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A general setting is presented for the evaluation of several common
multivariate analysis techniques including neural networks, support vector
machines, and genetic programming. Various theoretical results from pure
mathematics and statistical learning theory are presented. Special atten-
tion is placed on the optimization criterion for the search for new particles.
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1. Introduction

With the rise of computing power, physicists are employing numerical
techniques to transcend those calculations which were intractable analyti-
cally. The empowerment gained in the predictive half of physics is concomi-
tant with the revolution in data analysis. Corresponding to the advances
in theory, such as Lattice Gauge Theory and the Monte Carlo techniques
used in particle physics, are the advances in data analysis, such as neural
networks and maximum likelihood techniques.

Ironically, the complexity which make these algorithms so powerful also
makes them difficult to understand. Multivariate Algorithms (MAs), which
began as pure mathematics, have flourished under the high art of engineer-
ing. Unfortunately, the process has obfuscated the fundamental theory of
MAs. The recent advent of statistical learning theory has returned to the
fundamentals and motivated a significant reconsideration of common tech-
niques. In this note I will attempt to reconsider the use of multivariate
analysis in the search for new particles using the tools of statistical learning
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theory. To provide context, several approaches to multivariate analysis will
be reviewed and specific algorithms will be introduced.
The goals of this text and the corresponding presentation are:

1. to provide an overview for MAs suited for theoretical physicists,
2. to establish a general and coherent formalism for MAs,
3. to distinguish the different applications of MAs,

4. to clarify the relationship between the application and the appropriate
notion of performance of the algorithm,

5. to introduce the different settings in which MAs have been developed.

2. Formalism

Formally a Learning Machine is a family of functions F with domain I
and range O parametrized by o € A. The domain can usually be thought
of as, or at least embedded in, R and we generically denote points in the
domain as x. The points x can be referred to in many ways (e.g. patterns,

events, inputs, examples, ...). The range is most commonly R, [0,1], or
just {0,1}. Elements of the range are denoted by y and can be referred to
in many ways (e.g. classes, target values, outputs, ...). The parameters «

specify a particular function f, € F and the structure of a € A depends
upon the learning machine [1,2].

Typically, the use of a learning machine is broken into three phases: a
training phase, a testing phase, and a processing phase. The training phase
is responsible for choosing a particular « € A, an independent testing phase
is used to assess the performance of the resulting f,, and the processing
phase represents the intended use of f,.

In the training phase, one has some training data in the form of pairs
(x,y)i. These training data are presented to the learning machine and a
learning algorithm adjusts the parameters o as to maximize some notion of
performance or, equivalently, minimize some notion of risk. This model of
learning is called supervised learning, because the target values y; are known.

The pairs (x,y); are example associations collected through experience
or derived from a theoretical model. As a toy example, consider x to contain
the height and age of individuals and y to be their weight. What is impor-
tant to realize is that the associations between x and y can be probabilistic
and summarized by a joint probability distribution p(x,y). For instance,
two different individuals may have the same height and age x but different
weights y; # yj. Thus, while the training data include both (x,y;) and
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(x,y;), the learning machine will never be able to satisfy both requirements
simultaneously.

In the modern theory of machine learning, the performance of a learning
machine is usually cast in the more pessimistic setting of risk. In general,
the risk, R, of a learning machine is written as

R(a) = / L(y, fa(@)) pla,y)dedy = / Qr.y; 0) ple,y)dady, (1)

where L measures some notion of loss between f,(z) and the target value y.
Often L(y, fo(x)) is written in the more compact form Q(x,y; ). As we will
see in the next section, most of the classic applications of learning machines
can be cast into this formalism; however, searches for new particles place
some strain on the notion of risk.

To clarify the nomenclature, I will attempt to refer to the abstract family
of functions F as a learning machine, a pair (F, Q) as a multivariate algo-
rithm, and a particular function f, as a function or (with a slight abuse) a
trained learning machine.

3. Applications of multivariate algorithms

Rarely does one encounter a task that can be fully encapsulated by a
multivariate algorithm. Instead, it is much more common that a multivariate
algorithm performs an intermediate task and both its input (output) incur
(result from) external processing. What is often overlooked is that the goal
of the multivariate algorithm may not be the most appropriate for the task
at hand. This problem is exacerbated by the fact that operationally the use
of different algorithms may be quite similar or even indistinguishable.

Consider a common post-processing step using learning machines with
a range [0,1] in which the function f, is composed with a step function
O(y — yo)'. In this case the resulting function f(z) = O(fa(x) — yo) has a
range {0,1} and is operationally identical to a learning machine gg(z) with
binary output. The subtlety is that f, may have been trained as to minimize
a different risk functional that gg and the resulting partition of the domain
will not coincide in general.

3.1. Classification

Classification was one of the first applications of multivariate algorithms.
This task was addressed by Fisher in the 1930’s using discriminant analy-
sis. Fisher’s approach assumed knowledge of the probability distribution

! This is typically the case with neural networks and gy is called the “cut” on the neural
network output.
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functions for the two categories. In the 1960’s Rosenblatt introduced the
perceptron, a hallmark of both neural networks and learning theory in gen-
eral.

Classification can be thought of as simply partitioning the domain into
categories. The most simple case is binary classification in which y = 0
represents one class and y = 1 represents the other. For classification,
only learning machines with range {0, 1} are considered?. In that case, the
relevant notion of risk is the rate of misclassification and thus,

Qz, y; ) =y — fa(z)|. (2)

3.2. Regression & prediction

Regression is the most common setting of selecting a particular function
f(z; ) from a parametrized set of options f(x;«) based on empirical data.
Regression is often solved within the context of Maximal Likelihood and
substantial progress has been made for complex problems with the use of
the EM algorithm [3]. There are a number of techniques, but with standard
assumptions the solution to the problem of regression is the familiar least-
squares method. That is the motivation for the loss functional

Qz,y;0) = (y — fal@))? (3)

used in regression problems.

Regression is different from classification, most notably because the range
is continuous, as opposed to binary. While neural networks are not often
referred to as regression techniques, they usually attempt to minimize some
error functional equivalent to regression risk functional.

3.8. Searches for new particles

The search for a new particle is a practical application of multivariate
algorithms, and one with an intuitive notion of performance. Unfortunately,
the notion of performance is so nebulous that many of the “optimizations”
performed in the analysis chain are irrelevant to the final conclusion. The
conclusion of this type of experiment is a statistical statement — usually a
declaration of discovery or a limit on the mass of the hypothetical particle.
Thus, the appropriate notion of performance for a multivariate algorithm
used in a search for a new particle is that performance measure which will
maximize the chance of declaring a discovery or provide the tightest limits
on the hypothetical particle.

% Sometimes the classes are considered as {—1,1} so that functions with range R can
be implicitly composed with the sign () function.
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In principle, it should be a fairly straight-forward procedure to use the
formal statistical statements to derive the most appropriate performance
measure. The first difficulty in this process is that there are many inter-
esting statistical statements from which to choose. To make matters worse,
experimentalists and statisticians cannot even settle on a formalism to use.
Within the statistics literature there are two factions commonly referred to
as “Bayesians” and “Frequentists”. While both formalisms adhere to Kol-
mogorov’s axioms for a probability measure, they disagree on how to define
probability. In short, Bayesians define probability to be a degree of belief
while Frequentist define probability to be a limiting frequency. Avoiding a
detailed discussion, it should be known that Bayesian methods are consid-
ered to be powerful because they can incorporate prior knowledge in a more
natural way, but they are also criticized as being subjective due to the in-
troduction of a priori probability for the physics parameters being studied
by the experiment. This philosophical divide is deep, and recently being
confronted by experimental physicists.

As an example, let us consider the Frequentist theory developed by Ney-
man and Pearson. This was the basis for the results of the search for the
Standard Model Higgs boson at LEP [4].

4. The Neyman—Pearson theory

The Neyman—Pearson theory [5] begins with two Hypotheses: the null
hypothesis Hy and the alternate hypothesis H. In the case of a new particle
search Hj is identified with the currently accepted theory (i.e. the Standard
Model) and is usually referred to as the “background-only” hypothesis. Sim-
ilarly, H; is identified with the theory being tested (i.e. Standard Model
with Higgs boson at some specified mass my) usually referred to as the
“signal-plus-background” hypothesis®. With these two hypotheses one is
able, through theory, to describe the probability distribution of physical ob-
servables x € I written as p(x|Hp) and p(x|H1). Next, one defines a region
W € I such that if the data fall in W we accept the null hypothesis (and
reject the alternate hypothesis)*. Similarly, if the data fall in I — W we
reject the null hypothesis and accept the alternate hypothesis. Recognize
that if the null hypothesis is true, then there exists a chance that the data
could fall in I — W and we reject Hy even though it is true — we commit a
Type I error. The probability to commit a Type I error is called the size of

3 An attentive reader might question the meaning of the Standard Model without
the presence of the Higgs boson. Furthermore, one must be careful that additional
particles are included in a way consistent with quantum mechanics and not blindly
resort to the addition of probabilities.

4 With m measurements, we should actually consider the data as (1,...,xm) € I™,
but, for ease of notation, let us only consider m = 1.
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the test and is given by (note alternate use of «)

a= /p(x]Ho)dac. (4)

I-W

Similarly, if the alternate hypothesis is true the data could fall in W in
which case we accept Hy even though it is false — we commit a Type II
error. The probability to commit a Type II error is given by

Bz/ﬂﬂmﬂw (5)

w

Also of importance is the notion of power = 1 — (3, which can be interpreted
as the chance that one accepts H; when it is true.

In particle physics, the discovery criterion is often referred to as the
50 requirement. This requirement is related to the probability of Type
I error and, depending on convention, corresponds to o = 5.8 x 1077 or
a =2.9x1077. Thus, what particle physics control with the 5o requirement
is the rate of false discovery.

The central result of the Neyman—Pearson theory is the Neyman—Pearson
Lemma, which tells us how to chose an acceptance region W. The Neyman-—
Pearson Lemma states that holding « fixed, the region W that maximizes
the power is bounded by a contour of the Likelihood ratio

Wz{xﬁﬁﬁﬁ>@}, ©)

ple|Ho)
where k,, is a constant chosen to satisfy equation (4).

Once one specifies the size, a, of the test the power of the test is de-
termined from p(xz|Hy) and p(x|H;1). How one chooses the size of the test,
however, transcends the Neyman—Pearson theory. Typically, scientists re-
treat to conventional values such as o = 0.05 (which corresponds to a 95%
confidence) or 5o in the case of particle physics. These choices are essen-
tially arbitrary, but that need not be the case. It is possible that one can
define a utility function U(cq, 3) and optimize the utility as a function of «
(remembering that 3 can be determined from a with p(z|Hp) and p(x|H;)
fixed).

It is worth emphasizing the role of the alternate hypothesis Hy. Prior to
the Neyman—Pearson theory, Fisher had developed a similar theory based
on what he called a pure significance test. The test only considered one
hypothesis Hg, in contrast to the Neyman—Pearson theory. The expected
value of Fisher’s p-value has the same form as «a; however, there is no unique
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notion of W. There could be infinitely many W with the same size, but
Fisher left the choice of W to the experimenter. In the Neyman—Pearson
theory, this symmetry is broken by Hj. In this context it is easy to see
how fundamentally different the typical search scenario is from the model-
independent searches that have been suggested recently [6].

4.1. The Neyman—Pearson theory in the context of risk

In Section 3 we provided the loss functional appropriate for the classi-
fication and regression tasks; however, we did not provide a loss functional
for searches for new particles. The first reason for delaying the presenta-
tion of the loss functional was the lack of consensus within the experimental
community on a statistical formalism. Having chosen the Neyman—Pearson
theory as an explicit example, it is possible to develop a formal notion of
risk.

Once the size of the test, a, has been agreed upon, the notion of risk
is the probability of Type II error 5. In order to return to the formalism
outlined in Section 2, identify H; with ¥y = 1 and Hy with y = 0. Let us
consider learning machines that have a range R which we will compose with
a step function f(z) = O(fa(x) — kq) so that by adjusting k, we insure
that the acceptance region W has the appropriate size. The region W is
the acceptance region for Hy, thus it corresponds to W = {z|f(x) = 0}
and I — W = {z|f(x) = 1}. We can also translate the quantities p(z|Ho)
and p(x|H1) into their learning-theory equivalents p(x|0) = p(x,0)/p(0) =
S(y)p(z,y)/ [ p(z,0)dz and §(1 — y)p(x,y)/ [ p(x, 1)dz, respectively. With
these substitutions we can rewrite the Neyman—Pearson theory as follows.
A fixed size gives us the global constraint

o= J O(fa(z) — ko) 0(y) p(x,y))dzdy
[ p(z,0)dz

(7)
and the risk is given by

5 = [ el

w
_ S = O(fa(z) — ka)] p(x, 1)dz
[ p(z,1)dz
X / O(falz) + ka)d(1 — y)p(x,y)dxdy . (8)

Extracting the integrand we can write the loss functional as

Q(‘va; a) = Q(fa(‘r) + ka)6(1 - y) . (9)
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Unfortunately, equation (1) does not allow for the global constraint imposed
by ko (which is implicitly a functional of f,), but this could be accommo-
dated by the methods of Euler and Lagrange.

4.2. The case of no interference

When there is no (or negligible) interference between the signal process
and the background processes one can avoid the complications imposed by
quantum mechanics and simply add probabilities. This is often the case with
searches for new particles. For instance, the width of a Higgs boson with
mass less than about 300 GeV/c? is so narrow that the interference with
standard model processes is usually considered negligible. In that case the
signal-plus-background hypothesis can be rewritten p(x,|H;) = ngps(x) +
nop(xz|Hp), where ng and ng are normalization constants that sum to unity.
Thus, the Likelihood Ratio can be rewritten

p(x|Hy) B nsps(z) + nop(x|Ho)

= 10
el o) p(alHo) "o
and the contours of the likelihood ratio Z g}gég = k., can be simplified to

el (i — o) /s = K

4.83. Indirect methods

The loss functional defined in equation (9) is derived from a minimization
on the rate of Type II error. This is logically distinct from, but asymptot-
ically equivalent to, approximating the Likelihood Ratio. In the case of no
interference, this is logically distinct from, but asymptotically equivalent to,
approximating the signal to background ratio. As we will see most multi-
variate algorithms are concerned with approximating an auxiliary function
that is one-to-one with the Likelihood Ratio. Because the methods are not
directly concerned with minimizing the rate of Type II error, they should
be considered indirect methods. Furthermore, the asymptotic equivalence
breaks down in most applications, and the indirect methods are no longer
optimal. Neural Networks, Kernel Estimation Techniques, and Support Vec-
tor Machines all represent indirect solutions to the search for new particles.
The Genetic Programming approach is the only direct approach considered
in this note.
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5. Different approaches to multivariate analysis

For those familiar with multivariate analysis, the presentation given in
this text may seem unfamiliar. The field of multivariate analysis is so large
and so heterogeneous that disciples of one approach may not understand the
formalism of another. In this text, multivariate analysis has been cast in the
formalism of Statistical Learning Theory (or Machine Learning) due largely
to Vapnik. The different approaches, some might say paradigms, of multi-
variate analysis can be roughly grouped into three different classes: statis-
tical approaches, machine learning, and information theoretical approaches.
Recently there have been a number of methods which cross these bound-
aries and connect with very deep branches of mathematics. The differences
between these approaches is not simply their formalism, but their emphasis.
Statistical approaches are primarily based on asymptotic properties (i.e. in
the limit of infinite training data, [ — o0), machine learning stresses the
lack of these asymptotic properties for discrete data sets, and the infor-
mation theoretical approaches lie somewhere in between with a distinctly
intuitive feel.

5.1. Statistical approaches

Statistical approaches to learning theory leverage the many powerful
theorems of statistics assuming one can explicitly refer to p(x,y), the joint
probability distribution function of the input—output pairs. This dependence
on p(x,y) places a great deal of stress on the asymptotic ability to estimate
p(z,y) from a finite set of samples {(x,y);}. There are many such techniques
for estimating a multivariate density function p(z,y) given the samples [7,8|.
Unfortunately, for high dimensional domains, the number of samples needed
to enjoy the asymptotic properties grows very rapidly; this is known as
the curse of dimensionality. The kernel estimation techniques described in
Section 7.3 represent a particular statistical approach.

5.2. Machine learning

The starting point for machine learning is to accept that we might not
know p(z,y) in any analytic or numerical form. This is, indeed, the case for
particle physics, because only {(x,y);} can be obtained from the Monte Carlo
convolution of a well-known theoretical prediction and complex numerical
description of the detector. In this case, the learning problem is based
entirely on the training samples {(z,y); } with [ elements. The risk functional
is thus replaced by the empirical risk functional

l
Remp(a) - %Z Q(x’hyi; a) . (11)
=1
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One then must try to approximate f,, € F, that minimizes the true risk,
by the function f,,, that minimizes the empirical risk. This is approach is
called the empirical risk minimization (ERM) inductive principle.

Vapnik outlines the four parts of learning theory in [2]:

(1) What are the (necessary and sufficient) conditions for consistency of a
learning process based on the ERM principle?

(2) How fast is the rate of convergence of the learning process?

(3) How can one control the rate of convergence (the generalization ability)
of the learning process?

(4) How can one construct algorithms that can control the generalization
ability?

Answering question (1) is achieved by considering the notion of non-
trivial consistency. The details of the discussion are beyond the scope of
this note, but consistency is essentially a guarantee that with an infinite
amount of training data (I — oo) the ERM principle will produce a function
with equal risk to f,,. Interestingly, the necessary and sufficient condi-
tions for non-trivial consistency are analogous to Popper’s theory of non-
falsifiability in the philosophy of science. In particular, Vapnik introduces
a quantity h which is a property of a learning machine F and called the
Vapnik—Chervonenkis (VC) dimension. Simply put, the conditions for (1)
are that h is finite.

The VC dimension of F is defined as the maximal cardinality of a set
which can be shattered by F. “A set {x;} can be shattered by F’ means
that for each of the 2" binary classifications of the points {x;}, there exists a
fa € F which satisfies y; = fo(x;). A set of three points can be shattered by
an oriented line as illustrated in figure 1. Note that for a learning machine
with VC dimension h, not every set of h elements must be shattered by F,
but at least one.

The answer to question (2) is the surprising result that there are bounds
on the true risk R(«), which are independent of the distribution p(z,y). In
particular, for 0 < Q(z,y; ) < 1

R(a) = /Q z,y; ) p(x,y)dedy

< Roms(e) \/(h(log@l/h) +l1) - 10g(77/4)> o

where 7 is the probability that the bound is violated. As n — 0, h — oo, or
I — 0 the bound becomes trivial. In figure 2 the shape of the second term
in the bound, known as the VC confidence, is shown.
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Fig.1. Example of an oriented line shattering 3 points. Solid and empty dots
represent the two classes for y and each of the 23 permutations are shown.
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Fig.2. The VC Confidence as a function of h/l for I = 10,000 and n = 0.05. Note
that for I < 3h the bound is non-trivial and for [ < 20h is quite tight.

Equation (12) is a remarkable result which relates the number of training
examples [, the fundamental property of the learning machine h, and the risk
R independent of the unknown distribution p(z,y). The bounds provided
by equation (12) are relatively weak due to their stunning generality. More
important than their weakness, is the realization that with an independent
testing sample one can evaluate the true risk arbitrarily well. This testing
sample, by definition, is not known to the algorithm, so the bound is useful
for the design of algorithms encountered in the 4 part of Vapnik’s theory.
Neural Network and most other methods, however, rely on an independent
testing sample to aid in their design.



6060 K. CRANMER

5.8. Information theory

Information theory was born with Shannon’s seminal paper A Mathe-
matical Theory of Communication [9]. It would be difficult to over-estimate
the profound impact this work had on the world and, in particular, the engi-
neering fields. The key quantities that Shannon considered were the a priori
probability p; that a signal source could send a signal ¢ and the entropy H
of the source. The entropy defined as

H= *Zpi log(pi) (13)

and the base of the logarithm defines the units of entropy (base 2 corresponds
to bits).

It is beyond the scope of this note to discuss information theory in detail
or the myriad of applications of Shannon’s theory; however, it is worth
pointing out a few common properties of information-based methods. First,
they tend to be quite intuitive. For instance, when choosing variables x as
input to a multivariate algorithm, those with the most mutual information
with the targets y and the least mutual information among themselves should
be used. Furthermore, leaving out variables or adding noise clearly results
in information loss and should be avoided, or variables that are less sensitive
to the noise should be chosen. Also, information theory has been used in the
context of unsupervised learning in which the target values y are not known,
but the network is still able to perform classification. Clearly unsupervised
learning is very important for any biologically plausible model of cognition.

5.4. New directions

Clearly it is not possible to exhaustively discuss the new directions in
multivariate analysis; however, let us consider two particularly examples
that connect with deep fields of mathematics.

The first is the approach of Information Geometry due primarily to
Amari. The idea is that one can consider a learning machine F as a manifold
in which f, (or just a € A) correspond to points, A corresponds to a coor-
dinate system, and the metric tensor is provided by the Fisher information

matrix o /dxfa(x) [8102 ij(x)] [alog (ifj(a:)} (14)

Geodesics on this manifold represent natural alternatives to gradient descent
approaches and can result in exponentially faster rates of convergence [10].

The second approach is that of the minimum description length (MDL)
principle. The MDL principle follows from the idea of algorithmic com-
plexity. The work of Solomonoff, Kolmogorov, and Chaitin provided an
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information theoretical link to the inductive approach of Vapnik. In [2],
Vapnik shows that the MDL principle is roughly equivalent to his ERM
principle, but more difficult in practice. It is interesting to see the theory of
multivariate analysis touch so deeply with the fundamental limits of formal
mathematics provided by Gédel, Turing, and Church. It is also interesting
from an historical point of view that another of Hilbert’s problems attacked
by Kolmogorov is so deeply related to the theory of machine learning.

6. Motivation for neural networks

Neural Networks have a long history and their generality has given them
utility in a broad range of fields. There are a number of theorems which
describe the impact of the internal structure of a neural network on the
class of functions to which it belongs. The most significant result is known
as Kolmogorov’s Superposition Theorem [11] which states:

THEOREM 1 (KOLMOGOROV’S SUPERPOSITION THEOREM)

For each d > 2 there exist continuous functions ¢, : [0,1] — R, ¢ =
0,...,2d and constants A\, € R, p = 1,...,d such that the following holds
true: for each continuous function F :[0,1] — R there exists a continuous
function ¢ : [0,1] — R such that

2d d
F(z1,...,2q) :Zg Z)\quq(xp)
q=0 p=1

Note, ¢4 and A, are independent of the represented function F'.

Kolmogorov’s paper, published in 1957, did not refer to neural networks
directly; instead, it was in response to Hilbert’s 13" problem [12]. Exactly
30 years later Hecht-Nielsen noticed the application to the theory of neural
networks [13]: each continuous function F': [0,1]" — R can be implemented
by a feed-forward neural network with continuous activation functions ¢.

We do not expect, nor do we desire, a function which exactly categorizes
our signal and background training sample — a behavior referred to as over-
training. We know that there are regions of phase space for which either a
signal or background event could occur. In such regions we do not wish for
our neural network to fluctuate wildly between 0 and 1 to accommodate the
training points. Instead, we desire an approximate solution which smoothly
varies and has good generalization properties. Neural networks which use
the so-called “sigmoid function” ¢(z) = 1/(1 4+ e™*) are known to posses
good generalization properties and are the most common type for our appli-
cation [14]|. The upper-left image in figure 3 shows an example 7-10-10-1
architecture. The first column of nodes represent 7 input variables z;, the
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next two columns are the so-called hidden nodes which represent the bulk
of the processing by calculating ¢(Wj,zy — 3;) (where Wy, is the j*® neu-
ron’s weight for the & node in the previous layer and Bj is the 4™ neuron’s
bias), and the final node calculates a weighted sum of the penultimate layer’s
output.

What Kolmogorov and Hecht-Nielsen did not specify was how to find
the weights W} and biases (3; given a function fy we wish to represent. Ex-
cluding neuroscience, the bulk of the literature focuses on so-called “learning
algorithms” which attempt to find the optimal weights. The most widely
used class of learning algorithm is called backpropagation, and is essentially
a gradient-descent algorithm which aims to reduce an error function with
respect to the network’s weights [15]. The backpropogation algorithm is
shown schematically in figure 3. The error function is usually the empirical
risk functional 11 with the regression loss functional 3.

Because of their generalization properties, neural networks have become
quite common within High Energy Physics — below we cite a few examples.
They first appeared in the literature for their use in triggering and other
online applications [16]. Quickly they were used for jet and track finding in
an offline environment [17]. In addition to b-tagging, they were specifically
used for Higgs searches in the early 1990s [18].

6.1. Quertraining

Because of neural networks remarkable representation capacity, they
sometimes lose generalization performance. If a neural network can rep-
resent an incredibly complicated function, then it is in danger of learning
the training samples. In that case, the empirical risk may be quite small, but
the true risk may be large. Overtraining can be demonstrated by evaluating
the risk with an independent testing sample. In figure 3, the bottom-right
figure shows the evolution of the Error (or risk) as the network trains for
three different architectures. It can be seen that the 3-20-1 architecture has
such high capacity that around epoch 700, the true risk begins to grow. By
construction, the backpropagation algorithm insures the empirical risk is a
monotonically decreasing function, thus the network is loosing generalization
performance. This is the phenomena of overtraining. For clarification, the
training set may be presented to the network many times; the phenomena
of overtraining is related to the repeated presentation of a fixed training set,
not the addition of more training samples. This behavior is exactly what is
described by equation (12).
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Fig.3. A schematic of neural network training with backpropogation.

6.2. VC dimension of neural networks

In order to apply equation (12), one must determine the VC dimension of
neural networks. This is a difficult problem in combinatorics and geometry
aided by algebraic techniques. Eduardo Sontag has an excellent review of
these techniques and shows that the VC dimension of neural networks can,
thus far, only be bounded fairly weakly [19]. In particular, if we define p as
the number of weights and biases in the network, then the best bounds are
p> < h < p*. In a typical particle physics neural network one can expect
100 < p < 1000, which translates into a VC dimension as high as 10'2,
which implies [ > 10'3 for reasonable bounds on the risk. These bounds
imply enormous numbers of training samples when compared to a typical
training sample of 10°. Sontag goes on to show that these shattered sets
are incredibly special and that the set of all shattered sets of cardinality
@ > 2p+1 is measure zero in general. Thus, perhaps a more relevant notion
of the VC dimension of a neural network is given by pu.
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7. Other multivariate methods

7.1. Support vector machines

The introduction of Support Vector Machines (SVM) is perhaps the most
exciting development in machine learning in the last decade. Instead of try-
ing to describe a non-linear acceptance region W in the input space I di-
rectly, SVMs use a non-linear map &(x) into a higher dimensional space and
then perform a linear separation in that high dimensional space. The pull
back of the acceptance region in the higher dimensional space can be quite
non-linear due to the non-linearity of @. The benefits of this approach are
three-fold. First, linear decision boundaries have simple properties, so the
capacity of the learning machine can be controlled through @. Second, it is
possible to form the optimization problem in the lower dimensional space by
using a kernel K (z;,;), which implicitly describes the an inner product in
the higher dimensional space specified by the non-linear map @. This techni-
cal restructuring of the problem allows for a computationally tractable inner
product in the extremely high, possibly infinite, dimensional space. Thirdly,
the solution to the optimization can be solved via quadratic programming
techniques which insure a unique solution. This is very different from the
case of neural networks, where the most serious practical problems are due
to the presence of local minima and the non-uniqueness of the “solution”.
Lastly, because SVM are cast in the context of statistical learning theory,
there are powerful results regarding consistency and risk.

" Featur e Space"

—

~
AN

| Linear Decision Surface

The Decision Boundary is Unique!!

‘4>< Signal-like Region

Original Space

Fig.4. A schematic representation of the implicit non-linear map @ induced by the
kernel K (-, ).
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7.2. Genetic programming

The use of Genetic Programming for the classification is fairly limited;
however, it can be traced to the early works on the subject by Koza [20].
More recently, Kishore et al. extended Koza’s work to the multicategory
problem [21]. To the best of the authors’ knowledge, the first application of
Genetic Programming within particle physics will appear in [22].

In Genetic Programming (GP), a group of “individuals” evolve and com-
pete with respect to a user-defined performance measure. The individuals
represent potential solutions to the problem at hand, and evolution is the
mechanism by which the algorithm optimizes the population. GP can be
thought of as a stochastic sampling of a very high dimensional search space,
where the sampling is related to the fitness evaluated in the previous gener-
ation (a Markov process), and stochastic perturbations to help avoid local
extrema.

Genetic Programming is similar to, but distinct from, Genetic Algo-
rithms (GAs), though both methods are based on a similar evolutionary
metaphor. GAs evolve a bit string which typically encodes parameters to
a pre-existing program, function, or class of cuts, while GP directly evolves
the programs or functions. For example, Field and Kanev 23] used Genetic
Algorithms to optimize the lower- and upper-bounds for six 1-dimensional
cuts on Modified Fox—Wolfram “shape” variables. In that case, the phase-
space region was a pre-defined 6-cube and the GA was simply evolving the
parameters for the upper- and lower-bounds. On the other hand (i.e. an ac-
ceptance region W), GP algorithm is not constrained to a pre-defined shape
or parametric form. Instead, the GP approach is concerned directly with
the construction of an optimal, non-trivial phase space region with respect
to a user-defined performance measure.

In the case at hand, the individuals that evolve are simple arithmetic
expressions on the input variables. Without loss of generality, an event is
classified as signal (y = 1) if the corresponding expression is evaluated to
lie in the interval (—1,1). Furthermore, an individual may consist of one or
more such cuts combined by the Boolean conjunctions AND and OR.

The genotype is an expression tree similar to an abstract syntax tree
that might be generated by a compiler as an intermediate representation of
a computer program. An example of such a tree is shown in figure 5. Leaves
are either constants or one of the input variables. Nodes are simple arith-
metic operators: addition, subtraction, multiplication, and safe division®.
GPs which only produce polynomial expressions form a vector space, which
allows for a quick approximation of their VC dimension [19].

® Safe division is used to avoid division by zero.
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Fig.5. The representation of an example expression (V5 + V2) — (0.3/V5).

7.3. Kernel estimation techniques

Kernel estimation (also known as probability estimation or density es-
timation) techniques belong to the class of statistical approaches to multi-
variate analysis. They can be thought of as the inverse of Monte Carlo tech-
niques: from samples {x;} one attempts to reconstruct p(x). A histogram is
the simplest approach to density estimation, but more sophisticated meth-
ods have been developed [8]. The application of kernel estimation techniques
to multivariate analysis is a three step process. In the first step, the proba-
bility densities ps(z) and py,(z) are constructed from signal and background
training samples. Next, a discriminant function D(z) is formed according

to

D(z) = _ ps@) (15)

ps(x) +pp(z)

Finally, events can be classified by composing D(z) with a step function
D(z) = O(D(z) — k). Through simple algebra D(z) can be shown to be
one-to-one with ps(x)/pp(x) which is in turn one-to-one with the Likelihood
Ratio so central to the Neyman—Pearson lemma. These correspondences
are only valid asymptotically, and the ability to accurately approximate
p(z) from an empirical sample is often far from ideal. However, for particle
physics applications, up to 5-dimensional multivariate analyses have shown
good performance [24]. Furthermore, they have the added benefit that they
can be easily understood.

8. Conclusions

Multivariate algorithms are obviously an extremely useful tool in data
analysis. The more germane concern for physicists is what are the relevant
properties of a multivariate algorithm for their particular application. In
this note we have considered three common applications: classification, re-
gression, and the search for new particles. For the three main approaches to
multivariate analysis, we have distinguished between their asymptotic and
non-asymptotic properties, established relationships among the approaches,
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and presented the key theorems in their fundamental theories. Particular
emphasis has been placed on the Neyman—Pearson setting for the interpre-
tation of searches for new particles and the development of an appropriate
notion of risk. We have considered several common multivariate algorithms
and indicated their strengths and weaknesses. The final conclusions as to
which multivariate algorithms are most appropriate for a given task will
remain as much an experiment in human psychology as mathematical rigor.
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