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THE COMPOSITE OPERATOR METHODFOR IMPURITY MODELS�A. Avella, F. Man
iniDipartimento di Fisi
a E.R. Caianiello, Unità INFM di SalernoUniversità degli Studi di Salerno, 84081 Baronissi (SA), Italyand R. HaynInstitut für Festkörper- und Werksto�ors
hung (IFW)Dresden, 01171 Dresden, Germany(Re
eived July 10, 2002)An energy-s
ale-dependent approximation, that allows to resolve lowenergy features embedded in a high energy ba
kground, is reviewed. TheKondo and Anderson models are studied and fully self-
onsistently resolvedas signi�
ative examples. A Kondo-like peak is obtained at low enoughtemperatures. The method is shown to be 
apable to reprodu
e the exa
tresults with very low numeri
al e�ort and it is appli
able for any value ofthe external parameters.PACS numbers: 75.50.Ee, 75.30.Et, 75.25.+z, 75.50.�yThe theoreti
al analysis of the physi
al properties of some materials, liketransition-metal oxides [1℄ and heavy fermion 
ompounds [2℄, requires the
orre
t des
ription of more energy s
ales at on
e. The impurity systemsare the simpler ones presenting two or more relevant s
ales of energy and
ould be 
onsidered a natural testing ground for analyti
al s
hemes willingto 
apture this fundamental aspe
t of physi
s.Proje
tion methods [3,4℄ usually 
apture quite faithfully the high energyphysi
s of strongly 
orrelated systems, whereas slave-boson te
hniques [5℄are 
apable to des
ribe low energy features with an high degree of 
on�-den
e. Unfortunately, neither of the two 
lasses of approximation s
hemes
an obtain both energy regimes simultaneously. As a matter of fa
t, thequest for an approximation s
heme 
apable to des
ribe various energy s
alesat on
e is still open. Quite re
ently [6,7℄, we have shown how the 
omposite� Presented at the International Conferen
e on Strongly Correlated Ele
tron Systems,(SCES02), Cra
ow, Poland, July 10�13, 2002.(1345)
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ini, R. Haynoperator method (COM) [4℄ 
ould be e�e
tively used to resolve 
oherent lowenergy features embedded in a high energy ba
kground. This method, whosegeneral formulation has been reviewed in Ref. [8℄, belongs to the 
lass of pro-je
tion approa
hes [3,4℄ that are founded on the 
onvi
tion that an analysisin terms of the bare �elds might be inadequate for a system dominated bystrong intera
tions. In fa
t, these latter generate new �elds, 
omposite op-erators (CO), and one has to move the attention to them. The CO do notsatisfy 
anoni
al (anti)
ommutation relations and their properties must beself-
onsistently determined. The propagators of the CO 
an be 
omputedby means of the equations of motion (EM) method [3,4℄. By trun
ating thein�nite 
hain of EM and by proje
ting the sour
es on the basis 
omposed bythe �elds generated by the EM, one obtains an approximation satisfying the
onservation of the spe
tral moments. Both in the proje
tion 
oe�
ientsof the approximate EM and in the thermal averaged (anti)
ommutators ofthe �elds, present as inhomogeneous terms in the EM for the propagators,unknown 
orrelators of higher order �elds appear. These 
orrelators shouldbe 
omputed self-
onsistently. A 
entral point of the COM [4℄ is to re
ognizethe presen
e of su
h 
orrelators not as an a

ident, as all the other approxi-mation s
hemes do, but as a ne
essity and an o

asion to for
e the solution toobey all the symmetry 
onstraints (i.e., Pauli prin
iple and Ward�Takahashiidentities). In parti
ular, we exploit their presen
e in order to �x the properHilbert spa
e (i.e., the Hilbert spa
e where symmetry relations among op-erators are also satis�ed by thermal averages).If we want to 
at
h the low energy s
ales present in the impurity mod-els (whi
h, a

ording to the previous pres
ription, would require a biggerand bigger number of moments) we need to individuate an e�e
tive opera-torial basis 
ontaining �elds dire
tly des
ribing the low energy ex
itationsas shown in Refs. [6, 7℄. A
tually, we propose the following pro
edure tosolve single-impurity models. Within the 
omposite operators appearingin the hierar
hy of the equations of motion, we identify the one (hereafterthe Kondo operator) des
ribing the 
ondu
tion ele
trons dressed by the spin�u
tuations of the impurities. The high energy dynami
s of the Kondo op-erator, and of the other higher order operators appearing at the same levelof time di�erentiation, is taken into a

ount by means of the mode-
ouplingapproximation [9℄ (i.e., the self-
onsistent Born approximation) that verywell des
ribes the high energy part of the spe
tra, whi
h is quite in
oherent.The bosoni
 propagators entering the mode-
oupling pro
edure are deter-mined either by the atomi
 approximation, in absen
e of 
harge �u
tuations,or by further de
oupling in terms of the impurity ele
tron propagators. Thisis widely justi�ed by the fa
t we need them only to des
ribe the high energyregime. The low energy dynami
s of the Kondo operator is des
ribed, non-perturbatively, by proje
ting its sour
e on all and only the original ele
troni
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le theory). This step is pos-sible as the mode-
oupling approximation fails to give the 
orre
t weight ofthe Kondo operator [6, 7℄. The low energy parameters (i.e., the proje
tion
oe�
ients) are �xed by requiring that the low energy weight of the Kondooperator satis�es the 
orre
t sum rule.To better illustrate the above des
ribed pro
edure for single-impuritymodels we will report, as relevant examples, the solution of the Kondo andAnderson models [10℄.The Kondo model is des
ribed by the following HamiltonianH =Xk;k0 
y(k) � �Ækk0 "
(k) + 2JK 1N ~� ~nd� 
(k0) ; (1)where 
(k) denotes the 
ondu
tion ele
tron operator in spinorial notation,and ~nd represents the spin operator at the impurity site, "
(k) and JK arethe 
ondu
tion ele
tron energy and the Kondo 
oupling, respe
tively, N isthe number of sites, ~� are the Pauli matri
es. We have i�t
(k) = "
(k) 
(k)+2JK ~� � ~nd 
0, where 
0 is the ele
tron at the impurity site.In this 
ase the Kondo operator is just  2 = ~� � ~nd 
0 and its weightis I22 = hf 2;  y2gi = 3 + 4h
0  y2i. A

ording to the s
heme des
ribedabove, we split the �eld  2 in low  L2 and high  H2 energy 
omponents. Thepropagator of the latter is 
omputed in the mode-
oupling approximation,whi
h absorbs a weight equals to 3. In the low energy regime, we assumethe following dynami
s for the �eld  2: i ��t L2 = � 
0. By proje
ting we get� = JK IL22 ; where IL22 is the low energy weight. This latter is 
omputed self-
onsistently by means of the following sum rule IL22(T ) = I22(T ) � IH22(T ),where IH22(T ) = I22[T; IL22(T ) = 0℄. The spe
tral weight of  2 is reportedin the upper panel of Fig. 1. Our results are in quantitative agreementwith the well known exa
t solution [10℄. For temperatures lower than theKondo one TK (whi
h is quantitatively well reprodu
ed: for JK = 0:1 wehave TK = 0:0058) the Kondo peak is 
learly visible. In the inset it is shownas it shrinks on in
reasing the temperature. Finally, at temperatures higherthan the Kondo one only a high energy in
oherent ba
kground is left: thewell de�ned singlet ex
itation mode no longer exists.The Anderson model is de�ned by the HamiltonianH = 1N Xk "k
yk
k + "ff yf + Unf#nf" + VpN Xk (
ykf + f y
k) ; (2)where f are the ele
trons in the impurity level ("f ), nf� is the 
harge densityoperator of spin � for the f -ele
trons, V is the strength of the hybridizationbetween the valen
e band and the impurity level and U is the Coulombrepulsion at the impurity site. This latter splits the �eld f in the Hubbard
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Fig. 1. The spe
tral weight of the Kondo operator (�22(!)) for the Kondo model isreported for T = 0:0001 and T = TK = 0:0058 for JK = 0:1, in the inset is shownhow the peak shrinks with the temperature (upper panel); the Kondo-temperaturefor the Anderson model in the symmetri
 
ase is reported as a fun
tion of theex
hange 
oupling J (lower panel).



The Composite Operator Method for Impurity Models 1349operators � = (1 � f y f)f and � = (f y f)f . The equations of motion of �and � introdu
e the �u
tuation �eld � = 12(1� nf )
0 + 12~� � ~nf
0 + �
y0�� �
orresponding to the 
oupling of the valen
e band to density, spin and pairimpurity �u
tuations.A

ording to the general pres
ription, the Kondo operator is taken as 2 = 12~� � ~nf
0 with a weight I22 = 34(hnf i � 2hnf#nf"i) + h
0  y2i. We splitthe �eld  2 in low  L2 and high  H2 energy 
omponents. The propagator ofthe latter is 
omputed in the mode-
oupling approximation, whi
h absorbsa weight equals to 34(hnf i � 2hnf#nf"i). We make the following Ansatz atlow energy i�t L2 = �1
0 + �2� + �3�. The 
oe�
ients �i are determined byproje
tion and 
ontains the low energy weight of  2 whi
h will be 
omputedby means of the same equation stated for the Kondo model. A Kondo peak isobtained with the 
orre
t dependen
e on the model parameters [10℄. In thelower panel of Fig. 1, the natural logarithm of the Kondo temperature lnTKis reported as a fun
tion of �1=J in the symmetri
 
ase ("f = �U=2) andfor various value of V . TK be
omes exponentially small for small values ofJ = V 2(1=j"f j+1=j"f +U j) in agreement with the exa
t theoreti
al formula[10℄ TK / exp(�1=J). The linear behavior shows the 
orre
t exponentialdependen
e whi
h is not possible to obtain perturbatively.In 
on
lusion, we have reported a re
ently developed energy-s
ale-dependent approa
h [6,7℄ and shown that it is 
apable to reprodu
e in a rea-sonable way both high- and low- energy features of known exa
t solutionsof impurity models. The advantages of the proposed pro
edure reside in thevery low numeri
al e�ort required and in the possibility to use it to studysystems (e.g., the impurity latti
e models) where exa
t methods (e.g., BetheAnsatz, RG, . . . ) 
annot be applied.REFERENCES[1℄ M. Imada, A. Fujimori, Y. Tokura, Rev. Mod. Phys. 70, 1039 (1998).[2℄ O. Gunnarsson, K. S
hönhammer,Many Body Formulation of Spe
tra of MixedValen
e Systems, vol. 10, Elsevier S
ien
e, 1987.[3℄ H. Mori, Progr. Theor. Phys. 33, 423 (1965); Progr. Theor. Phys. 34, 399(1965). D.J. Rowe, Rev. Mod. Phys. 40, 153 (1968). L.M. Roth, Phys. Rev.184, 451 (1969). P. Fulde, Ele
tron Correlations in Mole
ules and Solids,Springer-Verlag, 1995.[4℄ F. Man
ini, S. Marra, H. Matsumoto, Physi
a C 244, 49 (1995); Phys-i
a C 250, 184 (1995); Physi
a C 252, 361 (1995); A. Avella, F. Man
ini,R. Münzner, Phys. Rev. B63, 245117 (2001); V. Fiorentino, F. Man
ini,E. Zasinas, A. Barabanov, Phys. Rev. B64, 214515, (2001).[5℄ S.E. Barnes, J. Phys. F 6, 1375, (1976).



1350 A. Avella, F. Man
ini, R. Hayn[6℄ D. Villani, E. Lange, A. Avella, G. Kotliar, Phys. Rev. Lett. 85, 804 (2000).[7℄ A. Avella, R. Hayn, F. Man
ini, Energy-s
ale-dependent analysis of the single-impurity Anderson model, Preprint University of Salerno, 2002.[8℄ F. Man
ini, A. Avella, 
ond-mat/0006377.[9℄ J. Bosse, W. Götze, M. Lü
ke, Phys. Rev. 17, 434 (1978).[10℄ A.C. Hewson, The Kondo Problem to Heavy Fermions, Cambridge UniversityPress, Cambridge 1997.


