SYSTEMATIC EVOLUTION OF THE KONDO PEAK IN YbCu_{5-x}Ag_x*

T. Okane^a, S.-I. Fujimori^a, K. Mamiya^a, J. Okamoto^a A. Fujimori^{a,b}, N. Tsujii^c and K. Yoshimura^d

^aSynchrotron Radiation Research Center Japan Atomic Energy Research Institute, Mikazuki, Hyogo 679-5148, Japan ^bDepartment of Complexity Science and Engineering, University of Tokyo Bunkyo-ku, Tokyo 113-0033, Japan

^cNational Institute for Materials Science, Tsukuba, Ibaraki 305-0047, Japan ^dDepartment of Chemistry, Kyoto University, Kyoto 606-8502, Japan

(Received July 10, 2002)

The electronic structure of the YbCu_{5-x}Ag_x system, which belongs to a series of dense Kondo compounds, is studied by high-resolution photoemission spectroscopy. A sharp Yb 4*f*-related peak, which is regarded as the Kondo peak, was observed just below the Fermi level for each compounds. As x decreases, the intensity of the Kondo peak decreases and its energy position is shifted towards the Fermi level.

PACS numbers: 71.27.+a, 75.30.Mb, 79.60.-i

A Series of YbCu₄M compounds (M = Ag, Au, Pd, In, *etc.*) crystallize in the cubic AuBe₅-type structure and show rich variety of low-temperature properties associated with the valence instability of Yb [1]. YbCu₄Ag shows a typical dense Kondo behavior and has a moderately large electronic specific heat coefficient of $\gamma \cong 245$ mJ/mol K² [1,2]. Its solid solution system YbCu_{5-x}Ag_x crystallizes in the cubic AuBe₅-type structure in the range of $0.125 \leq x \leq 1$ and belongs to a series of dense Kondo compounds [3]. It was experimentally confirmed that the characteristic temperature, which is proportional to the Kondo temperature and was determined with the magnetic susceptibility measurement, varies as 181.0, 121.3, 102.0, 86.2 K for x = 1.0, 0.7, 0.5, 0.25, respectively [3]. The specific heat coefficient γ increases from 210 to 440 mJ/mol K² in going from x = 1.0 to 0.25 [3].

^{*} Presented at the International Conference on Strongly Correlated Electron Systems, (SCES 02), Cracow, Poland, July 10-13, 2002.

The electronic structures of Yb Kondo systems have been extensively investigated by photoemission spectroscopy (PES) [4]. The behavior of the observed 4f signal has been successfully explained with the single impurity Anderson model (SIAM) using non-crossing approximation (NCA), which predicts the existence of a sharp many-body resonance, so-called Kondo peak, located at $\sim k_{\rm B}T_{\rm K}$ ($T_{\rm K}$ Kondo temperature) below the Fermi level $E_{\rm F}$ with the width of $\sim k_{\rm B}T_{\rm K}$, which loses its spectral weight as the temperature rises [5]. A PES experiment on YbCu₄Ag was performed to study the temperature dependence of the Kondo peak by changing the sample temperature and observed the behavior consistent with the NCA calculation [6]. However, another group objected the Kondo scaling for Yb-based Kondo systems based on the quantitative inconsistency in the Kondo temperature dependence of YbCu₄Ag and YbCu₄Au, pointing out the importance of thermal broadening of the Fermi edge and the sharp peak to interpret experimental data [7].

In this study, we have investigated the alloy system $YbCu_{5-x}Ag_x$ (x = 1.0, 0.7, 0.5, 0.25) by high-resolution PES. The variation of the Kondo peak corresponding to the difference of the Kondo temperature has been observed. Since the measurements were made under a fixed temperature of 14 K, the observed variation was not disturbed by the thermal broadening of the Fermi edge and the peak signal.

Polycrystalline samples of YbCu_{5-x}Ag_x were prepared from 99.9% pure Yb, 99.999% pure Ag and Cu metals by argon arc melting. Details of the sample preparation are described in Ref. [3]. The PES spectra were measured with two excitation energies: He I radiation ($h\nu = 21.2 \text{ eV}$) produced by a He discharge lamp and synchrotron radiation ($h\nu = 700 \text{ eV}$) produced at the beam line BL23SU of SPring-8. The energy resolution for the He I and synchrotron radiation measurements were 5 meV and 200 meV, respectively. Clean surfaces were obtained by scraping *in situ* with a diamond file. Details of the PES measurements are the same as described in Ref. [8].

Fig. 1 shows the valence band spectra of $YbCu_{5-x}Ag_x$ for $h\nu = 700 \text{ eV}$. The sample temperature was fixed at T = 14 K. The two peaks at binding energies E_B of about 0.1 and 1.4 eV are the spin-orbit-doublet of the $4f_{7/2}^{13}$ and $4f_{5/2}^{13}$ final states of Yb^{2+} . The complicated peak structures in the range from 5 to 11 eV are the $4f^{12}$ multiplet structure of Yb^{3+} , and are well described by the calculated atomic multiplet lines [9]. The features in the range from 2 to 5 eV are dominated by the Cu 3d band. In the range from 5 to 7eV, the Ag 4d band structure, which is not clearly observed in the figure, overlaps the $Yb^{3+}4f$ signal. Small humps around 1.0 and 2.3 eV are the surface component of the spin-orbit-doublet of the Yb^{2+} 4f signal. The spectra in Fig. 1 have been normalized to the height of the Cu 3d

Fig. 1. Valence-band spectra of YbCu_{5-x}Ag_x (x = 1.0, 0.7, 0.5, 0.25). The photon energy is 700 eV. Background due to inelastically scattered electrons has been subtracted from each spectrum. The bar diagrams are from the multiplet calculation in Ref. [9].

structure around 3 eV, multiplied by a factor of 5 - x. As x decreases, the intensity of the Yb²⁺ signal decreases and the intensity of the Yb³⁺ signal especially at around 7.9 and 10.6 eV increases, while the intensities of the peak structures in the range from 5 to 7 eV show a complicated behavior due to the mixture of an increase in the Yb³⁺ signal and a decrease in the Ag 4d signal. Thus, the intensity ratio Yb³⁺/Yb²⁺ increases with decreasing x, meaning an increase in the Yb 4f hole number and thus an increase in the Yb valence. This tendency is consistent with the increase in the Yb³⁺ 4f multiplet structure shift towards $E_{\rm F}$ as x decreases. This indicates a rise of the 4f energy level with decreasing x, which leads to the stabilization of the Yb³⁺ configuration compared to Yb²⁺.

The near- $E_{\rm F}$ region measured with a high energy resolution is shown in Fig 2. The observed peak structure in each spectrum is regarded as the Kondo peak whose energy position, intensity, and width can be related to the Kondo temperature of the compounds. As x decreases, the intensity of the Kondo peak decreases and its energy position shifts from 20 meV to 14 meV in going from x = 1.0 to 0.25. This behavior can be interpreted as reflecting the drop of the Kondo temperature with decreasing x, based on the Kondo scaling scenario of SIAM with NCA [5]. To make a quantitative discussion, the data should be analyzed with NCA calculations, which will be presented elsewhere.

Fig. 2. High-resolution spectra of YbCu_{5-x}Ag_x in the near- $E_{\rm F}$ region recorded with He I radiation. The spectra have been normalized to the area from 0.15 to 0.40 eV.

In conclusion, the PES experiment for $YbCu_{5-x}Ag_x$ has revealed an increase in the valence, a rise of the Yb 4*f* energy level, an energy shift and intensity variation of the Kondo peak with decreasing *x*, *i.e.*, decreasing Kondo temperature.

We thank M. Shimizu for useful advice.

REFERENCES

- C. Rossel, K.N. Yang, M.B. Maple, Z. Fisk, E. Zirngiebl, J.D. Thompson, *Phys. Rev.* B35, 1914 (1987).
- [2] M.J. Besnus, P. Haen, K. Yoshimura, K. Kosuge, H. Michor, K. Kreiner, G. Hilshner, *Physica B* 163, 571 (1990).
- [3] N. Tsujii, J. He, N. Hamdaoui, A. Herr, A. Meyer, *Phys. Rev.* B55, 1032 (1997).
- [4] D. Malterre, M. Grioni, Y. Baer, Adv. Phys. 45, 299 (1996).
- [5] N.E. Bickers, D.L. Cox, J.W. Wilkins, Phys. Rev. B36, 2036 (1987).
- [6] P. Weibel, M. Grioni, D. Malterre, B. Dardel, Y. Baer, M.L. Besnus, Z. Phys. B91, 337 (1993).
- [7] J.M. Lawrence, A.J. Arko, J.J. Joyce, P.C. Canfield, Z. Fisk, J.D. Thompson, R.J. Barlett, J. Magn. Magn. Mater. 108, 215 (1992).
- [8] T. Okane, S.-I. Fujimori, A. Ino, A. Fujimori, S.K. Dhar, C. Mitra, P. Manfrinetti, A. Palenzona, O. Sakai, *Phys. Rev.* B65, 125102 (2002).
- [9] F. Gerken, J. Phys. F 13, 703 (1983).