SPECIFIC HEAT OF THE TETRAGONAL ANTIFERROMAGNET TbB₂C₂*

Koji Kaneko[†], Hideya Onodera and Yasuo Yamaguchi

Institute for Materials Research, Tohoku University Sendai 980-8577, Japan

(Received July 10, 2002)

Specific heat measurements of antiferromagnet TbB_2C_2 with $T_{\text{N}} = 21.7 \text{ K}$ were carried out under magnetic fields up to 8 T applied along the $[1 \ 0 \ 0]$ and $[1 \ 1 \ 0]$ directions. The application of magnetic fields in TbB_2C_2 leads to increase of the transition temperature in both directions. In case for $H \parallel [1 \ 1 \ 0]$, the transition temperature reaches 31.8 K under 8 T which indicates that magnetic fields anomalously stabilize the antiferromagnetic ordered state. The obtained field dependence of the transition temperature is quite anisotropic between the $[1 \ 0 \ 0]$ and $[1 \ 1 \ 0]$ directions, which is similar to the antiferroquadrupolar compounds DyB_2C_2 and HoB_2C_2 .

PACS numbers: 75.30.Kz, 75.90.+w, 75.40.Cx

1. Introduction

Rare earth intermetallic compounds RB_2C_2 with the tetragonal LaB_2C_2 type structure [1, 2] show various magnetic properties which originate in relatively strong antiferroquadrupolar (AFQ) interactions. DyB_2C_2 which is the first material exhibiting the AFQ order among tetragonal rare earth compounds has an AFQ order transition at $T_{\rm Q}=24.7$ K and an antiferromagnetic (AFM) transition successively at $T_{\rm N}=15.3$ K [3]. $T_{\rm Q}$ of DyB_2C_2 is about ten times higher than those of other AFQ compounds reported so far. An AFQ order in HoB₂C₂ is realized at $T_{\rm Q}=4.5$ K below an AFM order at $T_{\rm N}=5.9$ K, in other words, HoB₂C₂ undergoes the AFQ order transition in the magnetic ordered state [4]. As a result, the AFM ordered state, called phase IV, appears between $T_{\rm N}$ and $T_{\rm Q}$ where many characteristic magnetic

^{*} Presented at the International Conference on Strongly Correlated Electron Systems, (SCES 02), Cracow, Poland, July 10-13, 2002.

[†] Send any remarks to: kanekok@neutrons.tokai.jaeri.go.jp. Present address: Advanced Science Research Center, Japan Atomic Energy Research Institute, Tokai, Naka, Ibaraki 319-1195, Japan

properties were observed [5,6]. Owing to the existence of AFQ order, the H-T magnetic phase diagrams of DyB_2C_2 and HoB_2C_2 have commonly unusual characteristics; the coexistent phases of AFQ and AFM ordered states are slightly stabilized by applied magnetic fields and the phase diagrams are quite anisotropic between $H \parallel [100]$ and [110].

An isostructural compound TbB₂C₂ is an antiferromagnet with $T_{\rm N}=21.7$ K [7]. The magnetic structure can be described basically by $\mathbf{k}_2 = (0\ 1\ 1/2)$; the magnetic moments which lie in the basal *c*-plane couple antiferromagnetically between the corner and the face center of the unit cell , and the coupling along the $[0\ 0\ 1]$ direction is antiferromagnetic as well. Besides, the propagation vectors of $\mathbf{k}_4 = (0\ 0\ 1/2)$ and $\mathbf{k}_{\rm L} = (1\pm\delta\pm\delta\ 0)$ ($\delta = 0.13$) are also required. Note that $\mathbf{k}_{\rm L} = (1\pm\delta\pm\delta\ 0)$ component in TbB₂C₂ accompanies the characteristic diffuse scattering which is quite resemblant to that observed in phase IV of HoB₂C₂ [5,8]. In addition to the characteristic magnetic structure, it is remarkable that the magnetization process under high fields exhibits similar behavior to those of the AFQ compound DyB₂C₂ and HoB₂C₂. Based on this result, it is highly probable that AFQ interactions strongly affect in TbB₂C₂ as well. Therefore, the aim of this work is to clarify the magnetic properties of TbB₂C₂ under magnetic fields by means of specific heat measurements.

2. Experimental

For sample preparation, we used the stoichiometric amounts of constituents, Tb of 99.9%, B of 99.8% and C of 99.999% in purity. The compound was synthesized through the conventional argon arc technique. Single crystalline samples of TbB₂C₂ were grown by the Czochralski method using a tri–arc furnace. Specific heats of TbB₂C₂ were measured by using conventional relaxation method. Measurements were carried out in the temperature range from 0.5 K to 60 K and under magnetic fields up to 8 T. The specific heat of LaB₂C₂ was also measured in the same temperature range under H = 0 to estimate the lattice contribution to the specific heat.

3. Results and discussion

Fig. 1 shows magnetic specific heats of TbB₂C₂ under various magnetic fields applied along the [100] direction. The magnetic contribution to the specific heat is obtained by subtracting the specific heat of LaB₂C₂ from that of TbB₂C₂. A clear λ -type anomaly was observed at $T_N=21.7$ K under H=0, which is well consistent with the results reported before [7]. As field increases, T_N exhibits monotonous increase and corresponding anomaly becomes slightly broad. Under 4 T, the transition temperature takes the

Fig. 1. Magnetic specific heats of TbB_2C_2 for $H \parallel [1\ 0\ 0]$. Curves under magnetic fields are vertically shifted for the clarity.

maximum of 25.2 K and suddenly decreases to 16.6 K under 8 T. In the magnetization curve for $H \parallel [100]$ at 4.2 K, the magnetic transitions were observed at 7.6 T and 8.6 T. This result indicates that the phase boundary corresponding to the anomaly in the specific heat closes between 7 to 9 T for $H \parallel [100]$. The anomalous increase of $T_{\rm N}$ with increasing magnetic fields is further remarkable in case of the field applied along the [110] direction as shown in Fig. 2. Up to 8 T, the anomaly is still clear and the transition temperature keeps increasing to 31.8 K under 8 T, that is, the AFM transition temperature increases almost 10 K by the application of magnetic fields.

Fig. 2. Magnetic specific heats of TbB_2C_2 for $H \parallel [1\ 1\ 0]$. Curves under magnetic fields are vertically shifted for the clarity.

The unusual behavior of $T_{\rm N}$ increasing by applying magnetic fields cannot be explained only by AFM interactions. With respect to the increase of $T_{\rm N}$, the similar behavior was also observed in the AFQ ordered phases of $D_yB_2C_2$ and HoB_2C_2 . Furthermore, the magnetic field dependence of the transition temperature in TbB_2C_2 is quite anisotropic between [100] and [110], which is identical to that in DvB_2C_2 and HoB_2C_2 as well. Based on these facts, it is supposed that the AFQ order is realized in TbB_2C_2 under magnetic fields. Actually, our recent neutron diffraction experiments indicate that the magnetic structure of TbB_2C_2 under magnetic fields exhibits a characteristic coupling angle between the magnetic moments along the [001] direction which appears in the coexistent phase of AFM and AFQ order in DyB_2C_2 and HoB_2C_2 [9, 10]. One of the typical AFQ ordered compound CeB_6 also exhibits the similar increase of transition temperature with increasing fields. In case of CeB_6 , a theoretical calculation succeeded to explain the anomalous stability under magnetic fields by taking account octupolar interactions [11]. Therefore, we strongly suggest that TbB_2C_2 is the first material which shows the field-induced AFQ order and octupolar moment may play a more important role than DyB_2C_2 and HoB_2C_2 .

REFERENCES

- T. Onimaru, H. Onodera, K. Ohoyama, H. Yamauchi, Y. Yamaguchi, J. Phys. Soc. Jpn. 68, 2287 (1999).
- [2] K. Kaneko, K. Ohoyama, H. Onodera, Y. Yamaguchi, J. Phys. Soc. Jpn. 69, 3762 (2000).
- [3] H. Yamauchi, H. Onodera, K. Ohoyama, T. Onimaru, M. Kosaka, M. Ohashi, Y. Yamaguchi, J. Phys. Soc. Jpn. 68, 2057 (1999).
- [4] H. Onodera, H. Yamauchi, Y. Yamaguchi, J. Phys. Soc. Jpn. 68, 2526 (1999).
- [5] A. Tobo, T. Ohmori, T. Matsumura, K. Hirota, N. Oumi, H. Yamauchi, K. Ohoyama H. Onodera, Y. Yamaguchi, *Physica B* **312-313**, 853 (2002).
- [6] T. Goto, T. Yanagisawa, Y. Nemoto, S. Miyata, R. Watanuki, K. Suzuki, J. Phys. Soc. Jpn. 71, Suppl. 88 (2002).
- [7] K. Kaneko, H. Onodera, H. Yamauchi, K. Ohoyama, A. Tobo, Y. Yamaguchi, J. Phys. Soc. Jpn. 70, 3112 (2001).
- [8] K. Kaneko, K. Ohoyama, S. Katano, M. Matsuda, H. Onodera, Y. Yamaguchi, in preparation.
- [9] K. Ohoyama, H. Yamauchi, A. Tobo, H. Onodera, H. Kadowaki, Y. Yamaguchi, J. Phys. Soc. Jpn. 69, 3401 (2000).
- [10] K. Kaneko, S. Katano, M. Matsuda, K. Ohoyama, H. Onodera, Y. Yamaguchi, *Appl. Phys.* A, in press.
- [11] R. Shiina, O. Sakai, H. Shiba, P. Thalmeier, J. Phys. Soc. Jpn. 67, 941 (1998).

1010