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EXACT SOLUTION OF THE TWO-SITE CORRELATEDKONDO LATTICE MODEL�T. Hi
kel, J. Röseler and W. NoltingLehrstuhl für Festkörpertheorie, Institut für Physik, Humboldt-Universität10115 Berlin, Germany(Re
eived July 10, 2002)The 
orrelated Kondo latti
e model simultaneously des
ribes the inter-a
tion of itinerant 
ondu
tion ele
trons with lo
alized magneti
 momentsas well as with other ele
trons in the 
ondu
tion band. As a limiting 
asea two-site 
luster with S = 1=2 is studied. By analyti
al 
al
ulations wewere able to �nd the exa
t expression for the energy poles and spe
tralweights of the one-parti
le Green's fun
tion and all 
ontributing 
orrela-tion fun
tions.PACS numbers: 71.10.Fd, 75.20.Hr, 75.30.Mb1. MotivationThe re
ent su

ess in growing diluted magneti
 semi
ondu
tors (DMS)whi
h show remarkably high Curie temperatures has led to a renewed inter-est in models originally proposed by Zener [1℄. As pointed out by severalauthors, a strong but �nite intra-atomi
 ex
hange intera
tion J between thedoped magneti
 ions and the itinerant 
ondu
tion 
arriers dominates themagneti
 behavior of these materials [2, 3℄. Therefore, a Hamiltonian likethe 
orrelated Kondo latti
e model (CKLM)H =Xi;j X� Tij
yi�
j� + UXi n̂i"n̂i# � JXi �i � Si ; (1)where additionally a Hubbard-like Coulomb intera
tion U within the single
ondu
tion band is in
orporated, has to be studied to understand and predi
tmagneti
 properties of DMS.There is the possibility to redu
e (1) to an RKKY-like intera
tion. How-ever, sin
e J is rather large in the 
onsidered 
lass of materials (a typi
alvalue is J = �0:3 eV, 
orresponding to �N0 � �1:2 eV) this perturbational� Presented at the International Conferen
e on Strongly Correlated Ele
tron Systems,(SCES02), Cra
ow, Poland, July 10�13, 2002.(1291)
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kel, J. Röseler, W. Noltingapproa
h is mostly insu�
ient [4℄. On the other hand the CKLM is notexa
tly soluble and there is the ne
essity to perform 
onvin
ing approxi-mations. If these are not perturbational in nature, as e.g. for the variouskinds of de
oupling te
hniques [5℄, then the di�
ulty of a 
lear justi�
ationemerges. Limiting 
ases are a powerful tool to weaken this short
oming.Their exa
t solution o�ers the possibility to test approximations.When intending a des
ription of DMS another point needs to be 
on-sidered. The usage of a model like (1) implies the assumption of homoge-neously distributed dopants. However, Monte Carlo simulations of Timmet al. [6℄ demonstrated that this assumption is rather questionable. On the
ontrary their 
al
ulations show that the defe
ts in GaAs, both the Mndopants (x = 5%) and the anti-site As atoms (p = 0:3 holes per Mn), form
lusters, an e�e
t whi
h noti
eable in�uen
es magneti
 properties.With this 
ontribution we provide the analyti
al solution of a two-site
luster des
ribed by the Hamiltonian�H = 2X�=1 X�=";#(T0n̂�� + U2 n̂��n̂��� � J2 �z�Sz�n̂�� + S��
y���
���)+ ~T X�=";#�
y1�
2� + 
y2�
1�� ; (2)where S" � S+; S# � S� and z" � +1; z# � �1. On the one hand this
luster is an exa
tly soluble limiting 
ase of the CKLM (1) and, therefore,allows the test of approximations in the above mentioned sense. On theother hand it may serve together with the atomi
-limit result (spe
ial 
ase~T = 0) as the major 
omponent of a disorder-driven treatment of the CKLM.2. Cal
ulation and resultsDespite the �niteness of the 
luster and the simpli
ity of the Hamilto-nian (2) an exa
t solution of the one-parti
le Green's fun
tion hh
i�; 
yj�iiEis rather tri
ky. Limiting ourselves to S = 1=2, we are probably at the edgeof what 
an be done analyti
ally. Just from 
onsidering the Hilbert-spa
edimensions one 
an easily determine the number of imaginable one-ele
tronex
itation pro
esses to be 896. Negle
ting all symmetries the number ofGreen's fun
tion 
ontributing to a 
losed system of equations of motion iswith 1040 even slightly higher, a minor drawba
k of this approa
h.All these equations of motion 
an be 
ombined in a single large equation,
onsisting of a 
oe�
ient matrix formed by the model parameters ~T ; T0; U; J ,a 
olumn-ve
tor of all parti
ipating Green's fun
tions and a 
olumn-ve
torof all inhomogeneities. An analyti
al solution requires the simpli�
ation ofthis matrix to blo
ks of a manageable size. This 
an only be a
hieved bya 
lever 
ombination of 
orresponding Green's fun
tions.



Exa
t Solution of the Two-Site Correlated Kondo Latti
e Model 1293First of all, symmetries are a 
ru
ial tool to �nd su
h 
orrespondents.The usage of the symmetry with respe
t to the two 
luster sites splits theproblem into two parts whi
h only di�er in the sign of ~T . Also parti
le-holesymmetry redu
es the e�ort by a fa
tor of 2. Se
ondly, spe
ial sub-
asesgive a deeper insight into helpful 
ombinations. If the 
ondu
tion band isassumed to be empty, then the Green's fun
tions (despite of the operatorfor the ex
ess ele
tron) 
onsist of spin operators only, and their treatment
an be studied. After solving this situation the problem of arbitrary bando

upation 
an be divided into 4 density 
lasses. A two-site Hubbard modelprovides the rules for the 
orre
t 
ombination of Green's fun
tions withrespe
t to the ele
tron Fermi operators only.With su
h a pro
edure the redu
tion of the large 
oe�
ient matrix toblo
ks of the size 3�3 is possible. There are four types of su
h blo
ks. Theirdeterminantal polynomial is, respe
tively,0 = (Ê0 � ~T + 2a)(Ê20 � 4a2 � 2a ~T � ~T 2) ; (3)0 = (ÊI + U)(ÊI � 2a)(ÊI + 2a) ; (4)0 = Ê3II � Ê2IIU � 4ÊII �a2 + ~T 2�+ 4a2U ; (5)0 = Ê3III�Ê2III(4a+ U)�4ÊIII �3a2 + ~T 2�aU�+4a�4 ~T 2+3aU� ; (6)with a = 14J . The subindex at the energies Ê numbers the equations. Thefa
torization of Eqs. (5) and (6) requires the use of Cardano's formulas.The simpli�
ation of the mentioned matrix equation allows its inversion,leading to an analyti
al result for all 
ontributing Green's fun
tions. Theirprin
iple stru
ture is G(E) = 102Xk=1 �kE �Ek + i 0+ : (7)A 
ommon feature is the set of 102 energy poles, 27 of whi
h are given byEk = T0 � 14J � Êxi � Ê0j ; for x = I; II; III; i; j = 1; 2; 3 (8)where Êxi(Ê0j) is the ith (jth) root of the 
orresponding 
ubi
 Eqs. (3)�(6).Other 27 energy poles 
an be obtained by repla
ing ~T for � ~T (site symme-try). Sin
e with Ek = T0 + f( ~T ; J; U) also �Ek = U + T0 � f(� ~T ; J; U) isan energy pole (parti
le-hole symmetry) the number of poles doubles again.Poles that stem from Ek = T0 � J ~4 + U � Ê0j are double degenerate.The total number of 102 ex
itation energies expresses the ri
hness of thelimiting 
ase. Compared to the 8 poles of the Hubbard 
luster the additionalex
hange intera
tion J leads to a mu
h �ner stru
ture of the spe
trum.



1294 T. Hi
kel, J. Röseler, W. NoltingThe spe
tral weights �k of the Green's fun
tions are determined by the
orrelation fun
tions due to inhomogeneities of the equations of motion.Almost all of them 
an be 
al
ulated by applying the spe
tral theorem tothe obtained set of Green's fun
tions. The remaining set of expe
tationvalues is used to 
ouple the 
luster to a larger latti
e. This pro
edure givesagain a set of equations, now for the 
orrelation fun
tions. The systemhas been solved, too. Even so the analyti
al expressions are too lengthyto be given here [7℄, Fig. 1 provides an impression of the spe
tral-weightdistribution for a representative set of parameters.
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Fig. 1. All 102 one-parti
le ex
itations of the two-site 
luster. Top left: dependen
eof energy poles of 


i� ; 
yj���E on the parameter ~T . Others: distribution of thespe
tral weight for three representative values of ~T , 
al
ulated for T = 500K.The sum of all mentioned ingredients makes the 
luster solution valuablefor an understanding of the CKLM, its appli
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