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Many cerium or ytterbium alloys and compounds are characterized by
heavy-fermion behavior due to the Kondo effect. In the case of a lat-
tice, there is a strong competition between the Kondo effect and magnetic
ordering. The magnetic order close to the quantum critical point(QCP)
is generally an antiferromagnetic one, but could be also a ferromagnetic
one or a spin-glass one in disordered systems. We review here the main
features of the Kondo lattice model within a mean-field treatment of the
Hamiltonian, including both the s—f exchange intra-site interaction and
the nearest neighbor inter-site f—f interaction. First, we study the non-
magnetic case and discuss the effects of conduction band filling and of the
inter-site exchange parameter on the occurrence of the Kondo effect and
short-range magnetic correlations. Second, we treat the spin glass-Kondo
competition by considering a random inter-site interaction and we study
the competition between Kondo, spin-glass and ferromagnetic phases. The
nature of the transition at the QCP is also discussed and comparison with
experimental data in heavy fermions systems is finally presented.
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1. Introduction

The properties of many cerium or ytterbium compounds are well under-
stood in the theoretical framework of the Kondo effect. The single-impurity
Kondo effect has been exactly solved [1]: at low temperatures, the system
has a “Fermi Liquid” behavior with a T2 behavior of the electrical resis-
tivity and very large values of both the electronic constant of the specific
heat and the magnetic susceptibility, which were at the origin of the name
“heavy fermions” given to these systems [2-4]. At high temperatures with
respect to the Kondo temperature, the magnetic contribution to the elec-
trical resistivity is generally passing through a maximum corresponding to
the overall crystal field splitting and decreasing then as Log T' [5]. More re-
cently, some cerium or uranium compounds have been observed to become
superconducting at low temperatures, either at normal pressure or under
high pressures [6-8].

On the other hand, in the case of a lattice, there exists a strong com-
petition between the Kondo effect and magnetic ordering, arising from the
RKKY (Ruderman-Kittel-Kasuya-Yosida) interaction between rare-earth
atoms at different lattice sites. This situation is well described by the
Doniach diagram, [9] which gives the variation of the Néel temperature
and of the Kondo temperature with increasing antiferromagnetic intrasite
exchange interaction Jx between localized spins and conduction-electron
spins. If one considers the exchange Hamiltonian between localized (S) and
conduction-electron (8) spins, given by

H=Jcs-S (1)

usual theories of the one-impurity Kondo effect and of the RKKY interac-
tion yield a Kondo temperature Tk, that is proportional to exp(—1/pJx),
and an ordering temperature (Néel or, in some cases, Curie), Txg, propor-
tional to pJZ, p being the density of states for the conduction band at the
Fermi energy. Thus, for small pJk values, Txg is larger than Tk and the
system tends to order magnetically, with often a reduction of the magnetic
moment due to the Kondo effect; on the contrary, for large pJx, Txko is larger
than Txo and the system tends to become non magnetic. The actual order-
ing temperature Ty, therefore, increases initially with increasing pJk, then
passes through a maximum and tends to zero at a critical value pJi corre-
sponding to a “quantum critical point” (QCP) in the Doniach diagram. Such
a behavior of Ty has been experimentally observed with increasing pressure
in many Kondo compounds, such as for example in CeAly (Ref. [10]) or
in CeRhySip [11]. Thus, we can conclude that the variation of the Néel
temperature predicted by the Doniach diagram is well observed experimen-
tally in many cerium compounds. We also know that the Néel temperature
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starts from zero at a given pressure, and increases rapidly with pressure
in YbCusSio (Ref. [12]) or in related ytterbium compounds, which can be
considered as another check of the Doniach diagram.

The one-impurity model predicts an exponential increase of the Kondo
temperature with pJk. This means that the Kondo temperature should in-
crease with increasing pressure in cerium compounds and with decreasing
pressure in ytterbium compounds, which agrees well with many observa-
tions. However, deviations seem to occur in some cerium compounds, such
as CeRhsSis (Ref. [11]) or CeRugGeg, [13,14] where the actual Kondo tem-
perature observed in a lattice can be significantly different from the one
derived for the single-impurity case. Thus, in order to account for such an
effect, we have studied in detail the Kondo-lattice model within a mean-
field approximation and with both intrasite Kondo exchange and intersite
antiferromagnetic exchange, treating successively the half-filled case (cor-
responding to a number of conduction electrons n = 1) [16] and then the
general case n < 1 [17-20] which gives a much better description of the
metallic cerium systems. This approach has been performed in the non-
magnetic regime and we will describe in the next section the main results
and particularly the most recent ones [20].

The second extensively studied question concerns the transition from a
magnetically ordered regime (which could be antiferromagnetic, ferromag-
netic, spin glass ...) to the non magnetic heavy fermion regime observed in
the Doniach diagram. The transition from an antiferromagnetic regime to a
Kondo one had been studied theoretically and gives a qualitative agreement
with the Doniach diagram [21]; but the obtained transition is a first-order
one without QCP. We will not discuss here this case which has been already
described in Ref. [21].

On the other hand, a spin glass state or an heterogenous disordered
alloy with magnetic clusters has been observed in several disordered cerium
alloys such as for example the Ce(Ni,Cu) alloys [22,23]. We have studied the
Spin Glass-Kondo transition within the same approximation [24] and we will
discuss in the third section the different features of this transition, including
the possibility of a ferromagnetic-Spin Glass-Kondo phase sequence [25] and
the existence of a Quantum Critical Point in the phase diagram.

2. Band filling effects in the Kondo-lattice

We have seen in the introduction that the Doniach diagram describes well
the behavior of the Neel temperature Tx versus pJg or increasing pressure
in cerium compounds and decreasing pressure in ytterbium compounds. On
the other hand, the one-impurity model predicts an exponential increase of
the Kondo temperature with pJx, which agrees with the observed variation
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of Tk in many cerium or ytterbium systems. However, deviations seem to
occur in some cerium compounds, such as CeRhySis, [11] CeRuaGes, [13,14]
or more recently [15] CeaRh3Ges, where the actual Kondo temperature ob-
served in a lattice can be significantly different from the single-impurity one.
Moreover, short-range magnetic correlations between neighboring cerium
atoms have been observed by neutron diffraction experiments in single crys-
tals of CeCug, [26] CelnCus, [27] CeRusSia, [26,28,29] or Ce;_,LazRusSis
(Refs. [28-31]) at low temperatures. The experimentally observed “correla-
tion temperature” Tiop, below which short-range magnetic correlations be-
tween neighboring cerium atoms occur, is clearly larger than the Kondo
temperature Tk : Teor~ 60-70 K and Tk~ 20 K in CeRusSis; [26, 28, 29|
Teor~ 10 K and Tk~ 5 K in CeCug, [26].

In order to account for these experimental results, we have introduced
a Kondo-lattice model with both an intrasite Kondo exchange interaction
and an intersite antiferromagnetic exchange interaction in the half-filled
case [16]. We employed a mean-field approximation and we have shown
that the enhancement of the intersite exchange interaction tends to decrease
the Kondo temperature Tk for the lattice with respect to the one-impurity
Kondo temperature Tko [16]. However, when n < 1, an “exhaustion” prob-
lem arises, which means that there are not enough conduction electrons to
screen all the localized spins and, as a consequence, the Kondo temperature
decreases [32,33].

The Kondo-lattice model has been firstly studied with only the intrasite
Kondo interaction [34-36]. In particular, Continentino et al., [35] using
scaling theory, have found a coherence temperature increasing above the
QCP. More recently, Nozieres, [33] and Burdin et al., [37,38] have studied
the exhaustion limit and have obtained a zero-temperature energy gain,
T*, related to the coherent Kondo effect. The effect of a small number of
conduction electrons has been also studied within both the Kondo-lattice
and the Anderson-lattice models [39-42].

The proposed Hamiltonian of the system is, therefore,

H:ZeEk’ni,g—f-JKZsi-Si—f-JHZSi'Sja (2)
ko i (i5)

where g is the energy of the conduction band, Jk is the Kondo coupling
between a localized spin S; and the spin s; of a conduction electron at the
same site, and Jy is the interaction between nearest-neighboring localized
spins. Assuming spin-1/2 localized moments, we represented them by a zero-
width f band with one electron per site, while the conduction band has width
2D and a constant density of states. We choose Jx and Jy to be positive,
implying that both local and intersite interactions are antiferromagnetic.
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We now write the spin operators in fermionic representation, remember-
ing that we have a constraint of single-occupancy of the f level at all sites,
n{ = 1. In order to discuss the Kondo effect and magnetic correlations we
define the correlators

No = elotio s Tijo = [l fjo (3)
where ), describes the intrasite Kondo correlation, and 1";].0 represents an
intersite correlation between two neighboring atoms. With this notation we
perform an extended mean-field approximation, introduced by Coleman and
Andrei, [43] and presented in full detail in Ref. [16]. Considering transla-
tional invariance, and taking into account that there is no breakdown of spin
symmetry, i.e., no magnetic states, we can write \j, = (\;;) for all sites,
and I' = ([}j,) for nearest-neighboring sites and zero otherwise. In this
way we obtain a mean-field Hamiltonian that takes the form of a hybridized
two-band system:

- S+ Y (an;_1>
- JKAZ ( ngZU+fZU za) +EK
= Jul’ Z ( f]g’ +f fio‘) +EHa (4)

with ~ ~
Ex =2NJg)?, Ey=zNJyl?, (5)

N being the total number of lattice sites.
After performing this approximation, one deals with a one-electron Hamil-

tonian representing two hybridized bands: the conduction band of width 2D
and the f band of effective band width 2B D, with B given by

B = —zJul'/D, (6)

z being the number of nearest neighbors of a site, while the magnitude of the
hybridization gap is directly related to A?. This quantity is also a measure of
the Kondo effect, as the Kondo correlation function (s; - S;) is proportional
to A2,

Leaving aside the constant terms, the Hamiltonian (4) is easily diago-
nalized, and the resulting energies of the two new hybrid bands are

1

i\/[ek(l—B)—EO]2+4Jf{>\2 : (7)
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The mean-field parameters A and I' are obtained by self-consistently
solving Eqs. (3) or, equivalently, by minimizing the total internal energy at
zero temperature, or the total free energy F' at finite temperatures [17]. As
usual, [16] the reference energy Fy of the f band and the chemical potential p
have to be determined self-consistently in order to keep the average numbers
of f and conduction electrons respectively equal to 1 and n.

We will now present the main results obtained for the general case n < 1.
Preliminary results had been previously [19] presented and a full paper will
be published soon [20] and detailed calculations at both 7' = 0 and finite
temperatures can be found there.

The two hybridized bands E,f given by Eq. (7) exhibit a structure that
depends on the two factors A = J2A? and B, defined by (6), and especially
on the sign of B. In the case of n = 1, previously considered, [16] for small
B values such that |B|D? < A there is a gap, the lower band is completely
full and the upper band empty at T' = 0. For n < 1, the Fermi level cuts the
lower band, and the upper band is still empty at 7" = 0, which corresponds,
therefore, to a real metallic situation.
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Fig. 1. Phase diagram plotted as the critical band filling n. versus Ju. The curves
are drawn from Eq. (8) for Jx/D = 0.4 (dotted line) and 1.0 (solid line). The
symbols correspond to the results obtained by minimizing the energy. In each case,
the Kondo regime is stable above the line, and the magnetic phase below.

The shape of the lower band E, and the solution of the case n < 1
depend critically and self-consistently on the values of the different param-
eters Jk, Ju and n. Thus, the shape of E} can change under a variation
of the parameters, and this peculiar situation makes the problem difficult
to solve [20]. We present here just the phase diagram obtained at T' = 0
for Jx/D = 0.4 and 1.0 (figure 1), where the Kondo phase is characterized
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by A#0. In the latter case, for small Jy, the Kondo phase is stable for all

values of the band filling, while for large Jg the Kondo phase is stable only
for n > n. given by [20]:

ne=1-(1-B)

u— B’ ®)
with:
u = exp[—2D(1 - B)/Jx] . 9)

Figure 1 also shows that Eq. (8) is very close to the numerical result
in this region. The crossover between the two regimes was obtained nu-
merically. In the crossover region we found a discontinuous transition from
A#£0 to A = 0. These results have to be taken with caution, however, since
the value of Jx/D = 1 is unphysically high, and also the Kondo lattice is
expected to show ferromagnetic behavior in the low-n limit, [36] while our
analysis is restricted to antiferromagnetic intersite exchange.

Thus, our calculation shows clearly that small n and large Jy values tend
to suppress the Kondo effect, yielding a “magnetic” phase with A = 0 and
large short-range magnetic correlations. In fact, in this region a long-range
magnetic order should certainly be stabilized, but this was not taken into
account in this approach. In contrast, both A and I" are different from zero
in the Kondo phase.

Then, we look at the Kondo-lattice problem at finite temperatures, for
the general case of n < 1. The values of A and I' are determined by self-
consistently solving Egs. (3) or by minimizing the free energy [20]. In our
mean-field approximation, Tk and Tco; are defined as the temperatures at
which respectively A and I' become zero. Results obtained at finite tem-
peratures in the case n < 1, for different sets of parameters Jx, Jp and
n are presented in detail elsewhere [20] and we will summarize them here.
Figure 2 gives the curves of the Kondo temperature Tk versus Jg for a given
Jk value and several values of the conduction band-filling n. We see clearly
that Tk first increases, and then decreases with Jy for fixed m, dropping
abruptly to zero at some critical value of Ji. On the other hand, for a given
Ju, Tk decreases rapidly as n departs from half filling. We have also plotted
Teor which is linear with Jyr, independently of the considered value of n [16].
Figure 3 gives Tk as a function of Jk for Jg/D = 0.04 and representative
values of n. Here again we include the correlation temperature T¢or, which
signals the onset of short-range magnetic correlations when the tempera-
ture is lowered at fixed Jx. For comparison, we plot the single-impurity
Kondo temperature Tk, which varies exponentially with Jk, and is weakly
dependent on n near half-filling.
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Fig.2. Plot of the Kondo temperature Tk versus Jy for Jx/D = 0.4 and several
values of n. We also show the correlation temperature T¢,,.
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Fig. 3. Plot of the Kondo temperature Tk as a function of Jk for Jy/D = 0.04 and

representative values of n. We also show the correlation temperature T¢,,, and the
single-impurity Kondo temperature Tky.

Figures 2 and 3 show some interesting results of our model. First, one
can see the occurrence of short-range magnetic correlations above the Kondo
temperature, in good agreement with experiment. Also, in the region of co-
existence between Kondo effect and magnetic correlations, the Kondo tem-
perature, although enhanced with respect to the single-impurity case, shows
a smoother variation with Jk. The second noticeable feature of Figs. 2 and
3 is the almost catastrophic suppression of the Kondo effect with increasing
intersite coupling, and the enhancement of this behavior as the band-filling
factor is reduced. However, we remark that a small value of the intersite
interaction Jy reinforces the Kondo effect by increasing the Kondo temper-
ature.
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So, we have established here for n < 1, as in the previous work [16] for
n = 1, that the dependence of the Kondo temperature with the coupling
constant Jx for the lattice can be significantly different from the single-
impurity case. This result can account for the pressure dependence of Tk
observed in CeRhySig, [11] CeRuaGes, [13,14] and CeaRh3Ges [15]. On the
other hand, depending on the relative values of Jy and Jk, as well as on
the band-filling, the lattice Kondo temperature can also follow the single-
impurity one, as observed in many cerium and all ytterbium compounds.
Further experiments are needed to better understand the conditions yielding
a Kondo temperature for the lattice much different than the single-impurity
one. This issue has also been addressed by different theoretical approaches to
both the Kondo lattice and the Periodic Anderson Model [35,37,39-41,44].

Another interesting result concerns the derivation of a correlation tem-
perature below which short-range magnetic correlations appear, in good
agreement with neutron scattering experiments in cerium compounds. These
correlations can coexist with the Kondo effect and eventually dominate, and
suppress the Kondo regime for sufficiently high values of the intersite ex-
change interaction or sufficiently low band fillings.

Our present calculation addresses again the difficult issue of the nature
of the ground state and screening in the Kondo-lattice problem. We have
shown here that, as the number of conduction electrons is reduced, exhaus-
tion may be compensated by formation of intersite singlets of localized spins.
Finally, it is interesting to notice that taking into account lattice effects can
be important for describing the properties of cerium or other anomalous
rare-earth compounds at low temperatures, as shown, for example, in pho-
toemission experiments [41,42,45].

3. The competition between spin glass and Kondo effect

The second subject we would like to describe here concerns the compe-
tition between the Kondo effect and a spin glass order. It is well known
that there is a strong competition between the Kondo effect and a magnetic
order (mostly antiferromagnetic and in some cases ferromagnetic) shown in
the Doniach diagram, as presented in the introduction. It is also established
that, in the vicinity of the QCP, several different “Non Fermi Liquid” (NFL)
behaviors have been observed in addition to the well-known “Fermi Liquid”
behavior.

But, in the case of disordered cerium alloys, the disorder can yield a
Spin Glass (SG) phase in addition to the NFL behavior at low temperatures
around the QCP. The magnetic phase diagram of CeNij_,Cu, has been ex-
tensively studied [22,23]. CeCu is antiferromagnetic below 3.5 K and CeNi
is a non magnetic compound with an intermediate valence. The low temper-
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ature antiferromagnetic phase changes, around z = 0.8, to a ferromagnetic
one which finally disappears around x = 0.2. At higher temperatures, a
Spin Glass state is deduced from all measured bulk properties, such as the
AC susceptibility; for example, for z = 0.6, the SG state exists between 2 K
and the ferromagnetic Curie temperature T, = 1.1K. At z = 0.2, the SG
phase exists below 6 K and for z < 0.2 a Kondo behavior has been proposed;
finally CeNi is an intermediate valence compound. Thus, in the CeNi;_,Cu,
system at very low temperatures, for z < 0.7, the phase sequence FM-SG-
Kondo has been observed with decreasing x and in the range 0.7-0.2, the
sequence FM-SG is obtained with increasing temperature.

An unusual interplay between Kondo effect and spin-glass behavior has
been recently observed in several other disordered cerium systems such as
CeCoGes_Siy, [46], CeaAuy—_;Co,Sis, [47] or CeaPd;_,Co,Si3 alloys [48].
In particular, an antiferromagnetic phase exists at low temperatures be-
tween the spin glass phase and the Kondo one just below the QCP and the
sequence of SG-AF-Kondo phases is, therefore, obtained with increasing x
in CegAuy_,;Co,Sis alloys [47]. NFL and spin glass behaviors have been
also observed in disordered uranium alloys [49], as for example a sequence
of AF-NFL-SG phases in UCus_,Pd, alloys [50] or the opposite sequence
AF-SG-NFL in U;_,La,PdsAls alloys [51].

We would like to present here some recent theoretical works that describe
the competition between the spin glass and the Kondo phases [24] and more
recently the SG-Kondo-Ferromagnetic phase transitions [25]. The model is
based on the previously described Kondo lattice model with an intrasite s—f
exchange interaction and an intersite long range random interaction that
couples the localized spins, like in the Sherrington—Kirkpatrick spin glass
model [52]. The use of the static approximation and the replica symmetry
ansatz has made possible to solve the problem at a mean field level. This
fermionic problem is formulated by representing the spin operators as bi-
linear combinations of Grassmann fields and the partition function is found
through the functional integral formalism [53]. We describe here two cases,
by taking the mean random interaction Jy firstly equal to zero in order to de-
scribe the SG-Kondo transition and then different from zero in order to pro-
duce a ferromagnetic ordering and to describe the SG-Kondo-Ferromagnetic
phase sequence.

To describe the Kondo effect in a mean-field-like theory it is sufficient to
keep only the spin-flip terms in the exchange Hamiltonian, while the spin
glass interaction is represented by a quantum Ising Hamiltonian where the
only interaction is between the z-components of the localized spins [25, 53,
54].
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So, the model used here to study a spin glass ordering in a Kondo lattice
compound is described by the general Hamiltonian

H — peNe —quf = Ho= Zeknkg—i-eo anfa

k,o 1,0
I S [Shs + S5st1 =Y 7SS, (10)
i i,j

where Jg > 0 and the sum runs over N lattice sites. In the present case
the random intersite interaction J;; in the Hamiltonian is an independent
random variable with a gaussian distribution

(Joime S SN2 N N
P(J;;) =e (Jij=<Jij>) 16J2H—167TJ2' (11)

In the first paper [24], we have taken an average < J;; >= 0 and more re-
cently in order to describe the sequence of SG-Kondo-Ferromagnetic phases
[25], we have taken a non-zero value (J;;) = 2.Jy/N.

s E
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Fig. 4. Phase diagram in the T—Jx plane as a function of T'/.J and Jk/J for fixed

J = 0.05D, where D is the conduction bandwidth. The dotted line represents the
“pure” Kondo temperature Tk.

Numerical solutions for the first studied case [24] are presented in Fig. 4
which gives a magnetic phase diagram in the Jx vs. T plane. At high
temperatures, the “normal” phase is paramagnetic with vanishing Kondo
and spin glass order parameters, i.e. A = ¢ = 0. When temperature is
lowered, for not too large values of the ratio Jx /.J, a second-order transition
line is found at T' = Tsq to a spin glass phase with ¢ > 0 and A = 0. Finally,
for large values of the ratio Jx /.J, we recover the “Kondo” phase with a non-
zero A value and ¢ = 0 : the transition line from the paramagnetic phase to
the Kondo phase for temperatures larger than Tsq is a second-order one and
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occurs at a temperature very close to the one-impurity Kondo temperature
Tko- On the other hand, the transition line from the spin-glass phase to
the Kondo phase, for temperatures smaller than Tgqg, is a first-order one
and ends at Ji at T = 0; the separation between the spin-glass and the
Kondo phases departs there completely from the behavior of Tkg. We can
also remark that we get here only “pure” Kondo or SG phases and never a
mixed SG-Kondo phase with the two order parameters different from zero;
this result is probably connected to the approximations used here to treat
the starting Hamiltonian.

The diagram shown in figure 4 can account partly for the magnetic phase
diagram observed above the Curie temperature for the CeNij_,Cu, alloys
[23] for small z values when there is a transition from a spin-glass state
to a Kondo state. However, the experimental phase diagrams are generally
more complicated and present an antiferromagnetic or a ferromagnetic phase
in addition to the Kondo and SG phases. Thus, we have extended the
previous model, in order to include the proper elements that produce also a
ferromagnetic ordering by taking the mean random interaction Jy different
from zero. Therefore, the magnetization m can be introduced as a new
order parameter, in addition to the two other order parameters and solved
coupled to them. As previously done, the static approximation and replica
symmetry ansatz lead to a mean field solution of the problem. The resulting
coupled saddle point equations for the order parameters produce solutions
which give a Kondo state, a magnetic ordering like ferromagnetism, a spin
glass phase and a mixed (ferromagnetic-spin glass) one.

Detailed calculations and results can be found in the full paper [25] and
we will present here briefly the results concerning the occurrence of the
ferromagnetic phase in addition to the spin glass and Kondo phases which
have been described in Ref. [24]. Fig. 5 shows the evolution of the phase
diagram with increasing values of Jy/J. For small values of Jy/.J, the phase
diagram shown in figure 5(a) is essentially the same as that shown in Fig. 4
for Jy = 0 [24], with a paramagnetic, a spin glass and a Kondo phase.
When the value of Jy increases above a critical value, the phase diagram
starts to show the presence of a ferromagnetic phase which has a transition
temperature T¢(Jp) increasing with Jy. Thus, in the two cases shown in
figures 5(b) and (c), for decreasing temperature, first a transition from a
paramagnetic to a ferromagnetic phase appears followed by a transition from
the ferromagnetic to a “mixed” phase, where both ¢ and m order parameters
are different from zero. For a sufficiently large value of Jy/.J, the spin glass
phase finally disappears and that region of the phase diagram is almost
occupied only by the ferromagnetic phase, as shown in Fig. 5(d). For larger
values of Jk/J, there remains only the Kondo phase and the transition line
to the Kondo state J§ (") does not depend on J.
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Fig.5. Cut in the phase transition space transversal to the Jy/J axis for several
values of Jy, J = 0.5 and D = 10. The solid line shows the transition from
the Kondo phase to the other ones. The dashed line shows the transition from the
paramagnetic phase to the ferromagnetic and the spin glass phases. One can notice
that, as Jy increases, a ferromagnetic and a mixed phase start to appear and, for
some value of Jy, the spin glass phase finally disappears.

One can try to address the experimental phase diagram found in Ref. [23]
for the alloys CeNi;_,Cu,, but theoretically if we vary only Jg with z,
one obtains a ferromagnetic phase at a higher temperature than the spin
glass one, in contrast to experiment. However, the equivalence between the
experimental phase diagram and ours is not so straightforward since the Ni
content would have to be associated to both Jy and Jk. This could be an
indication that the mechanism for the formation of magnetic phases like spin
glass and ferromagnetism in CeNi;_,Cu, is far more complicated than the
modelling by a random inter-site interaction can address. Although recent
investigations on the ferromagnetic transverse Ising spin glass suggest also
the existence of a spin glass transition below the Curie temperature [55], it
is plausible that this be characteristic of the Sherrington—Kirkpatrick model
with a high degree of frustration. Less frustrated spin glass models [56] may
sustain spin glass order above the Curie temperature and they can be more
indicated for the study of the CeNi;_,Cu, compounds.

To conclude on these two theoretical papers [24,25], we have firstly solved
a Kondo lattice model showing the existence of a SG and a Kondo state de-
pending on Jk/J and then we have examined a wider and more complex
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region of the phase diagram including ferromagnetism. From this approach
we have been able to generate a quite non-trivial phase diagram with a
spin glass phase, ferromagnetism, a Kondo state and a mixed phase (spin
glass and ferromagnetism). Nevertheless, the calculated spin glass freezing
temperature is lower than the Curie temperature in contrast with the ex-
perimental findings [23]. The present approach might also be extended to
consider an antiferromagnetic ordering, in order to explain the sequence of
SG-AF-Kondo phase transitions observed in for example CesAu;_;Co,Si3
alloys [47].

However, the two models presented here yield an abrupt first-order tran-
sition between the spin glass state (or the ferromagnetic phase) and the
Kondo state and they do not give any Quantum Critical Point at the bound-
ary between the two regimes, in contrast with some experimental results.
This point is directly connected with the fact that we have taken only a
quantum Ising Hamiltonian for the spin glass term, instead of considering
the full Heisenberg Hamiltonian [57]. But, in order to avoid the intricacies
of the random Heisenberg model [57], we have recently developed a new
theoretical calculation [58], where the Heisenberg-like coupling is replaced
by a quantum Ising spin glass transverse field, which consists in both an
effective random interaction among the z-components, as we have consid-
ered in [24] and an uniform transverse field in the z-direction, in order to
simulate the spin-flip part; this model is the simplest way to describe the
quantum mechanism of spin flipping [59].

The infinite range quantum Ising spin glass in a transverse field is the
simplest model that presents a quantum critical point. It has been widely
studied by using the Trotter—Suzuki technique [60]|, and more recently by
the use of two fermionic representations of the spin operators [61] that are
more suitable to our purposes.

Thus the new hamiltonian used in Ref. [58] is given by :

H="Ho—2GY S, (12)
[

where H is the preceding Hamiltonian given by Eq. (10).

As the transverse field G mimics the spin flip part of the Heisenberg
coupling among localized spins that originates from the RKKY interaction,
we use the previously proposed form [16] for G, i.e. G = an{ where Jx is the
antiferromagnetic Kondo coupling. Within this assumption, the calculation
gives a phase diagram of T versus Jx similar to that shown in figure 4 at low
temperatures, with a spin glass phase for low Jgk values and a Kondo phase
for high Jx values, but the transition is clearly different. The introduction
of G induces a decrease, with increasing Jk, of the second-order transition
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line Tgq that forms the spin glass boundary and tends to zero at a QCP.
Also, the boundary of the Kondo state is a second-order transition line that
decreases with decreasing Jx and drops to zero at a critical Jx value. The
lines do not intersect, then there is not a direct transition between the spin
glass and Kondo phases. A full paper [58] will be published soon on this
improved model for the SG-Kondo competition.

4. Concluding remarks

Thus, we have presented here two interesting problems, the short range
magnetic order-Kondo competition and the spin glass-Kondo competition,
that we have both treated in a mean-field approximation. In the Kondo-
lattice case, we have made a full description of the Kondo problem as a
function of the intersite exchange interaction and of the conduction band
filling and we have also described the short-range magnetic correlation ef-
fects which can occur in cerium compounds [20]. An important result of our
model is that the Kondo temperature for the lattice could be very differ-
ent from the corresponding one for the single impurity. Such an effect has
been observed in a few cerium compounds such as CeRhySis, CeRuyGes or
CeaRh3Ges, but the single-impurity Kondo model seems to be in fact quite
robust in other cerium compounds and in ytterbium compounds. Further
experimental work is necessary to better understand the role of the different
exchange interactions and of the band filling in the Kondo problem for a
lattice.

On the other hand, our description of the Spin Glass-Kondo competi-
tion is able to account for some peculiar phase diagrams observed in sev-
eral cerium compounds. However, we have not found the existence of a
“mixed” SG-Kondo phase in cerium disordered alloys, as well as previously
an antiferromagnetic-Kondo “mixed” phase [18|. This shortfall of the approx-
imation is probably coming from the fact that mean-field schemes generally
induce first-order transitions, so maybe one ought to consider the effect of
fluctuations in order to get a more accurate description of the QCP. On the
other hand, further experimental work is necessary, in order to better un-
derstand the interplay between spin glass, Non Fermi Liquid behavior and
regular Kondo phases in cerium or uranium compounds.
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