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The correlated Kondo lattice model simultaneously describes the inter-
action of itinerant conduction electrons with localized magnetic moments
as well as with other electrons in the conduction band. As a limiting case
a two-site cluster with S = 1/2 is studied. By analytical calculations we
were able to find the exact expression for the energy poles and spectral
weights of the one-particle Green’s function and all contributing correla-
tion functions.

PACS numbers: 71.10.Fd, 75.20.Hr, 75.30.Mb

1. Motivation

The recent success in growing diluted magnetic semiconductors (DMS)
which show remarkably high Curie temperatures has led to a renewed inter-
est in models originally proposed by Zener [1]. As pointed out by several
authors, a strong but finite intra-atomic exchange interaction J between the
doped magnetic ions and the itinerant conduction carriers dominates the
magnetic behavior of these materials |2, 3|. Therefore, a Hamiltonian like
the correlated Kondo lattice model (CKLM)

H = ZZT chja"‘UZ'fliT'fm—JZUi'Sia (1)

where addltlonally a Hubbard-like Coulomb interaction U within the single
conduction band is incorporated, has to be studied to understand and predict
magnetic properties of DMS.

There is the possibility to reduce (1) to an RKKY-like interaction. How-
ever, since J is rather large in the considered class of materials (a typical
value is J = —0.3 €V, corresponding to SNy ~ —1.2 €V) this perturbational
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approach is mostly insufficient [4]. On the other hand the CKLM is not
exactly soluble and there is the necessity to perform convincing approxi-
mations. If these are not perturbational in nature, as e.g. for the various
kinds of decoupling techniques [5], then the difficulty of a clear justification
emerges. Limiting cases are a powerful tool to weaken this shortcoming.
Their exact solution offers the possibility to test approximations.

When intending a description of DMS another point needs to be con-
sidered. The usage of a model like (1) implies the assumption of homoge-
neously distributed dopants. However, Monte Carlo simulations of Timm
et al. [6] demonstrated that this assumption is rather questionable. On the
contrary their calculations show that the defects in GaAs, both the Mn
dopants (z = 5%) and the anti-site As atoms (p = 0.3 holes per Mn), form
clusters, an effect which noticeable influences magnetic properties.

With this contribution we provide the analytical solution of a two-site
cluster described by the Hamiltonian

2

_ . U J )

H = Z Z {Tonoca + 5”&0”0470 - 5 (ZUSénaa + Sgc:;—acaa) }
a=1o=1,

+ T Z (C];UC?U +Cgacla) ’ (2)

o="1{

where ST = §+,8¢ = § and 2zt = +1,zp = —1. On the one hand this
cluster is an exactly soluble limiting case of the CKLM (1) and, therefore,
allows the test of approximations in the above mentioned sense. On the
other hand it may serve together with the atomic-limit result (special case

T = 0) as the major component of a disorder-driven treatment of the CKLM.

2. Calculation and results

Despite the finiteness of the cluster and the simplicity of the Hamilto-
nian (2) an exact solution of the one-particle Green’s function ((c;,; c;[ NE
is rather tricky. Limiting ourselves to S = 1/2, we are probably at the edge
of what can be done analytically. Just from considering the Hilbert-space
dimensions one can easily determine the number of imaginable one-electron
excitation processes to be 896. Neglecting all symmetries the number of
Green’s function contributing to a closed system of equations of motion is
with 1040 even slightly higher, a minor drawback of this approach.

All these equations of motion can be combined in a single large equation,
consisting of a coefficient matrix formed by the model parameters T', Ty, U, J,
a column-vector of all participating Green’s functions and a column-vector
of all inhomogeneities. An analytical solution requires the simplification of
this matrix to blocks of a manageable size. This can only be achieved by
a clever combination of corresponding Green’s functions.
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First of all, symmetries are a crucial tool to find such correspondents.
The usage of the symmetry with respect to the two cluster sites splits the
problem into two parts which only differ in the sign of T'. Also particle-hole
symmetry reduces the effort by a factor of 2. Secondly, special sub-cases
give a deeper insight into helpful combinations. If the conduction band is
assumed to be empty, then the Green’s functions (despite of the operator
for the excess electron) consist of spin operators only, and their treatment
can be studied. After solving this situation the problem of arbitrary band
occupation can be divided into 4 density classes. A two-site Hubbard model
provides the rules for the correct combination of Green’s functions with
respect to the electron Fermi operators only.

With such a procedure the reduction of the large coefficient matrix to
blocks of the size 3 x 3 is possible. There are four types of such blocks. Their
determinantal polynomial is, respectively,

0 = (Eo—T +2a)(E? — 4a® — 24T — T?), (3)
= (B +U)(Er —20)(Er + 2a) (4)
0 = B3 — E2U — 4By <a2 v fQ) + 44U, (5)

0 = B3, —E%(4a+ U)—4Em (3a2 + TQ—aU) +4a (4T2+3aU) , (6)

with ¢ = %J . The subindex at the energies E numbers the equations. The
factorization of Eqs. (5) and (6) requires the use of Cardano’s formulas.

The simplification of the mentioned matrix equation allows its inversion,
leading to an analytical result for all contributing Green’s functions. Their
principle structure is

102
o,
G =) 5 g, +i0T ™
k=1

A common feature is the set of 102 energy poles, 27 of which are given by
E,=Ty— 1] — Ey — Eyj,  forx =111, ij=123 (8)

where E‘mi(on)is the ith (jth)root of the corresponding cubic Egs. (3)-(6).
Other 27 energy poles can be obtained by replacing T for —T (site symme-
try). Since with Ey = Ty + f(T,J,U) also By = U + Ty — f(=T,J,U) is
an energy pole (particle-hole symmetry) the number of poles doubles again.
Poles that stem from Ey, =Ty — J % +U — E’Oj are double degenerate.

The total number of 102 excitation energies expresses the richness of the
limiting case. Compared to the 8 poles of the Hubbard cluster the additional
exchange interaction J leads to a much finer structure of the spectrum.
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The spectral weights ay, of the Green’s functions are determined by the
correlation functions due to inhomogeneities of the equations of motion.
Almost all of them can be calculated by applying the spectral theorem to
the obtained set of Green’s functions. The remaining set of expectation
values is used to couple the cluster to a larger lattice. This procedure gives
again a set of equations, now for the correlation functions. The system
has been solved, too. Even so the analytical expressions are too lengthy
to be given here [7], Fig. 1 provides an impression of the spectral-weight
distribution for a representative set of parameters.
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Fig. 1. All 102 one-particle excitations of the two-site cluster. Top left: dependence
of energy poles of ((c;,icl,)), on the parameter 7. Others: distribution of the
spectral weight for three representative values of T, calculated for T = 500 K.

The sum of all mentioned ingredients makes the cluster solution valuable
for an understanding of the CKLM, its applications and approximations.
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