
Vol. 34 (2003) ACTA PHYSICA POLONICA B No 2
EXACT SOLUTION OF THE TWO-SITE CORRELATEDKONDO LATTICE MODEL�T. Hikel, J. Röseler and W. NoltingLehrstuhl für Festkörpertheorie, Institut für Physik, Humboldt-Universität10115 Berlin, Germany(Reeived July 10, 2002)The orrelated Kondo lattie model simultaneously desribes the inter-ation of itinerant ondution eletrons with loalized magneti momentsas well as with other eletrons in the ondution band. As a limiting asea two-site luster with S = 1=2 is studied. By analytial alulations wewere able to �nd the exat expression for the energy poles and spetralweights of the one-partile Green's funtion and all ontributing orrela-tion funtions.PACS numbers: 71.10.Fd, 75.20.Hr, 75.30.Mb1. MotivationThe reent suess in growing diluted magneti semiondutors (DMS)whih show remarkably high Curie temperatures has led to a renewed inter-est in models originally proposed by Zener [1℄. As pointed out by severalauthors, a strong but �nite intra-atomi exhange interation J between thedoped magneti ions and the itinerant ondution arriers dominates themagneti behavior of these materials [2, 3℄. Therefore, a Hamiltonian likethe orrelated Kondo lattie model (CKLM)H =Xi;j X� Tijyi�j� + UXi n̂i"n̂i# � JXi �i � Si ; (1)where additionally a Hubbard-like Coulomb interation U within the singleondution band is inorporated, has to be studied to understand and preditmagneti properties of DMS.There is the possibility to redue (1) to an RKKY-like interation. How-ever, sine J is rather large in the onsidered lass of materials (a typialvalue is J = �0:3 eV, orresponding to �N0 � �1:2 eV) this perturbational� Presented at the International Conferene on Strongly Correlated Eletron Systems,(SCES02), Craow, Poland, July 10�13, 2002.(1291)



1292 T. Hikel, J. Röseler, W. Noltingapproah is mostly insu�ient [4℄. On the other hand the CKLM is notexatly soluble and there is the neessity to perform onvining approxi-mations. If these are not perturbational in nature, as e.g. for the variouskinds of deoupling tehniques [5℄, then the di�ulty of a lear justi�ationemerges. Limiting ases are a powerful tool to weaken this shortoming.Their exat solution o�ers the possibility to test approximations.When intending a desription of DMS another point needs to be on-sidered. The usage of a model like (1) implies the assumption of homoge-neously distributed dopants. However, Monte Carlo simulations of Timmet al. [6℄ demonstrated that this assumption is rather questionable. On theontrary their alulations show that the defets in GaAs, both the Mndopants (x = 5%) and the anti-site As atoms (p = 0:3 holes per Mn), formlusters, an e�et whih notieable in�uenes magneti properties.With this ontribution we provide the analytial solution of a two-siteluster desribed by the Hamiltonian�H = 2X�=1 X�=";#(T0n̂�� + U2 n̂��n̂��� � J2 �z�Sz�n̂�� + S��y������)+ ~T X�=";#�y1�2� + y2�1�� ; (2)where S" � S+; S# � S� and z" � +1; z# � �1. On the one hand thisluster is an exatly soluble limiting ase of the CKLM (1) and, therefore,allows the test of approximations in the above mentioned sense. On theother hand it may serve together with the atomi-limit result (speial ase~T = 0) as the major omponent of a disorder-driven treatment of the CKLM.2. Calulation and resultsDespite the �niteness of the luster and the simpliity of the Hamilto-nian (2) an exat solution of the one-partile Green's funtion hhi�; yj�iiEis rather triky. Limiting ourselves to S = 1=2, we are probably at the edgeof what an be done analytially. Just from onsidering the Hilbert-spaedimensions one an easily determine the number of imaginable one-eletronexitation proesses to be 896. Negleting all symmetries the number ofGreen's funtion ontributing to a losed system of equations of motion iswith 1040 even slightly higher, a minor drawbak of this approah.All these equations of motion an be ombined in a single large equation,onsisting of a oe�ient matrix formed by the model parameters ~T ; T0; U; J ,a olumn-vetor of all partiipating Green's funtions and a olumn-vetorof all inhomogeneities. An analytial solution requires the simpli�ation ofthis matrix to bloks of a manageable size. This an only be ahieved bya lever ombination of orresponding Green's funtions.



Exat Solution of the Two-Site Correlated Kondo Lattie Model 1293First of all, symmetries are a ruial tool to �nd suh orrespondents.The usage of the symmetry with respet to the two luster sites splits theproblem into two parts whih only di�er in the sign of ~T . Also partile-holesymmetry redues the e�ort by a fator of 2. Seondly, speial sub-asesgive a deeper insight into helpful ombinations. If the ondution band isassumed to be empty, then the Green's funtions (despite of the operatorfor the exess eletron) onsist of spin operators only, and their treatmentan be studied. After solving this situation the problem of arbitrary bandoupation an be divided into 4 density lasses. A two-site Hubbard modelprovides the rules for the orret ombination of Green's funtions withrespet to the eletron Fermi operators only.With suh a proedure the redution of the large oe�ient matrix tobloks of the size 3�3 is possible. There are four types of suh bloks. Theirdeterminantal polynomial is, respetively,0 = (Ê0 � ~T + 2a)(Ê20 � 4a2 � 2a ~T � ~T 2) ; (3)0 = (ÊI + U)(ÊI � 2a)(ÊI + 2a) ; (4)0 = Ê3II � Ê2IIU � 4ÊII �a2 + ~T 2�+ 4a2U ; (5)0 = Ê3III�Ê2III(4a+ U)�4ÊIII �3a2 + ~T 2�aU�+4a�4 ~T 2+3aU� ; (6)with a = 14J . The subindex at the energies Ê numbers the equations. Thefatorization of Eqs. (5) and (6) requires the use of Cardano's formulas.The simpli�ation of the mentioned matrix equation allows its inversion,leading to an analytial result for all ontributing Green's funtions. Theirpriniple struture is G(E) = 102Xk=1 �kE �Ek + i 0+ : (7)A ommon feature is the set of 102 energy poles, 27 of whih are given byEk = T0 � 14J � Êxi � Ê0j ; for x = I; II; III; i; j = 1; 2; 3 (8)where Êxi(Ê0j) is the ith (jth) root of the orresponding ubi Eqs. (3)�(6).Other 27 energy poles an be obtained by replaing ~T for � ~T (site symme-try). Sine with Ek = T0 + f( ~T ; J; U) also �Ek = U + T0 � f(� ~T ; J; U) isan energy pole (partile-hole symmetry) the number of poles doubles again.Poles that stem from Ek = T0 � J ~4 + U � Ê0j are double degenerate.The total number of 102 exitation energies expresses the rihness of thelimiting ase. Compared to the 8 poles of the Hubbard luster the additionalexhange interation J leads to a muh �ner struture of the spetrum.



1294 T. Hikel, J. Röseler, W. NoltingThe spetral weights �k of the Green's funtions are determined by theorrelation funtions due to inhomogeneities of the equations of motion.Almost all of them an be alulated by applying the spetral theorem tothe obtained set of Green's funtions. The remaining set of expetationvalues is used to ouple the luster to a larger lattie. This proedure givesagain a set of equations, now for the orrelation funtions. The systemhas been solved, too. Even so the analytial expressions are too lengthyto be given here [7℄, Fig. 1 provides an impression of the spetral-weightdistribution for a representative set of parameters.
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Fig. 1. All 102 one-partile exitations of the two-site luster. Top left: dependeneof energy poles of 

i� ; yj���E on the parameter ~T . Others: distribution of thespetral weight for three representative values of ~T , alulated for T = 500K.The sum of all mentioned ingredients makes the luster solution valuablefor an understanding of the CKLM, its appliations and approximations.REFERENCES[1℄ C. Zener, Phys. Rev. 81, 440 (1951).[2℄ H. Akai, Phys. Rev. Lett. 81, 3002 (1998).[3℄ T.Dietl, H.Ohno, F.Matsukura, J. Cibert, D. Ferrand,Siene 287, 1019 (2000).[4℄ J. König, J. Shliemann, T. Jungwirth, A. MaDonald, Physia E 12, 379(2002).[5℄ W. Nolting, S. Rex, S. Mathi Jaya, J. Phys. Condens. Matter 9, 1301 (1997).[6℄ C. Timm, F. Shäfer, F. von Oppen, ond-mat/0201411.[7℄ Details in: T. Hikel, Exat Statements on the Correlated Kondo Lattie Model,diploma thesis, Department of Physis, Humboldt-Universität zu Berlin, 2001.


