MAGNETIC AND TRANSPORT PROPERTIES OF R₂MIn₈ (R=La,Ce Pr; M=Rh, Ir)* **

S. Ohara, I. Sakamoto, T. Shomi, and G. Chen

Dept. of Electrical and Computer Engineering, Nagoya Institute of Technology Gokiso, Showa-ku, Nagoya 466-8555, Japan

(Received July 10, 2002)

We have grown single crystals of R_2MIn_8 compounds (R=La, Ce, Pr; M = Rh, Ir) and measured magnetic and transport properties of these crystals in the temperature range 1.8–300 K. We have found that Ce₂RhIn₈ is an antiferromagnet with a Néel temperature $T_N=2.8$ K and Ce₂IrIn₈ is in a paramagnetic state down to 1.8 K. The Ce-based compounds are dense Kondo materials with the Kondo temperatures of several tens of Kelvins and nearly a hundred Kelvin for Ce₂RhIn₈ and Ce₂IrIn₈, respectively. The Pr ions in the Pr-based compounds are in the singlet ground states.

PACS numbers: 75.30.Kz

1. Introduction

The compounds $Ce_m MIn_{3m+2}$ (m = 1, 2; M=Co, Rh, Ir) have attracted much interest since the discovery of a new heavy fermion superconductors for the CeMIn₅ compounds [1–3]. These materials crystallize in the quasi-twodimensional tetragonal Ho_mCoGa_{3m+2} structure, where *m* layers of HoGa₃ units stack sequentially along the *c*-axis with intervening layer of CoGa₂. The superconductivity observed in the CeMIn₅ compounds can be considered to be mediated by spin fluctuations that are present at a boundary of magnetic ordered phases, as in the case for other heavy Fermion superconductors [4]. For magnetically mediated superconductivity, quasi-twodimensional crystal structure is favorable to stabilize the Cooper pairing [2]. Thus a family of Ce₂MIn₈ compounds is expected to be in the superconducting state under ambient or high pressures [5–7]. To investigate a quasitwo-dimensionality of the electrical band structure for R₂MIn₈ compounds, we have measured the de Haas–van Alphen effect on La₂RhIn₈ and reported in [8].

^{*} Presented at the International Conference on Strongly Correlated Electron Systems, (SCES 02), Cracow, Poland, July 10-13, 2002.

^{**} Send any remarks to sakamoto@elcom.nitech.ac.jp

In this work we have grown the single crystals of the R_2MIn_8 compounds (R=La, Ce, Pr; M=Rh, Ir) and reported magnetic susceptibility, electrical resistivity and Hall effect measurements on these single crystals to clarify the ground state properties at ambient pressure.

2. Experimental

Single crystals of R_2MIn_8 were grown from an In flux starting from the initial compositions of R:M:In=2:1:10 by a similar method described in [8]. The purities were 3N for R and M elements and 5N for In. The crystal structure and phase purity were confirmed by an X-ray powder diffraction method. The lattice parameters a (c) of R_2RhIn_8 are obtained as 4.691 (12.30) Å for R=La; 4.664(12.25) Å for R=Ce; 4.658(12.19) Å for R=Prand those of R_2IrIn_8 4.703(12.36) Å for R=La; 4.701(12.20) Å for R=Ce; 4.652(12.17) Å for R=Pr. The lattice parameters for the La- and Ce-based compounds agree with [6,7,9]; those for Pr-based compounds are first reported and are consistent with the extrapolated values from the La- and Ce based compounds. The electrical resistivity and the Hall coefficient were measured by a usual four probes DC method. The magnetic susceptibility was measured by a SQUID magnetometer.

3. Result and discussion

We plot the temperature T dependence of the magnetic susceptibility (χ_c) for an applied field H along the *c*-axis and (χ_a) for the *a*-axis of the Ce₂MIn₈ and Pr₂MIn₈ compounds (M=Rh, Ir) in figures 1(a) and (b), respectively. The La₂MIn₈ compounds showed only a temperature independent diamagnetism between 1.8 K and 300 K.

The susceptibility for the Ce-based compounds was found to be described well by the Curie–Weiss law for both field directions at $T \geq 150K$. The effective Bohr magneton values P_{eff} are 2.6 for Ce₂RhIn₈ and 2.3 for Ce₂IrIn₈ in two different magnetic field directions. The latter values is reduced somewhat from the Hunt's rule value of 2.54 for Ce³⁺ ion. The paramagnetic Curie–Weiss temperatures Θ are -15 K and -85 K for $H \parallel c$ and $H \parallel a$, respectively. The Θ values of Ce₂IrIn₈ are nearly the same as those for Ce₂RhIn₈, indicating that crystal field effects act to the same extent on the magnetic properties for both Ce compounds.

At low temperatures, χ_a for Ce₂RhIn₈ increases with decreasing temperature, take a maximum at about 5K and then decrease, while χ_c continues to increase down to about 3 K and takes a kink. The inset presents variations of χ_c and χ_a for the lowest temperature part, in which both the kink in χ_c and a rapid decrease in χ_a appear at 2.8 K. The inset also contains the temperature dependence of the electrical resistivity, which shows a sharp change at 2.8 K. The behavior for χ and ρ shows that the Ce₂RhIn₈ compounds order antiferromagnetically at 2.8 K and take the magnetic moment in the *c*-plane. On the other hand, the χ curves for Ce₂IrIn₈ indicate that this compound is in a paramagnetic state down to 1.8 K. The behavior of χ for Ce₂RhIn₈ and Ce₂IrIn₈ is very similar to that for CeRhIn₅[1] and CeIrIn₅[3], respectively, except that CeRhIn₅ has a Néel temperature of 3.8K.

Fig. 1. Magnetic susceptibility for Ce_2MIn_8 (a) and Pr_2MIn_8 (b), where M= Rh and Ir. The inset in (a) presents temperature dependence of susceptibility and electrical resistivity at low temperatures.

Figure 1(b) shows that the temperature dependence of χ for Pr₂RhIn₈ and Pr₂IrIn₈ are similar for each field direction of H||a and c. The values of P_{eff} obtained from the Curie–Weiss law agree with the Hunt's rule value of 3.58 to within an experimental error. The Θ values are 15K for H||cand -36K for H||c for both compounds. As T decreases, each χ curve deviates downward from the Curie–Weiss law and tends to constant value nearly independent of the M elements for both field directions. This low temperature dependence of χ indicates that the ground state of Pr ion in Pr₂MIn₈ is in a singlet state and observed temperature independent χ is due to a Van Vleck contribution.

Figure 2 shows the temperature dependence of the electrical resistivity ρ with the current parallel to the *a* direction for the R₂MIn₈ compounds (R = La, Ce, Pr; M=Rh, Ir). The resistivity of Ce₂RhIn₈ decreases slowly with decreasing temperature down to 150 K, increases logarithmically, takes a maximum at 5 K and then decreases sharply. This feature clearly indicates that the CeRhIn₈ compound is a dense Kondo material of which Kondo temperature is several tens of Kelvins and a coherent state develops at about 5K.

As already shown in figure 1, this compound becomes an antiferromagnet at 2.8 K. The ρ curve for Ce₂IrIn₈ shows the similar temperature dependence. But it takes a maximum at about 50 K, indicating that the Kondo temperature is an order of 100 K. This explains the reason why the effective Bohr magneton for Ce₂IrIn₈ is somewhat smaller than the Ce³⁺ Hunt's value, because the magnetic moment should be reduced at high temperatures by the Kondo effect.

The resistivity for the Pr-based compounds shows rapid increase at $T \leq 100$ K, and varies linearly for $T \geq 100$ K. The low temperature variation of ρ should be due to spin disorder scattering because Pr ion in the tetragonal symmetry can take a singlet ground states in which magnetic moment is noticeably reduced in comparison with that of a free Pr^3 + ion.

A very peculiar behavior in ρ is observed in La₂RhIn₈; ρ increases rapidly up to 50 K and varies linearly for $T \geq 100$ K. For $T \leq 15$ K, ρ is proportional to T^3 . A similar temperature dependence of ρ is observed in La₂Rh₃S₅[10]. Qualitatively, this dependence agrees with the Wilson's s-d interband scattering model. But the problem remains unsolved from a quantitative view. No anomaly is observed in the resistivity of La₂IrIn₈.

Fig. 2. Temperature dependence of resistivity for R₂MIn₈(R=La,Ce,Pr; M=Rh,Ir).

Figure 3 shows the temperature dependence of the Hall coefficient measured with $H \parallel c$ for the La- and Pr-based compounds (a) and the Ce-based compounds (b). $R_{\rm H}$ of the La-based compounds show a very weak temperature dependence down to about 50 K and upturn at low temperatures. For the Pr-based compounds $R_{\rm H}$ is also temperature independent for 50 $K \leq T \leq 300$ K. The low temperature decrease in $R_{\rm H}$ for the Pr-based compounds should be an anomalous Hall effect owing to the large paramagnetism as shown in figure 1(b). $R_{\rm H}$ of both Ce-based compounds show weak temperature dependencies with decreasing temperature down to 100 K, increase gradually below 100 K, take a maximum at the temperature where the resistivity takes a maximum, and then decrease remarkably. These behavior agree with an universal temperature dependence of $R_{\rm H}$ for heavy electron materials [11].

Fig. 3. Temperature dependence of the Hall coefficient for La_2MIn_8 and Pr_2MIn_8 (a) and Ce_2MIn_8 (b) for M=Rh, Ir.

In summary, we have studied magnetic and transport properties of the compounds R_2MIn_8 (R=La, Ce, Pr; and M=Rh, Ir) in the temperature range 1.8–300 K. The Ce₂RhIn₈ and Ce₂IrIn₈ compounds are dense Kondo materials with the Kondo temperature of several tens of Kelvins and a hundred Kelvin, respectively. The former orders antiferromagnetically at 2.8 K. The Pr ions in the Pr-based compounds are in the singlet ground state. A peculiar temperature dependence appears in the resistivity of La₂RhIn₈, which remains unsolved.

We thank A. Baba and K. Yokoi or their helpful assistant throughout the present work. One of us (S.O.) was financially supported by Nitto Foundation.

S. Ohara et al.

REFERENCES

- H. Hegger, C. Petrovic, E.G. Moshopoulou, M.F. Hundley, J.L. Sarrao, Z. Fisk, J.D. Thompson, *Phys. Rev. Lett.* 84, 4986 (2000).
- [2] C. Petrovic, P.G. Pagliuso, M.F. Hundley, R. Movshovich, J.L. Sarrao, J.D. Thompson, Z. Fisk, P. Monthoux, J. Phys.: Condens. Matter 13, L337 (2001).
- [3] C. Petrovic, R. Movshovich, M. Jaime, P.G. Pagliuso, M.F. Hundley, J.L. Sarrao, Z. Fisk, J.D. Thompson, *Europhys. Lett.* 53, 354 (2001).
- [4] F. Steglich, J. Magn. Magn. Mater. 226–230, 1 (2001).
- [5] N.O. Moreno, M.F. Hundley, P.G. Pagliuso, R. Movshovich, M. Nicklas, J.D. Thompson, J.L. Sarrao, Z. Fisk, *Physica B* **312–313**, 241 (2002).
- [6] A.L. Cornelius, P.G. Pagliuso, M.F. Hundley, J.L. Sarrao, Phys. Rev. B64, 144411 (2001).
- [7] J.D. Thompson, R. Movshovich, Z. Fisk, F. Bouquet, N.J. Curro, R.A. Fisher, P.C. Hammel, H. Hegger, M.F. Hundley, M. Jaime, P.G. Pagliuso, C. Petrovic, N.E. Phillips, J.L. Sarrao, J. Magn. Magn. Mater. 226–230, 5 (2001).
- [8] S. Ohara, Y. Shomi, I. Sakamoto, J. Phys. Soc. Jpn. 71, Suppl. 258 (2002).
- [9] P.G. Pagliuso, J.D. Thompson, M.F. Hundley, J.L. Sarrao, Z. Fisk, *Phys. Rev.* B63, 54426 (2001).
- [10] S. Ramakrishnan, N.G. Patil, A.D. Chinchure, V.R. Marathe, *Phys. Rev.* B64, 64514(2001).
- [11] Y. Onuki, S.W. Yun, K. Satoh, H. Sugawara, H. Sato, Transport and Thermal Properties of f-Electron Systems, Plenum Press, New York and London 1993, p.103.