PRESSURE EFFECT ON ANTIFERROMAGNETIC ORDERING IN UPb $_3$ *

Y. HAGA, E. YAMAMOTO, Y. ONUKI

Advance Science Research Center, Japan Atomic Energy Research Institute Tokai, Ibaraki 319-1195, Japan

M. Nakashima, D. Aoki, Y. Onuki

Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan

M. Hedo and Y. Uwatoko

Institute for Solid State Physics, University of Tokyo Kashiwa, Chiba 277-8581, Japan

(Received July 10, 2002)

We investigated the pressure dependence of the antiferromagnetic transition temperature T_N of UPb₃ by the electrical resistivity measurement. We found that at low pressures T_N increases with increasing pressure. It has a maximum value 38 K at 5 GPa, then decreases with increasing pressure. In addition we observed another resistive anomaly followed by a steep decrease in resistivity below T_N under pressure. The maximum pressure of 8 GPa in the present study was not enough to suppress the antiferromagnetic ordering. The critical pressure is estimated to be around 10 GPa.

PACS numbers: 75.30.Kz

1. Introduction

Uranium intermetallic compounds UX₃ (X = Si, Ge, Sn, Pb) form a variety of magnetic properties including Pauli paramagnetism in USi₃ and UGe₃, spin fluctuations in USn₃ and antiferromagnetism in UPb₃ [1], which is ordered below the Néel temperature 32 K with a large electronic specific heat $\gamma = 110 \text{ mJ/K}^2 \text{mol}$. This large γ value and the relatively small ordered moments (~ $1.7\mu_{\rm B}/\rm{U}$) [2,3] characterize this compound as a heavy fermion antiferromagnet.

^{*} Presented at the International Conference on Strongly Correlated Electron Systems, (SCES 02), Cracow, Poland, July 10-13, 2002.

In this paper, we report the electrical resistivity under high pressures up to 8 GPa to clarify the pressure dependence of the antiferromagnetic ordering in UPd_3 .

2. Experimental

Single crystals of UPb₃ were grown using the self-flux method. Pressures up to 8 GPa were produced by a cubic anvil with a 250 ton press. A mixture of fluorinert FC-70 and 77 was used as a pressure-transmitting medium in all the experiments. The electrical resistivity measurement was carried out using the dc four-probe method. Electrical contacts were made using gold wires and silver paste.

3. Results

Figure 1 shows the temperature dependence of the electrical resistivity of UPd_3 under pressures. The resistivity in the ambient pressure decreases with decreasing temperature, as shown in the inset of Fig. 1. A small hump is seen around 30 K, corresponding to the antiferromagnetic transition. The value agrees with our earlier results and indicates a negative curvature dependence

Fig. 1. Temperature dependence of the electrical resistivity under pressure in UPb₃.

of T^n (n < 1) at elevated temperature [5]. Below the Néel temperature T_N the resistivity follows approximately *T*-linear behavior. With increasing pressure, the transition temperature becomes higher and this hump becomes more prominent. T_N has a maximum at 5 GPa and then decreases with increasing pressure, as shown in the lower panel of Fig. 1. We found another resistive anomaly denoted as T^* at 4 GPa. Below T^* the resistivity decreases steeply with decreasing temperature, roughly following a T^2 dependence below 8 K. The origin of T^* is unclear.

Fig. 2. Pressure phase diagram in UPb_3 .

We show in Fig. 2 the pressure-temperature phase diagram obtained from present measurements. We found that at low pressures $T_{\rm N}$ increases with increasing pressure. It has a maximum value of 38 K at 5 GPa, then decreases rather rapidly with increasing pressure. In addition we observed another resistive anomaly followed by a steep decrease in resistivity below $T_{\rm N}$ under pressure. The maximum pressure 8 GPa in the present study was not enough to suppress the antiferromagnetic ordering. The critical pressure is estimated to be around 10 GPa. In the high pressure region above 5 GPa the low-temperature resistivity follows the AT^2 dependence, corresponding to the Fermi liquid nature. The coefficient A decreases with pressure as seen from Fig. 1, in contrast with the enhancement of A near the critical pressure observed in the heavy fermion antiferromagnet such as CeIn₃ [4].

4. Summary

We measured the electrical resistivity under high pressure up to 8 GPa and constructed a pressure phase diagram. $T_{\rm N}$ increases with increasing pressure, having a maximum at 5 GPa, then decreases with increasing pressure. We observed a new resistive anomaly above 4 GPa followed by a steep decrease in resistivity.

This work was financially supported by the Grant-in-Aid for Scientific Research COE (10CE2004) from the Ministry of Education, Science, Sports and Culture.

REFERENCES

- [1] D.D. Koelling, B.D. Dunlap, G.W. Crabtree, Phys. Rev. B31, 4966 (1985).
- [2] J. Leciejewicz, A. Misiuk, Phys. Status Solidi a 13, K79 (1972).
- [3] A. Murasik, P. Fischer, Z. Żołnierek, *Physica B* **102**, 188 (1980).
- [4] N.D. Mathur, F.M. Grosche, S.R. Julian, I.R. Walker, D.M. Freye, R.K.W. Haselwimmer, G.G. Lonzarich, *Nature* **394**, 39 (1998).
- [5] K. Sugiyama, T. Iizuka, Y. Tokiwa, K. Miyake, N. Watanabe, K. Kindo, T. Inoue, E. Yamamoto, Y. Haga, Y. Onuki, J. Phys. Soc. Jpn. 71, 325 (2002).