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THE COMPOSITE OPERATOR METHODFOR IMPURITY MODELS�A. Avella, F. ManiniDipartimento di Fisia E.R. Caianiello, Unità INFM di SalernoUniversità degli Studi di Salerno, 84081 Baronissi (SA), Italyand R. HaynInstitut für Festkörper- und Werksto�orshung (IFW)Dresden, 01171 Dresden, Germany(Reeived July 10, 2002)An energy-sale-dependent approximation, that allows to resolve lowenergy features embedded in a high energy bakground, is reviewed. TheKondo and Anderson models are studied and fully self-onsistently resolvedas signi�ative examples. A Kondo-like peak is obtained at low enoughtemperatures. The method is shown to be apable to reprodue the exatresults with very low numerial e�ort and it is appliable for any value ofthe external parameters.PACS numbers: 75.50.Ee, 75.30.Et, 75.25.+z, 75.50.�yThe theoretial analysis of the physial properties of some materials, liketransition-metal oxides [1℄ and heavy fermion ompounds [2℄, requires theorret desription of more energy sales at one. The impurity systemsare the simpler ones presenting two or more relevant sales of energy andould be onsidered a natural testing ground for analytial shemes willingto apture this fundamental aspet of physis.Projetion methods [3,4℄ usually apture quite faithfully the high energyphysis of strongly orrelated systems, whereas slave-boson tehniques [5℄are apable to desribe low energy features with an high degree of on�-dene. Unfortunately, neither of the two lasses of approximation shemesan obtain both energy regimes simultaneously. As a matter of fat, thequest for an approximation sheme apable to desribe various energy salesat one is still open. Quite reently [6,7℄, we have shown how the omposite� Presented at the International Conferene on Strongly Correlated Eletron Systems,(SCES02), Craow, Poland, July 10�13, 2002.(1345)



1346 A. Avella, F. Manini, R. Haynoperator method (COM) [4℄ ould be e�etively used to resolve oherent lowenergy features embedded in a high energy bakground. This method, whosegeneral formulation has been reviewed in Ref. [8℄, belongs to the lass of pro-jetion approahes [3,4℄ that are founded on the onvition that an analysisin terms of the bare �elds might be inadequate for a system dominated bystrong interations. In fat, these latter generate new �elds, omposite op-erators (CO), and one has to move the attention to them. The CO do notsatisfy anonial (anti)ommutation relations and their properties must beself-onsistently determined. The propagators of the CO an be omputedby means of the equations of motion (EM) method [3,4℄. By trunating thein�nite hain of EM and by projeting the soures on the basis omposed bythe �elds generated by the EM, one obtains an approximation satisfying theonservation of the spetral moments. Both in the projetion oe�ientsof the approximate EM and in the thermal averaged (anti)ommutators ofthe �elds, present as inhomogeneous terms in the EM for the propagators,unknown orrelators of higher order �elds appear. These orrelators shouldbe omputed self-onsistently. A entral point of the COM [4℄ is to reognizethe presene of suh orrelators not as an aident, as all the other approxi-mation shemes do, but as a neessity and an oasion to fore the solution toobey all the symmetry onstraints (i.e., Pauli priniple and Ward�Takahashiidentities). In partiular, we exploit their presene in order to �x the properHilbert spae (i.e., the Hilbert spae where symmetry relations among op-erators are also satis�ed by thermal averages).If we want to ath the low energy sales present in the impurity mod-els (whih, aording to the previous presription, would require a biggerand bigger number of moments) we need to individuate an e�etive opera-torial basis ontaining �elds diretly desribing the low energy exitationsas shown in Refs. [6, 7℄. Atually, we propose the following proedure tosolve single-impurity models. Within the omposite operators appearingin the hierarhy of the equations of motion, we identify the one (hereafterthe Kondo operator) desribing the ondution eletrons dressed by the spin�utuations of the impurities. The high energy dynamis of the Kondo op-erator, and of the other higher order operators appearing at the same levelof time di�erentiation, is taken into aount by means of the mode-ouplingapproximation [9℄ (i.e., the self-onsistent Born approximation) that verywell desribes the high energy part of the spetra, whih is quite inoherent.The bosoni propagators entering the mode-oupling proedure are deter-mined either by the atomi approximation, in absene of harge �utuations,or by further deoupling in terms of the impurity eletron propagators. Thisis widely justi�ed by the fat we need them only to desribe the high energyregime. The low energy dynamis of the Kondo operator is desribed, non-perturbatively, by projeting its soure on all and only the original eletroni



The Composite Operator Method for Impurity Models 1347operators (i.e., by means of a simple quasi-partile theory). This step is pos-sible as the mode-oupling approximation fails to give the orret weight ofthe Kondo operator [6, 7℄. The low energy parameters (i.e., the projetionoe�ients) are �xed by requiring that the low energy weight of the Kondooperator satis�es the orret sum rule.To better illustrate the above desribed proedure for single-impuritymodels we will report, as relevant examples, the solution of the Kondo andAnderson models [10℄.The Kondo model is desribed by the following HamiltonianH =Xk;k0 y(k) � �Ækk0 "(k) + 2JK 1N ~� ~nd� (k0) ; (1)where (k) denotes the ondution eletron operator in spinorial notation,and ~nd represents the spin operator at the impurity site, "(k) and JK arethe ondution eletron energy and the Kondo oupling, respetively, N isthe number of sites, ~� are the Pauli matries. We have i�t(k) = "(k) (k)+2JK ~� � ~nd 0, where 0 is the eletron at the impurity site.In this ase the Kondo operator is just  2 = ~� � ~nd 0 and its weightis I22 = hf 2;  y2gi = 3 + 4h0  y2i. Aording to the sheme desribedabove, we split the �eld  2 in low  L2 and high  H2 energy omponents. Thepropagator of the latter is omputed in the mode-oupling approximation,whih absorbs a weight equals to 3. In the low energy regime, we assumethe following dynamis for the �eld  2: i ��t L2 = � 0. By projeting we get� = JK IL22 ; where IL22 is the low energy weight. This latter is omputed self-onsistently by means of the following sum rule IL22(T ) = I22(T ) � IH22(T ),where IH22(T ) = I22[T; IL22(T ) = 0℄. The spetral weight of  2 is reportedin the upper panel of Fig. 1. Our results are in quantitative agreementwith the well known exat solution [10℄. For temperatures lower than theKondo one TK (whih is quantitatively well reprodued: for JK = 0:1 wehave TK = 0:0058) the Kondo peak is learly visible. In the inset it is shownas it shrinks on inreasing the temperature. Finally, at temperatures higherthan the Kondo one only a high energy inoherent bakground is left: thewell de�ned singlet exitation mode no longer exists.The Anderson model is de�ned by the HamiltonianH = 1N Xk "kykk + "ff yf + Unf#nf" + VpN Xk (ykf + f yk) ; (2)where f are the eletrons in the impurity level ("f ), nf� is the harge densityoperator of spin � for the f -eletrons, V is the strength of the hybridizationbetween the valene band and the impurity level and U is the Coulombrepulsion at the impurity site. This latter splits the �eld f in the Hubbard
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Fig. 1. The spetral weight of the Kondo operator (�22(!)) for the Kondo model isreported for T = 0:0001 and T = TK = 0:0058 for JK = 0:1, in the inset is shownhow the peak shrinks with the temperature (upper panel); the Kondo-temperaturefor the Anderson model in the symmetri ase is reported as a funtion of theexhange oupling J (lower panel).



The Composite Operator Method for Impurity Models 1349operators � = (1 � f y f)f and � = (f y f)f . The equations of motion of �and � introdue the �utuation �eld � = 12(1� nf )0 + 12~� � ~nf0 + �y0�� �orresponding to the oupling of the valene band to density, spin and pairimpurity �utuations.Aording to the general presription, the Kondo operator is taken as 2 = 12~� � ~nf0 with a weight I22 = 34(hnf i � 2hnf#nf"i) + h0  y2i. We splitthe �eld  2 in low  L2 and high  H2 energy omponents. The propagator ofthe latter is omputed in the mode-oupling approximation, whih absorbsa weight equals to 34(hnf i � 2hnf#nf"i). We make the following Ansatz atlow energy i�t L2 = �10 + �2� + �3�. The oe�ients �i are determined byprojetion and ontains the low energy weight of  2 whih will be omputedby means of the same equation stated for the Kondo model. A Kondo peak isobtained with the orret dependene on the model parameters [10℄. In thelower panel of Fig. 1, the natural logarithm of the Kondo temperature lnTKis reported as a funtion of �1=J in the symmetri ase ("f = �U=2) andfor various value of V . TK beomes exponentially small for small values ofJ = V 2(1=j"f j+1=j"f +U j) in agreement with the exat theoretial formula[10℄ TK / exp(�1=J). The linear behavior shows the orret exponentialdependene whih is not possible to obtain perturbatively.In onlusion, we have reported a reently developed energy-sale-dependent approah [6,7℄ and shown that it is apable to reprodue in a rea-sonable way both high- and low- energy features of known exat solutionsof impurity models. The advantages of the proposed proedure reside in thevery low numerial e�ort required and in the possibility to use it to studysystems (e.g., the impurity lattie models) where exat methods (e.g., BetheAnsatz, RG, . . . ) annot be applied.REFERENCES[1℄ M. Imada, A. Fujimori, Y. Tokura, Rev. Mod. Phys. 70, 1039 (1998).[2℄ O. Gunnarsson, K. Shönhammer,Many Body Formulation of Spetra of MixedValene Systems, vol. 10, Elsevier Siene, 1987.[3℄ H. Mori, Progr. Theor. Phys. 33, 423 (1965); Progr. Theor. Phys. 34, 399(1965). D.J. Rowe, Rev. Mod. Phys. 40, 153 (1968). L.M. Roth, Phys. Rev.184, 451 (1969). P. Fulde, Eletron Correlations in Moleules and Solids,Springer-Verlag, 1995.[4℄ F. Manini, S. Marra, H. Matsumoto, Physia C 244, 49 (1995); Phys-ia C 250, 184 (1995); Physia C 252, 361 (1995); A. Avella, F. Manini,R. Münzner, Phys. Rev. B63, 245117 (2001); V. Fiorentino, F. Manini,E. Zasinas, A. Barabanov, Phys. Rev. B64, 214515, (2001).[5℄ S.E. Barnes, J. Phys. F 6, 1375, (1976).
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