions (f1, . . . , fn)

xk = fk(x0, . . . , xk−1) (25)

with appropriately defined domains. One may represent the values calcu-
lated by each function by vertices of an ordered graph which we will call
the influence graph. Functions of the system can then be represented by
directed edges which join the argument vertices (the ones corresponding to
the function arguments) with the value vertex (the one corresponding to
the function value). The graph representing the ordered function is without
loops. The general feedforward networks (Fig. 3) make a typical examples
of ordered functions.

Denote

f ′k|ℓ(x0, . . . , xk−1) =
∂

∂xℓ
fk(x0, . . . , xk−1), 0 ≤ ℓ < k (26)

and for the first ℓ variables x0, . . . , xℓ−1, ℓ < k, fixed define

x′k|ℓ =
dxk

dxℓ
. (27)
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Note that in calculation of x′k|ℓ we treat xℓ as the only independent variable.

One may prove that the following equalities hold and are equivalent

x′k|ℓ = f ′k|ℓ +
k−1∑

i=ℓ+1

f ′k|i x
′
i|ℓ 0 ≤ ℓ < k ≤ n , (28)

x′k|ℓ = f ′k|ℓ +

k−1∑

j=ℓ+1

x′k|j f
′
j|ℓ 0 ≤ ℓ < k ≤ n , (29)

where we treat a sum as zero if its lower summation index exceeds the
upper one. Here (28) represents the forward propagation algorithms for
all subsystems of equations, and setting ℓ = 0 specializes the equations to

x′n|0 =
dxn

dx0
. Similarly, (29) represents the backpropagation algorithms for

all possible subsystems of equations, and setting k = n enables to calculate

x′n|0 =
dxn

dx0
.

As an illustration, consider the system of equations x3 = f3(x0, x1, x2),
x2 = f2(x0, x1), x1 = f1(x0) and assume that f1, f2, f3 are differentiable.
With the FP we obtain

x′3|0 = f ′3|0 + f ′3|1 x
′
1|0 + f ′3|2 x

′
2|0 ,

x′2|0 = f ′2|0 + f ′2|1 x
′
1|0 ,

x′1|0 = f ′1|0 ,

while the BP formulas have a form

x′3|0 = f ′3|0 + x′3|2 f
′
2|0 + x′3|1 f

′
1|0 ,

x′3|1 = f ′3|1 + x′3|2 f
′
2|1 ,

x′3|2 = f ′3|2 .

Certainly, both algorithms lead to x′3|0 =f ′3|0+f
′
3|1 f

′
1|0+f

′
3|2 f

′
2|0+f

′
3|2 f

′
2|1 f

′
1|0,

just the terms are grouped differently. Note that different derivatives of x
are used in both formulas. In the FP we use x′i|0 for i = 1, 2, 3, while in the

BP we use x′3|j for j = 2, 1, 0.

The apparent difference between the two algorithms consists in the order
of calculations. More important yet are the intermediate derivatives calcu-
lated by both algorithms. In the forward propagation case, the intermediate
results consist of the derivatives of consecutive variables with respect to the
same target independent variable. In the case of BP, the intermediate results
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consist of the derivatives of the same target variable with respect to consec-
utive intermediate variables, Fig. 6. In network calculations, the derivatives
of the same error index are to be calculated with respect to all weights.
The derivatives calculated intermediately in the BP algorithm are of direct
use, while the intermediate derivatives calculated in forward propagation are
useless. These very property stands for the effectiveness of the BP in neural
networks.

Note yet that the BP equations are easiest to derive “in the direction
of the influence graph”, while the BP calculations are done in the reverse
direction.

Fig. 6. Backpropagation, forward propagation and mixed modes. Each point (x, y)

corresponds to the derivative
dy

dx
. Mixed mode illustrated here uses the BP first

(horizontal dashed line) and the FP afterwards.

A matrix form put another light on the difference between the FP and
BP. Define two n+ 1 by n+ 1 matrices, F ′ and X ′, by using (26), (27) for

k > ℓ, and setting f ′k|ℓ = 0 for k ≤ ℓ, x′k|ℓ =

{
1 for k = ℓ

0 for k < ℓ
. Note that for

a layered system only the sub-diagonal of F ′ is non-zero. One may prove [10]
that the following equalities are equivalent to (28), (29)

Chain rule (F ′ − I)X ′ = −I , (30)

Backpropagation X ′ (F ′ − I) = −I . (31)

Again, (30) represents the FP rules and (31) represents the BP rules for all
possible subsystems.
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3.4. Local forms

In general, for any two variables u = xk, z = xℓ, ℓ < k, the FP can be
compactly written as

dz

du
=
∂fz

∂u
+
∑

x

∂fz

∂x

dx

du
, (32)

where fz = fℓ is a function which defines z, and the sum extends over all
variables x which directly influence z through fz (i.e., the arguments of fz),
Fig. 7. On the other hand, for any two variables u = xk, z = xℓ, ℓ < k, the
BP formula has the form

dz

du
=
∂fz

∂u
+
∑

x

dz

dx

dfx

du
, (33)

where fx denotes the function that defines x, and the summation extends
over all terms x that are directly influenced by u (i.e., all functions in the
system whose one of arguments is u), Fig. 8.

Fig. 7. Forward propagation for ordered systems. The summation in (32) extends

over all variables x that directly influence z through fz (i.e., the arguments of fz).

Fig. 8. Backpropagation for ordered systems. The summation in (33) extends over

all terms x that are directly influenced by u (i.e., all functions in the system whose

one of arguments is u).
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4. Implementations of gradient backpropagation

4.1. Gradients in multi-layer perceptron networks

Consider a L-layer network, with ℓ-th layer equations

zℓ
i =

nℓ∑

j=0

wℓ
i,j y

ℓ−1
j ,

yℓ
i = gℓ

i (z
ℓ
i ) , i = 1, . . . ,mℓ , (34)

the network outputs yj = y
(L)
j , and the momentary cost q = ρ(yL

1 , . . . , y
L
m).

It is easy to see that the influence graph (Fig. 9) corresponds to the following
chain of calculations

dq

dwℓ−1
i,j

=
dq

dzℓ−1
i

uℓ−1
j

dq

dzℓ−1
i

=
dq

dyℓ−1
i

gℓ−1
i

′
(zℓ−1

i )






weights in layer ℓ− 1
to output

dq

dyℓ−1
i

=
∑mℓ

k=1

dq

dzℓ
k

wℓ
k,i

dq

dzℓ
k

=
dq

dyℓ
k

gℓ
k
′
(zℓ

k)






through
layer ℓ

dq

dyL
p

=
∂ρ(y)

∂yL
p

= ρ′p(y)

}
cost .

Consequently, the BP to a weight in p-th layer consists of the BP through
the cost index (35), then the BP through consecutive layers ℓ = L, . . . , p+1,

z
ℓ
1 z

L
1

z
ℓ−1
i

gℓ−1i
+3 y
ℓ−1
i

+3

3;
oooo
oooo

"*
NNN
NNN
z
ℓ
k

gℓ
k

+3 y
ℓ
k

y
L−1
p

+3

3;oooo
oooo

#+
NNN
NNN
z
L
p

gLp
+3 y
L
p

ρ
+3 q

w
ℓ−1
i,j

3;
ooo ooo

z
ℓ
mℓ

z
L
mL

layer ℓ− 1 | layer ℓ | | output layer L | cost |

Fig. 9. The influence graph for a multi-layer network.



6042 A. Pacut

(36), and the BP to the weight in p-th layer, namely

dq

dyp
=
∂ρ(y)

∂yp
= ρ′p(y) , (35)

dq

dyℓ−1
i

=

mℓ∑

k=1

dq

dyℓ
k

gℓ
k
′
(zℓ

k)w
ℓ
k,i , (36)

dq

dw
p
i,j

=
dq

dy
p
i

g
p
i
′
(zp

i )up
j . (37)

A particularly simple form of the BP is obtained for sigmoid activation
function y = g(x) = 1

1+e−αx for which g′(x) = −αy (1 − y).
The equivalent matrix notation has a compact form

dq

dy
=
∂ρ(y)

∂y
= ρ′(y) ,

dq

dyℓ−1
=W ℓT

( dq
dyℓ

⊙ gℓ′(zℓ)
)
, ℓ = L, . . . , p+ 1 ,

dq

dW p =
( dq
dyp

⊙ gp′(zp)
)
upT ,

where ⊙ denotes the term-by-term multiplication of vectors, namely
x ⊙ y =

[
x1y1 . . . xnyn

]
T

. It is convenient to introduce an operator BW

that transforms
d

dy
into the derivative with respect to weights in the same

layer, thus backpropagating to weights from layer’s output, namely (Fig. 10)

d

dW
= BW

(
d

dy

)
=

(
d

dy
⊙ g′(z)

)
uT . (38)

Fig. 10. BP to weights in a layer (left), BP through the layer (right).

Another operator we introduce, Bu, transforms
d

dy
into the derivative with

respect to the inputs of the layer, thus backpropagating through the layer,
namely

d

du
= Bu(∇y) = W T

( d

dy
⊙ g′(z)

)
. (39)
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Using the BP operators, we can write the BP through the network to
the weights in a form (Fig. 11)

d

dW ℓ
= BWℓ Buℓ+1 . . .BuL

d

dyL
(40)

and the BP through the network to its inputs as

d

du1
= Bu1 Bu2 . . .BuL

d

dyL
. (41)

Fig. 11. BP to the weights of a network (left), BP through the network (right).

4.2. Second derivatives

Calculation of second derivatives, required in some algorithms, is more
complex, with or without the BP. We recall a little known way to approx-
imate second derivatives proposed by Werbos [14] (Fig. 12). Suppose we
want to approximate Hessian of the function yo = f(u). The first (single

output) network N calculates an approximation of f , namely N (u) = f̂(u),

and the BP is used to calculate the gradients of f̂ . The approximated gradi-
ent values serve in turn as the desired values to another network N 1, which

thus approximates the gradient of the approximated function f̂ ′, namely

N 1(u) =
̂̂
f ′. The BP through this network approximates Hessian

̂̂
f ′′.

Fig. 12. Using two networks to approximate the second derivatives.
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4.3. Gradient calculations in nonlinear dynamic systems

Suppose that for a dynamic plant (14) both f and g are approximated

by the state network f̂ and the observation network ĥ, namely

x(t+1) = f̂
(
x(t),u(t); w

)
,

y(t) = ĥ
(
x(t); v

)
, (42)

where w and v denote the parameter vectors of both networks. The net-
works are to minimize the cost Q =

∑N
t=1 ‖y(t)−yo(t)‖2 of the discrepancy

between the modeled plant output y and the desired output yo. To avoid
cluttering of formulas we skip the intermediate arguments of functions, e.g.,

we write f̂(t) instead of f̂
(
x(t),u(t); w

)
.

For the state network, to calculate
dQ

dw
, where w is any element of w,

we notice first that w influences all state coordinates at every moment t.
Consequently

dQ

dw
=

N∑

t=1

n∑

j=1

dQ

dxj(t)

∂f̂j(t)

∂w
, (43)

where the partial derivative can itself be calculated with the use of the BP

once the structure of the network f̂ is known. Since every coordinate xi(t)
of the state vector influences every coordinate of the present output vector
yj(t) through the observation equation, and every coordinate of the state
at the next moment (except at the last moment t = N) through the state
equation, we have

dQ

dxi(t)
=

p∑

j=1

dQ

dyj(t)

∂ĥj(t)

∂xi(t)
+

n∑

j=1

dQ

dxj(t+1)

∂f̂j(t)

∂xi(t)
, for t < N ,

dQ

dxi(N)
=

p∑

j=1

dQ

dyj(N)

∂ĥj(N)

∂xi(N)
, (44)

where the partial derivatives can themselves be calculated by the BP once

the structures of the networks f̂ and ĥ are known. Finally, every output
coordinate directly influences the cost index, hence

dQ

dyi(t)
= yi(t) − yo

i (t) . (45)
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Calculation of the derivative
dQ

dv
, where v is any element of v is imme-

diate

dQ

dv
=

N∑

t=1

n∑

j=1

(
yi(t) − yo

i (t)
) ∂ĥj(t)

∂v
(46)

when the derivatives
∂ĥj(t)

∂v
can again be calculated with the use of the

BP once the structure of ĥ is known. Introducing the sensitivity vectors

Qx(t) =

[
dQ

dx1(t)
· · · dQ

dxn(t)

]
T

we may rewrite all the above equations

in a form of linear recurrent equations with the time reversed, namely

Qx(t) = f̂x(t)T Qx(t+1) + ĥx(t)T
(
y(t) − yo(t)

)
,

Qw(t) = Qw(t+1) + f̂w(t)TQx(t) ,

Qv(t) = Qv(t+1) + ĥv(t)T
(
y(t) − yo(t)

)
(47)

for t = N, . . . , 1, with the initial conditions

Qx(N+1) = 0 , Qw(N+1) = 0 , Qv(N+1) = 0 (48)

and with
dQ

dw
and

dQ

dv
as the elements of vectors Qw(1), Qv(1), respectively.

4.4. NARX representation

Consider the neural NARX representation (18) of a single-input single-
output system. We calculate the gradients needed to minimize the cost
Q =

∑N
t=1 q(y(t)) of discrepancy between the modeled plant output y and

the desired output. Since w influences network’s output at all moments t
then

dQ

dw
=

N∑

t=1

dQ

dy(t)

∂N (t)

∂w
.

Now, y(t) influences y(t+ 1), . . . , y(t + n) (through TDL and the network)
and the cost, hence

dQ

dy(t)
=

t+n∑

s=t+1

dQ

dy(s)

∂N (s)

∂y(t)
+ q′(t) .
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This involves calculation of
dQ

dy(t)
in the reversed time for t = N, . . . , 1, with

boundary conditions
dQ

dy(s)
= 0 for s = N+1, . . . , N +n. Calculation of

∂N (t)

∂w
may itself employ the BP through the network.

5. Summary

We discussed chosen properties of neural networks as approximators,
considering both the function approximation problems as well as dynamic
system approximation problems. Since neural approximations lead to non-
linear minimization in highly dimensional spaces of their parameters, it is
necessary to be able to effectively calculate gradients with respect to net-
work parameters, typically with the use of gradient backpropagation. We
discuss applications of gradient backpropagation in both static and dynamic
systems. We also investigate the essential differences between the common
chain rule and backpropagation. We show that both methods may be re-
duced to matrix equations with a different order of multiplication of com-
mutative matrices.

The problems discussed in this paper are intended to present the multi-
layer perceptrons as valid function approximators, whose properties may
exceed those of other nonlinear approximators. Treating the multilayer per-
ceptrons as nonlinear counterparts of linear least-square methods may help
in proper evaluation of the predicted effects of neural network applications.
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