THERMODYNAMIC AND TRANSPORT PROPERTIES OF THE HEAVY-FERMION FERRIMAGNET UCu_5Sn*

V.H. TRAN, R. TROĆ, A. CZOPNIK, Z. HENKIE A. Jeżowski, D. Włosewicz

W. Trzebiatowski Institute of Low Temperature and Structure Research Polish Academy of Sciences PO Box 937, 50-950 Wrocław, Poland

AND F. STEGLICH

Max-Planck Institute for Chemical Physics of Solids Nöthnitzer Str. 40, D-01187 Dresden, Germany

(Received July 10, 2002)

We have studied the specific heat $C_p(T)$, thermal expansion $\alpha(T)$, thermal conductivity κ , thermoelectric power S and magnetoresistance $\Delta \rho / \rho$ of the heavy-fermion ferrimagnet UCu₅Sn. The anomalies observed in the $C_p(T)$ -, $\alpha(T)$ - and $\Delta \rho / \rho(T)$ -dependencies confirm the existence of long-range magnetic order. $\Delta \rho / \rho$ is negative in the investigated temperature and magnetic field ranges. The fitting of the magnetic specific heat in the temperature range 10–40 K gives $\gamma_{\rm ord} = 78 \text{ mJ/moleK}^2$, $\beta = 0.5 \text{ mJ/moleK}^4$ and $\Delta / k_{\rm B} = 21 \text{ K}$. The effective Grüneisen parameter reaches a value of 4.7 at low temperatures, supporting the strongly correlated electron nature of this material. The thermoelectric power shows a maximum around 24 K, which might be related to either the Kondo effect or the phonon drag process. Below 100 K, the phonon contribution $\kappa_{\rm ph}$ dominates the thermal conductivity. The reduced Lorenz number $\kappa \rho / L_0 T$ shows a broad peak at ~10 K. This behavior might be explained by a dominant phonon scattering process off the U magnetic moments.

PACS numbers: 71.27.+a

UCu₅Sn crystallizes in the hexagonal CeCu₅Sn-type crystal structure [1,2]. We have shown previously that this compound although being ferrimagnetic below 53 K [2], exhibits an enhanced coefficient electronic specific heat, $\gamma(0)$, of 330 mJ/mole K² [3]. Thus, UCu₅Sn is an interesting 5*f*-system for studying the heavy-fermion properties with competing magnetic interactions. Furthermore, the Th substitution up to about 90% increases the

^{*} Presented at the International Conference on Strongly Correlated Electron Systems, (SCES 02), Cracow, Poland, July 10-13, 2002.

 $\gamma(0)$ -value up to 600 mJ/mole-U K², exhibiting unusual logarithmic dependences of C_p/T [4]. In this contribution, we will report on the specific heat C_p , measured with a relaxation method (T = 2-300 K, $\mu_0 H = 0\text{-}6 \text{ T}$), the thermal expansion α , measured using a capacitance dilatometer (4–80 K), the thermal conductivity κ , as well as the thermoelectric power S, measured with a steady-state method (4–300 K) and the magnetoresistance $\Delta \varrho/\varrho$, measured with the standard four-probe method (2–100 K, 0–14 T). The measurements were made on polycrystalline samples of UCu₅Sn which were prepared by arc-melting and were characterized according to a procedure previously described [3].

In Fig.1 we show the temperature dependence of the specific heat divided by temperature for UCu₅Sn and ThCu₅Sn. C_p of UCu₅Sn is dominated by a sharp anomaly at $T_{\rm C} = 53$ K, which clearly corroborates the ferrimagnetic transition reported previously [3].

Fig. 1. C_p/T vs T (on a logarithmic scale) for UCu₅Sn and ThCu₅Sn. The inset shows C_{5f}/T of Cu₅Sn as a function of T (on a logarithmic scale). The solid line is a fit (see the text). Inset shows the magnetic entropy as a function of T.

 $C_p(T)$ of ThCu₅Sn may represent the behaviour typical of the lattice specific heat. We have fitted the experimental data of ThCu₅Sn to the formula $C_p(T) = C_{\rm el} + C_{\rm ph}$, where $C_{\rm el} = \gamma(0)T$ and $C_{\rm ph} = 9R(T/\Theta_D)^3 \int_0^{\Theta_D/T} [(x^4e^x dx)/(e^x - 1)^2]$. We got the following values $\Theta_D = 250$ K and $\gamma = 9.2$ mJ/mole-Th K². Fig. 1 (b) shows the magnetic contribution to the specific heat of UCu₅Sn, obtained by subtracting the lattice contribution based on C_p of ThCu₅Sn. As seen, below 10 K C_{5f}/T also manifests a clear linear upturn in log T, at least down to 1.5 K as found previously [4]. We observe that the coefficient $\gamma(0) = C_{5f}/T$, reaches 300 mJ/mole-U K² at 2 K and, moreover, this value is not affected by the application of magnetic fields up to 6 T. For the temperature range between 10 and 40 K, C_{5f} follows the equation: $C_{5f} = \gamma_{\rm ord}T + \beta T^3 \exp(-\Delta/k_{\rm B}T)$, with $\gamma_{\rm ord} = 78 \text{ mJ/moleK}^2$, $\beta = 0.5 \text{ mJ/moleK}^4$ and $\Delta/k_{\rm B} = 21 \text{ K}$. The coefficients $\gamma_{\rm ord}$ and β denote the contribution of the electronic specific heat in the ordered state and the magnon contribution to the specific heat, respectively. Δ is the energy gap in the magnon excitation spectrum. The magnetic entropy S_m , which exhibits a knee at $T_{\rm C}$, at which temperature the entropy release amounts to about 0.8Rln2.

The magnetoresistance measurements were performed in fields up to 14 T (not shown here). At this field, $\Delta \varrho / \varrho$ reaches a maximum value of -10% at the lowest temperature measured (2 K) as is expected for a Kondo-like system. The Curie temperature $T_{\rm C}$ inferred from the $\Delta \rho / \rho(T, H)$ -curves increases with increasing strength of the magnetic field. For instance, $T_{\rm C}$ reaches 66 K in a field of 14 T.

Fig. 2. Temperature dependence of thermoelectric power S and the reduced Lorenz number for UCu₅Sn. Inset shows α/T vs T^2 .

The thermoelectric power for UCu₅Sn is displayed in Fig. 2 as a function of temperature. S is negative at room temperature $(-8\mu V/K)$. With decreasing temperature its absolute value decreases and changes the sign at about 65 K. No anomaly is observed around the ferrimagnetic transition at 53 K, reflecting that the spin-dependent scattering does not influence the S(T). At 24 K, a pronounced maximum of $3 \mu V/K$ occurs. One can consider this maximum as being due to the phonon-drag effect, because this effect often leads to a maximum in S(T) at temperatures between $(0.1-0.3)\Theta_D$. For UCu₅Sn, Θ_D is estimated to be 250 K from the $C_p(T)$ measurements, consistent with the thermoelectric power data. However, one can not exclude that this maximum is caused by crystal-field splitting or the Kondo effect. Especially, in a number of heavy-fermion compounds the latter effect often manifests itself by a maximum in S(T)-curves in the vicinity of the Kondo temperature. In Fig. 2 we show also the reduced Lorenz number $L/L_0 = \kappa \rho/L_0 T$ as a function of temperature for UCu₅Sn, where $L_0 = 2.45 \times 10^{-8} \text{ W}\Omega\text{K}^{-2}$ is the Lorenz constant and ρ is the electrical resistivity. L/L_0 strongly suggests that below 100 K the carriers of thermal energy are phonons. Interestingly, below about 10 K $\kappa \rho/L_0 T$ slightly decreases down to 4.2 K. Since the phonon thermal conductivity $\kappa_{\rm ph}$ is related to the lattice heat capacity $C_{\rm ph}$, sound velocity ν and relaxation time $\tau_{\rm ph}$ by the relation: $\kappa_{\rm ph} = C_{\rm ph}\nu^2\tau_{\rm ph}/3$, the decrease in $\kappa \rho/L_0 T$ below 10 K may be ascribed to the sudden decrease in the relaxation time of phonons, *e.g.*, due to an increasing phonon-impurity scattering.

The result of the thermal expansion measurements for UCu₅Sn is shown in Fig. 2. $\alpha(T)$ reflects a pronounced magnetic contribution around $T_{\rm C}$. Below 30 K, the thermal expansion follows the equation $\alpha(T) = aT + bT^3$ with $a = 1.464 \times 10^{-8} {\rm K}^{-2}$ and $b = 6.22 \times 10^{-11} {\rm K}^{-4}$. The electronic parts of the thermal expansion, $\alpha_{\rm el}$, and the specific heat, $C_{\rm el}$, are related to each other by an effective Grüneissen parameter: $\Gamma_{\rm eff} = \frac{3V\alpha_{\rm el}(T)}{KC_{\rm el}(T)}$, where V is the molar volume ($6.6 \times 10^{-5} {\rm m}^3/{\rm mole}$) and K is the isothermal compressibility. The value K= 0.794 Mbar⁻¹ is estimated from the pure elements [5]. Taking $\gamma_{\rm ord} = 78 {\rm mJ/mole K}^2$ we find $\Gamma_{\rm eff} = 4.7$, which is of the same order of magnitude as that of heavy-fermion antiferromagnet UPd₂Al₃ ($\Gamma_{\rm eff} = 5.5 {\rm at}$ $T_{\rm N}$) [6].

In conclusion, we have shown that the experimental data obtained from numerous thermal and transport measurements provide new support for the heavy-fermion nature of the ferrimagnet UCu_5Sn .

This work was supported by the Polish State Committee for Scientific Research (KBN) within grant no 2P03B 150 17.

REFERENCES

- J. Stępień-Damm, V. Zaremba, V. H. Tran, R. Troć, J. Alloys. Compounds, 289, 32 (1999).
- [2] V.H. Tran, R. Troć, G. André, F. Bourée, M. Kolenda, J. Phys.: Condens. Matter 12, 5879 (2000).
- [3] V.H. Tran, R. Troć, P. Pietri, B. Andraka, *Phys. Rev.* B60, 4696 (1999).
- [4] R. Troć, V. H. Tran, B. Andraka, T. Cichorek, J. Magn. Magn. Matter. 226-230, 118 (2001).
- [5] Landolt-Börnstein, Zahlen un Funktionen, II. Band, I. Teil, Springer, Berlin, 1971, p. 381.
- [6] R. Modler, K. Gloos, C. Geibel, T. Komatsubara, N. Sato, C. Schank, F. Steglich, Int. J. Mod. Phys. B7, 42 (1993).