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We have recently shown that CeRhSn exhibits non-Fermi liquid tem-
perature dependences in its low-temperature physical properties. Here we
suggest that the non-Fermi liquid behavior observed in CeRhSn may be
due to the existence of a Griffiths phase in the vicinity of a quantum crit-
ical point, based on electrical resistivity, magnetic susceptibility, and spe-
cific heat measurements. For CeRhSn, the low-temperature scaling of bulk
properties (C/T o« x oc T~1*A where A < 1) is masked by an anomaly at
about 6 K, which is of magnetic origin.

PACS numbers: 71.27.+a, 71.30.Mb, 75.20.Hr, 72.15.Qm

Theoretical models of the non-Fermi liquid (NFL) behavior based on
single impurity mechanisms include a multichannel Kondo effect of magnetic
[1,2] or electric origin [3] and a conventional Kondo effect with a distribution
of Kondo temperatures due to chemical disorder [4,5]. Theoretical models
which incorporate interionic interactions include fluctuations of an order
parameter in the vicinity of a second-order phase transition at 0 K (quantum
critical point (QCP)) [6-12] and an inhomogeneous Griffiths phase [13]. The
Griffiths phase [14] consists of magnetic clusters in a paramagnetic phase
and forms as a result of the competition between the Kondo effect and
the RKKY interaction in the presence of disorder. Castro Neto et al., [13]
conclude that the specific heat and magnetic susceptibility follow a power
law v = C(T)/T o x(T) o< T~'** (where A < 1), due to the existence of
a Griffiths phase close to a QCP. We recently investigated the compound
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CeRhSn which exhibits NFL behavior [15-17]. The electrical resistivity
and magnetic susceptibility have power law temperature dependences at
low temperatures with small exponents p(T) oc T and x(T) oc T7%%,
and v = C(T)/T x —1InT (the latter over a limited temperature range).
Experimental comparisons to the theory of Castro Neto et al., have been
made and will be discussed below.

The specific heat data for non-annealed CeRhSn (sample (a)) and for
CeRhSn samples annealed for 4 days (sample (b)) and 8 days (sample (c))
are displayed as C/T wversus InT in Fig. 1. The high temperature spe-
cific heat data are very similar for all the samples investigated [16] while,
at temperatures lower then about 6.2 K, the magnetic contribution to the
specific heat is strongly dependent on the amount of atomic disorder. As-
suming that the crystalline electric field ground state is a doublet, the total
magnetic entropy per formula unit of CeRhSn is RIn2 = 5.76 Jmol 'K~2,
The small peak in the specific heat of CeRhSn observed at T represents an
extremally small fraction yTx /R In2 which is respectively ~ 0.12, 0.06, and
0.02 of entropy R1In2 at the phase transition for sample (a), (b), and (c). At
present, we do not know whether the observed anomalies reflect long-range
order of the small magnetic moments or whether they should be attributed
to the other correlation effects, e.g., spin-glass behavior. We have not seen
any magnetic order within a limit for an ordered moment of about 0.25
uB, using a high-resolution neutron spectrometer [16]. Some type of static
magnetic order in CeRhSn with tiny ordered moments less than 0.1 ug is
probably due to subtle structural defects.

Fig. 1 reveals that C'/T varies as T~ ™ below 2K for sample (a) and (b)
(see Table I), while it varies as T~ ™ between 1.5K and 5K for CeRhSn an-
nealed for 8 days (sample (c)). The best fit of the expression C(T)/T = ¢T™"
to the data yields n = 0.54 for sample (a), n = 0.39 for sample (b) and

TABLE 1

Comparison of electrical resistivity Ap, magnetic susceptibility y, and specific
heat C' data for CeRhSn polycrystalline samples: unannealed (a), annealed for
4 days (b), and for 8 days (c).

CeRhSn | Ap = Ap(0)[1 + (T/To)"™] X o< T71H> | C/T oc T7HHA

Ap(0) To n  T-range| A T-range| A  T-range
iem] (K] K] K] K]
(a) 4750 6.8 0.73 1.8-25 | 060 1.86 [046 0.6-2
320 36 075 1825 |065 1.86 |0.61 0.6-2
30.38 35 0.71 1.8-25 | 049 0.4-4.2 |0.65 1.5-5
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Fig.1. Upper part: Specific heat C divided by T, C/T, versus InT for three
CeRhSn samples (sample (a) unannealed; samples (b) and (¢) annealed for 4 and 8
days, respectively) [16]. The C/T data were fitted by the formula C(T")/T = ¢T'™"
in the range T' < 2K for samples (a) and (b), and in the range 1.5 < T < 5K for
sample (c¢). The fits are represented by solid lines. The values of ¢ are, respectively:
246.4 mJmol~'K—2, 235.9mJmol 'K~2, and 195.8 mJmol~'K~? for samples (a),
(b), and (¢). The n values are listed in Table I. Lower part: Magnetic susceptibility
x versus T on a double logarithmic plot and the incremental electrical resistivity
Ap = p(CeRhSn) —p(LaRhSn) versus T for a CeRhSn sample annealed for 8 days
(sample (c¢)). The solid line represents the fit of the expression Ap(T) = Ap(0)
[1 4+ a(T/Tx)"™ to the data with n = 0.74, Ap(0) = 32.2 uQcm, a = 13.9 and
Tk = 145K (Tx is the Kondo temperature). The straight line represents the
relation xy oc T".

n = 0.35 for sample (c). A noticeable deviation of the C/T data from
linearity in logT" at T' < 1.5 K (sample (c)) is not expected for a NFL. How-
ever, a number of systems have been reported (e.g., Ce(Rug.7Rhg.3)2Sis [18],
U(Ptg.94Pdo.06)3 [19], UCusAly [20]) which show NFL behavior coexistent
with magnetic order. These systems show magnetic behavior in the middle
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or even above the temperature range where C/T o« InT or T~ ", and do
not fit the picture of the QCP [8]. It is possible that the NFL temperature
dependences of p(T), x(T'), and C(T) for disordered CeRhSn in the low-
temperature region are related to the proximity of a magnetically ordered
state that depends on the degree of atomic order. The parameters obtained
from the best fits (Table I) are consistent with the presence of a Griffiths
phase at very low temperatures i.e. C/T o x oc T™'HA with A < 1.
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