DE HAAS-VAN ALPHEN EFFECT IN HEAVY FERMION SUPERCONDUCTOR PrOs₄Sb₁₂*

H. Sugawara[†], S. Osaki, S.R. Saha, Y. Aoki, H. Sato

Graduate School of Science, Tokyo Metropolitan University Minami-Ohsawa, Hachioji, Tokyo 192-0397, Japan

Y. INADA, H. SHISHIDO, R. SETTAI, AND Y. ONUKI

Graduate School of Science, Osaka University Toyonaka, Osaka, 560-0043, Japan

(Received July 10, 2002)

We have succeeded in observing the de Haas-van Alphen (dHvA) effect in $PrOs_4Sb_{12}$. The Fermi surface topology is similar to the reference compound $LaOs_4Sb_{12}$, indicating the localized character of 4f-electrons. The cyclotron effective mass, enhanced by about four times compared with $LaOs_4Sb_{12}$, is a direct evidence of the strong electron correlation in this compound.

PACS numbers: 71.18.+y, 71.27.+a, 75.20.Hr, 75.30.Mb

1. Introduction

Filled skutterudite compounds $\operatorname{RT}_4 X_{12}$ (R=rare-earth; T=Fe, Ru and Os; X=P, As and Sb) have attracted much attention because of their interesting anomalous physical properties, such as metal-insulator transition in $\operatorname{PrRu}_4 \operatorname{P}_{12}$ [1] and unusual heavy fermion (HF) behavior in $\operatorname{PrFe}_4 \operatorname{P}_{12}$ [2–4]. In the latter, extraordinarily enhanced effective mass ($m_c^* = 81m_0$) and a large difference of the Fermi surface (FS) topology with $\operatorname{LaFe}_4 \operatorname{P}_{12}$ have been confirmed by the de Haas-van Alphen (dHvA) experiments [4]. It is believed that the large c-f hybridization originated from the unique crystal structure of filled skutterudite creates such anomalous properties.

Recently, $PrOs_4Sb_{12}$ was reported to show superconductivity below $T_C = 1.85$ K [5]. The large specific heat jump at T_C , $\Delta C/T_C \sim 500$ mJ/K²· mol,

^{*} Presented at the International Conference on Strongly Correlated Electron Systems, (SCES 02), Cracow, Poland, July 10-13, 2002.

[†] e-mail: sugawara@phys.metro-u.ac.jp

suggests the strong electronic correlation in this compound, that is the first example of a Pr-based HF-superconductor. To understand the unusual properties, the knowledge of electrical structure is essential. In this paper, we report the first dHvA experiment in $PrOs_4Sb_{12}$, which is the most powerful tool to clarify the FS precisely along with direct evidence of an enhanced effective mass.

2. Experimental

Single crystals of PrOs₄Sb₁₂ and reference LaOs₄Sb₁₂ were grown by a Sb-self-flux method with excess Sb (ratio R:Os:Sb=1:4:20) [5]. High-purity materials, 4N (99.99% pure)-Pr, 4N-La, 3N-Os and 6N-Sb, were used for the crystal growing. Typical single crystals were of cubic or rectangular shape with a largest dimension of about 3 mm. The residual resistivity ρ_0 and the residual resistivity ratio (RRR) of the present samples are $\rho_0 = 8\mu\Omega \cdot \text{cm}$ and RRR = 55 for PrOs₄Sb₁₂, and $\rho_0 = 2.8\mu\Omega \cdot \text{cm}$ and RRR = 100 for LaOs₄Sb₁₂, indicating high quality of the samples. The dHvA experiments were performed in a top loading dilution refrigerator system with a 17 T superconducting magnet cooled down to 30 mK. The dHvA signals were detected by means of the conventional field modulation method with a low frequency (~ 10 Hz).

3. Results and discussion

Fig. 1 shows (a) the typical dHvA oscillations and (b) its fast Fourier transformation (FFT) spectra both in $LaOs_4Sb_{12}$ and $PrOs_4Sb_{12}$.

Fig. 1. (a) The typical dHvA oscillations and (b) its fast Fourier transformation (FFT) spectra both in $LaOs_4Sb_{12}$ and $PrOs_4Sb_{12}$.

For LaOs₄Sb₁₂, there are at least three dHvA frequency branches denoted as α , β and γ . 2β , 3β and 4β are the β -branch harmonics. The results are in good agreement with the band structure calculation [6]. The frequency branches of PrOs₄Sb₁₂ [Fig. 1 (b)] show good agreement with those of LaOs₄Sb₁₂, indicating the shapes of FS are close to each other. The result suggests a well localized character of 4f-electrons in PrOs₄Sb₁₂. Note that the small spin-splitting in dHvA frequencies is observed in PrOs₄Sb₁₂, which originates from up- and down-spin bands split by the exchange interaction with the induced magnetic moment.

From the temperature dependence of the dHvA amplitude A, we can estimate the cyclotron effective mass m_c^* for β -branch as shown in Fig. 2.

Fig. 2. The semi-logarithmic plot of the reduced dHvA amplitude A vs temperature for β -branch in PrOs₄Sb₁₂. λ in the vertical-axis label is a constant $\lambda = 2\pi^2 ck_{\rm B}/e\hbar$. The $m_{\rm c}^*$ was estimated at around 133 kOe.

The m_c^* is found to be enhanced by about four times compared with LaOs₄Sb₁₂. Data of the dHvA frequency and m_c^* for β -branch are listed in Table I for LaOs₄Sb₁₂ and PrOs₄Sb₁₂. From the comparison of the Sommerfeld coefficient between LaOs₄Sb₁₂(39mJ/K²·mol [7]) and PrOs₄Sb₁₂(500mJ/K²·mol [5]), the observed m_c^* is too small for PrOs₄Sb₁₂. If we simply estimate from the FS volume and m_c^* in the present experiments assuming a spherical FS, the Sommerfeld coefficient should be ~ 20mJ/K²·mol. This large discrepancy suggests the existence of other FS(s) with heavy mass. The large effective mass ~ 50m₀ was also inferred from the slope of the up-

TABLE I

Comparison of the dHvA frequency F and the cyclotron effective mass m_c^* for β -branch between LaOs₄Sb₁₂ and PrOs₄Sb₁₂ for $H || \langle 100 \rangle$.

	$LaOs_4P_{12}$		$PrOs_4P_{12}$	
Branch	$F(\times 10^7 \text{ Oe})$	$m^*_{ m c}(m_0)$	$F(\times 10^7 \text{ Oe})$	$m^*_{ m c}(m_0)$
eta	1.02	0.71	1.07	2.5

per critical field near $T_{\rm C}$ [5]. Under the present experimental conditions, the dHvA signal for such a heavy FS is hardly observable. The localized character of 4*f*-electrons in PrOs₄Sb₁₂ is the same as for PrRu₄Sb₁₂ for which excellent agreement of the dHvA branches with LaRu₄Sb₁₂ was clarified [8]. However, the large mass enhancement in PrOs₄Sb₁₂ is in sharp contrast to PrRu₄Sb₁₂; *i.e.*, $m_{\rm c}^* = 1.5 \sim 1.8m_0$ and the mass enhancement compared with LaRu₄Sb₁₂ is almost negligible. For PrOs₄Sb₁₂ and PrFe₄P₁₂, the crystal field (CEF) ground state of Pr³⁺ is believed to be the Γ_3 nonmagnetic doublet with quadrupole moments, while the Γ_1 singlet is inferred for PrRu₄Sb₁₂. Therfore, the quadrupolar interaction is thought to play an important role for the HF behavior and also the HF-superconductivity.

The authors are grateful to Prof. H. Harima for helpful discussions. This work was supported by the Grant-in-Aid for Scientific Research from the Ministry of Education, Science, Sports and Culture of Japan.

REFERENCES

- [1] C. Sekine et al., Phys. Rev. Lett. 79, 3218 (1997).
- [2] H. Sato et al., Phys. Rev. B62, 15125 (2000).
- [3] Y. Aoki et al., Phys. Rev. **B65**, 064446 (2002).
- [4] H Sugawara et al., J. Magn. Magn. Mater. 48-50, 226 (2001).
- [5] E.D. Bauer et al., Phys. Rev. **B65**, 100506(R) (2002).
- [6] H. Harima, to be published in *Physica B* (2003), (Proc. LT23).
- [7] E.D. Bauer et al., J. Phys.: Condens. Matter 13, 4495 (2001).
- [8] T.D. Matsuda et al., Physica B **312-313**, 832 (2002).