EFFECT OF PRESSURE ON ELECTRICAL RESISTIVITY AND LATTICE PARAMETERS OF $CeRh_2Si_2^*$

Masashi Ohashi, Gendo Oomi

Department of Physics, Kyushu University, Fukuoka 812-8581, Japan SADAYOSHI KOIWAI

Department of Physics, Saitama University, Saitama 338-0825, Japan

Masato Hedo and Yoshiya Uwatoko

Institute of Solid State Physics, University of Tokyo, Kashiwa 277-8581, Japan

(Received July 10, 2002)

We report the pressure dependence of lattice parameter at room temperature up to 13 GPa and the electrical resistivity of CeRh₂Si₂ in the temperature range from 2.5 K to 300 K up to 8 GPa. The compression curve of unit-cell volume is well fitted to Murnaghan equation of state. The resistivity below 10 K is described as $\rho(T) = \rho_0 + AT^2$, where ρ_0 is the residual resistivity and A the constant. A(P) shows a peak around the critical pressure $P_{\rm C} \sim 1.0 \,{\rm GPa}$. The Grüneisen parameter of the Kondo temperature $T_{\rm K}$ is estimated above $P_{\rm C}$ and compared with those of the heavy fermion compounds.

PACS numbers: 71.27.+a, 73.43.Nq, 74.62.Fj

1. Introduction

CeRh₂Si₂, which crystallizes in the ThCr₂Si₂ type tetragonal structure, is an antiferromagnet with two transition temperatures at $T_{\rm N1} = 36$ K and $T_{\rm N2} = 24$ K [1,2]. The superconductivity appears at 400 mK above 0.9 GPa, near the critical pressure ($P_{\rm C} \sim 1.0$ GPa) required to suppress antiferromagnetic ordering [3]. In the present work, we report the electrical resistivity of a single crystalline CeRh₂Si₂ under pressure in detail and discuss the electronic properties near the quantum critical point induced by pressure.

^{*} Presented at the International Conference on Strongly Correlated Electron Systems, (SCES 02), Cracow, Poland, July 10-13, 2002.

2. Experimental

Sample preparation and characterization of the single crystal in the present experiment was described in Ref. [4]. The electrical resistance was measured for the current along a-axis by using a cubic anvil-type high-pressure cell up to 8 GPa. A mixture of Fluorinerts of FC70 and FC77 in ratio 1:1 was used as a pressure transmitting medium.

The pressure dependence of lattice parameters was determined by X ray (MoK α) powder diffraction with Guinier-type focusing camera and highly sensitive film. Hydrostatic pressure was generated by tungsten-carbide Bridgman anvils and Be sheet as a gasket. Details of the pressure apparatus have been reported previously [5,6].

3. Results

3.1. X ray diffraction

Fig. 1 shows the pressure dependences of the relative lattice parameters $a/a_0, c/c_0$ of the tetragonal cell and the relative volume V/V_0 , respectively, where $a_0 (= 4.070 \text{ Å})$, $c_0 (= 10.156 \text{ Å})$ and $V_0 (= c_0 a_0^2)$ are the values of a, c and V at ambient pressure. It is revealed that the tetragonal structure is stable at room temperature up to 13 GPa. Both a/a_0 and c/c_0 decrease smoothly with increasing pressure without any discontinuous change. Linear compressibilities of a- and c- axis are $2.2 \times 10^{-3} \text{ GPa}^{-1}$ and $3.0 \times 10^{-3} \text{ GPa}^{-1}$.

We attempted a least-squares fit of the data V to the first-order Murnaghan's equation of state, $P = (B_0/B'_0)[(V_0/V)^{B'_0} - 1]$, where B_0 denotes the bulk modulus at ambient pressure and B'_0 is its pressure derivative. These are estimated to be 139 GPa and 2.2.

Fig. 1. Pressure dependence of a/a_0 , c/c_0 , and V/V_0 of CeRh₂Si₂. The solid line for the pressure dependence of V/V_0 shows the result of Murnaghan's fitting. The dashed lines for a/a_0 and c/c_0 are guides to eye.

3.2. Resistivity

Fig. 2 shows the T^2 dependence of the electrical resistivity. The resistivity is described as $\rho(T) = \rho_0 + AT^2$ at low temperature in a wide pressure range up to 8 GPa, where ρ_0 is the residual resistivity and A is the constant. A(P) shows a peak around $P_{\rm C} \sim 1.0$ GPa, which has been discussed previously [7,8], indicating that the large spin fluctuation gives rise to the pressure-induced quantum phase transition. The residual resistivity also shows anomalous pressure dependence.

Fig. 2. T^2 dependence of the electrical resistivity along the *a*-axis of CeRh₂Si₂.

4. Discussion

According to the theory of Yoshimori [9], Kondo temperature $T_{\rm K}$ is proportional to $A^{-1/2}$. Then the Grüneisen parameter Γ of $T_{\rm K}$ is written,

$$\Gamma = -\left. \frac{\partial \ln T_{\rm K}}{\partial \ln V} \right|_{V=V_0} = \frac{1}{2} \left. \frac{\partial \ln A}{\partial \ln V} \right|_{V=V_0} = \frac{1}{2} \frac{\Delta (\ln A)}{\frac{\Delta V}{V_0}}$$

In Fig. 3, the values of A are plotted in logarithmic scale as a function of $\Delta V/V_0$. The linear relationship is found in the plot as is shown by solid lines above 1.5 GPa ($\Delta V/V_0 > 0.011$). From the result, the value of Γ is estimated to be 42 for CeRh₂Si₂, which is extremely large and comparable with those of heavy fermion compounds 59 and 65 for CeInCu₂ and CeCu₆, respectively [10]. Below 1.5 GPa, on the other hand, the observed values deviate significantly from the linear relation, suggesting that the electronic state is very unstable near the quantum critical point at $P_{\rm C}$.

Fig. 3. The values of A as a function of volume change $\Delta V/V_0$ for CeRh₂Si₂, where A is the coefficient of T^2 of $\rho - T$ curve along a-axis.

5. Summary

From the measurements of the electrical resistivity and lattice parameters of CeRh₂Si₂ at high pressure, the volume dependence of Kondo temperature $T_{\rm K}$ was discussed, in which an anomaly is observed near the quantum critical point at $P_{\rm C} \sim 1.0$ GPa. The Grüneisen parameter of $T_{\rm K}$ is estimated to be 42 above 1.5 GPa. The magnitude is comparable with that of heavy fermion compounds.

This work was supported by a Grant in Aid for Scientific Research from the Japanese Ministry of Education, Science and Culture.

REFERENCES

- S. Kawarazaki, M. Sato, Y. Miyako, N. Chigusa, K. Watanabe, N. Metoki, Y. Koike, M. Nishi, *Phys. Rev.* B61, 4167 (2000).
- [2] F. Honda, N. Matsuda, T. Kagayama, G. Oomi, E.V. Sampathkumaran, Magn. Soc. Jpn. 23, 474 (1999).
- [3] R. Movshovich, T. Graf, D. Madrus, J.D. Tompson, J.L. Smith, Z. Fisk, Phys. Rev. B53, 8241 (1996).
- [4] M. Ohashi, F. Honda, T. Eto, S. Kaji, I. Minamitake, G.Oomi, S. Koiwai, Y. Uwatoko, *Physica B* **312**, 443 (2002).
- [5] F. Honda et al., Proceedings of 18th AIRAPT (2001, Beijing), to be published.
- [6] T. Kagayama, G. Oomi, J. Magn. Magn. Mater. 140, 1227 (1995).
- [7] M. Ohashi, G. Oomi, S. Koiwai, Y. Uwatoko, Trans. Magn. Soc. Jpn. 2, 90 (2002).
- [8] M. Ohashi, G. Oomi, S. Koiwai, Y. Uwatoko, J. Phys. Soc. Jpn., Suppl. 71, 362 (2002).
- [9] A. Yoshimori, H. Kasai, J. Magn. Magn. Mater. 475, 31 (1983).
- [10] T. Kagayama, G. Oomi, J. Phys. Soc. Jpn., Suppl. B65, 42 (1996).