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An energy-scale-dependent approximation, that allows to resolve low
energy features embedded in a high energy background, is reviewed. The
Kondo and Anderson models are studied and fully self-consistently resolved
as significative examples. A Kondo-like peak is obtained at low enough
temperatures. The method is shown to be capable to reproduce the exact
results with very low numerical effort and it is applicable for any value of
the external parameters.
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The theoretical analysis of the physical properties of some materials, like
transition-metal oxides [1] and heavy fermion compounds [2], requires the
correct description of more energy scales at once. The impurity systems
are the simpler ones presenting two or more relevant scales of energy and
could be considered a natural testing ground for analytical schemes willing
to capture this fundamental aspect of physics.

Projection methods [3,4] usually capture quite faithfully the high energy
physics of strongly correlated systems, whereas slave-boson techniques [5]
are capable to describe low energy features with an high degree of confi-
dence. Unfortunately, neither of the two classes of approximation schemes
can obtain both energy regimes simultaneously. As a matter of fact, the
quest for an approximation scheme capable to describe various energy scales
at once is still open. Quite recently [6,7], we have shown how the composite
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operator method (COM) [4] could be effectively used to resolve coherent low
energy features embedded in a high energy background. This method, whose
general formulation has been reviewed in Ref. [8], belongs to the class of pro-
jection approaches [3,4] that are founded on the conviction that an analysis
in terms of the bare fields might be inadequate for a system dominated by
strong interactions. In fact, these latter generate new fields, composite op-
erators (CO), and one has to move the attention to them. The CO do not
satisfy canonical (anti)commutation relations and their properties must be
self-consistently determined. The propagators of the CO can be computed
by means of the equations of motion (EM) method [3,4]. By truncating the
infinite chain of EM and by projecting the sources on the basis composed by
the fields generated by the EM, one obtains an approximation satisfying the
conservation of the spectral moments. Both in the projection coefficients
of the approximate EM and in the thermal averaged (anti)commutators of
the fields, present as inhomogeneous terms in the EM for the propagators,
unknown correlators of higher order fields appear. These correlators should
be computed self-consistently. A central point of the COM [4] is to recognize
the presence of such correlators not as an accident, as all the other approxi-
mation schemes do, but as a necessity and an occasion to force the solution to
obey all the symmetry constraints (i.e., Pauli principle and Ward-Takahashi
identities). In particular, we exploit their presence in order to fix the proper
Hilbert space (i.e., the Hilbert space where symmetry relations among op-
erators are also satisfied by thermal averages).

If we want to catch the low energy scales present in the impurity mod-
els (which, according to the previous prescription, would require a bigger
and bigger number of moments) we need to individuate an effective opera-
torial basis containing fields directly describing the low energy excitations
as shown in Refs. [6,7]. Actually, we propose the following procedure to
solve single-impurity models. Within the composite operators appearing
in the hierarchy of the equations of motion, we identify the one (hereafter
the Kondo operator) describing the conduction electrons dressed by the spin
fluctuations of the impurities. The high energy dynamics of the Kondo op-
erator, and of the other higher order operators appearing at the same level
of time differentiation, is taken into account by means of the mode-coupling
approximation [9] (i.e., the self-consistent Born approximation) that very
well describes the high energy part of the spectra, which is quite incoherent.
The bosonic propagators entering the mode-coupling procedure are deter-
mined either by the atomic approximation, in absence of charge fluctuations,
or by further decoupling in terms of the impurity electron propagators. This
is widely justified by the fact we need them only to describe the high energy
regime. The low energy dynamics of the Kondo operator is described, non-
perturbatively, by projecting its source on all and only the original electronic
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operators (i.e., by means of a simple quasi-particle theory). This step is pos-
sible as the mode-coupling approximation fails to give the correct weight of
the Kondo operator [6,7]. The low energy parameters (i.e., the projection
coefficients) are fixed by requiring that the low energy weight of the Kondo
operator satisfies the correct sum rule.

To better illustrate the above described procedure for single-impurity
models we will report, as relevant examples, the solution of the Kondo and
Anderson models [10].

The Kondo model is described by the following Hamiltonian

H= ZCT(I{)) . |:5kk' ec(k) + 2JK%&'ﬁd c(k'), (1)
kK
where ¢(k) denotes the conduction electron operator in spinorial notation,
and 7% represents the spin operator at the impurity site, e.(k) and Jx are
the conduction electron energy and the Kondo coupling, respectively, IV is
the number of sites, ¢ are the Pauli matrices. We have i0;c(k) = e.(k) c(k)+
2Jx & - i ¢, where ¢q is the electron at the impurity site.

In this case the Kondo operator is just 1 = & - 7i%cy and its weight
is Iyy = <{¢2,Ql}.2r}> = 3+ 4(co ¢;) According to the scheme described
above, we split the field 45 in low 9% and high i energy components. The
propagator of the latter is computed in the mode-coupling approximation,
which absorbs a weight equals to 3. In the low energy regime, we assume
the following dynamics for the field 1s: i%z/)% = N¢y. By projecting we get
N = Jk I}, where IL, is the low energy weight. This latter is computed self-
consistently by means of the following sum rule I} (T) = Ino(T) — I} (T),
where I1L(T) = I5n[T,I%(T) = 0]. The spectral weight of )5 is reported
in the upper panel of Fig. 1. Our results are in quantitative agreement
with the well known exact solution [10]. For temperatures lower than the
Kondo one Tk (which is quantitatively well reproduced: for Jx = 0.1 we
have Tk = 0.0058) the Kondo peak is clearly visible. In the inset it is shown
as it shrinks on increasing the temperature. Finally, at temperatures higher
than the Kondo one only a high energy incoherent background is left: the
well defined singlet excitation mode no longer exists.

The Anderson model is defined by the Hamiltonian

1 Vv
H=— exchen +erff+Unsnp + —— chf+ fle , 2
N%:kkk f1f FInpt \/N%:(kf flek), (2)

where f are the electrons in the impurity level (ef), n, is the charge density
operator of spin o for the f-electrons, V is the strength of the hybridization
between the valence band and the impurity level and U is the Coulomb
repulsion at the impurity site. This latter splits the field f in the Hubbard
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Fig. 1. The spectral weight of the Kondo operator (g22(w)) for the Kondo model is
reported for 7' = 0.0001 and 7" = Tk = 0.0058 for .Jx = 0.1, in the inset is shown
how the peak shrinks with the temperature (upper panel); the Kondo-temperature
for the Anderson model in the symmetric case is reported as a function of the
exchange coupling J (lower panel).
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operators £ = (1 — fT f)f and n = (f1 f)f. The equations of motion of ¢
and 7 introduce the fluctuation field 7 = 1(1 — ny)co + 3G - fipco + (cgf) n
corresponding to the coupling of the valence band to density, spin and pair
impurity fluctuations.

According to the general prescription, the Kondo operator is taken as
P9 = 25 - fijco with a weight Inp = 3((ny) — 2(ngynst)) + (co 1/);) We split
the field 19 in low 9% and high 9 energy components. The propagator of
the latter is computed in the mode-coupling approximation, which absorbs
a weight equals to 3({ns) — 2(ns nyst)). We make the following Ansatz at
low energy iatl/)% = K1¢p + k2€ + k3. The coefficients x; are determined by
projection and contains the low energy weight of 1o which will be computed
by means of the same equation stated for the Kondo model. A Kondo peak is
obtained with the correct dependence on the model parameters [10]. In the
lower panel of Fig. 1, the natural logarithm of the Kondo temperature In Tk
is reported as a function of —1/J in the symmetric case (e; = —U/2) and
for various value of V. Tk becomes exponentially small for small values of
J =V?(1/les|+1/les +U|) in agreement with the exact theoretical formula
[10] Tk o exp(—1/J). The linear behavior shows the correct exponential
dependence which is not possible to obtain perturbatively.

In conclusion, we have reported a recently developed energy-scale-
dependent approach [6,7] and shown that it is capable to reproduce in a rea-
sonable way both high- and low- energy features of known exact solutions
of impurity models. The advantages of the proposed procedure reside in the
very low numerical effort required and in the possibility to use it to study
systems (e.g., the impurity lattice models) where exact methods (e.g., Bethe
Ansatz, RG, ...) cannot be applied.
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