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Magnetic and transport properties of (Y,Ce;_,)7Rhs have been stud-
ied by measuring magnetization, magnetic susceptibility and electrical re-
sistivity. Ce;Rhj is a metal ferromagnet and Y;Rhj3 is a semimetallic Pauli
paramagnet. In (Y,Ce;_,)7Rhs, ferromagnetic phase disappears at about
x = 0.4. Intermediate valence state can exist in high Y concentration range
above z = 0.5. In this range, electrical properties can be realized by the
Kondo scattering in semimetallic band structure.

PACS numbers: 71.27.+a,75.30.Mb

1. Introduction

The rare earth intermetallic compounds R7Rhs (R: rare earth metal)
crystallize in the Th;Fes type hexagonal structure in which R occupies three
non-equivalent sites [1,2]|. Among these compounds, Ce;Rhjz is a heavy
fermion metal compound having v = 0.85 J/mol K? and becomes ferromag-
net below T'c = 6.8 K [3]. On the other hand, Y7Rhj3 is a Pauli paramagnet
with semimetallic band structure [4]. Considering the difference of the elec-
trical property in these two compounds, the change of magnetic and trans-
port properties in Ce compound, when conductive carrier changes, can be
observed in pseudo-binary system between CeyRhs and Y7Rhg. At this point
of view, (Y,Cej_,)7Rh3 has been studied. In this report, we present the ex-
perimental results of magnetic and transport properties in (Y,Ce;_,)7Rhj
system.

* Presented at the International Conference on Strongly Correlated Electron Systems,
(SCES 02), Cracow, Poland, July 10-13, 2002.
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2. Experimental

Polycrystalline ingots of (Y,Cej_;)7Rh3 were prepared by arc-melting
the constituent elements of 99.9 % Ce, Y and 99.96 % Rh under high purity
argon atmosphere. Obtained samples were found to be single phase with
the ThrFes type hexagonal structure by X ray diffraction analysis. Magne-
tization and magnetic susceptibility were measured by a vibrating sample
magnetometer and a SQUID magnetometer. AC magnetic susceptibility
measurement was carried out using the Hartshorn bridge circuit. Electrical
resistivity was measured by conventional dc four terminal method.

3. Results and discussion

Fig. 1 shows the magnetic susceptibility x (a) and reciprocal suscepti-
bility x~! (b) for several z in (Y,Ce; ,)7Rh3 as a function of temperature.
From z = 0 to 0.90, Curie-Weiss like behavior was observed in high temper-
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Fig. 1. Magnetic susceptibility (a) and reciprocal susceptibility (b) for several z in
(Y Cey_,)7Rhs as a function of temperature

ature; y is almost temperature independent in Y;Rhs. Effective magnetic
moment jieg obtained from y -7 curves are 2.3up/Ce for z = 0, 2.05
pup/Ce for z = 0.25 and 0.3. In this concentration range, magnetization
curves at 4.2 K show ferromagnetic behavior. Thus magnetic moment of
Ce is originated by Ce®* ions with the effect of CEF. Ferromagnetic state
disappears at about z = 0.4 from the result of ac magnetic susceptibility as
shown in Fig. 2(b). The inset in Fig. 2(a) shows the z—T phase diagram.
Above x = 0.4, effective magnetic moment decreases (peg = 1.1up/Ce for
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Fig.2. Lattice constant (a) and temperature dependence of ac magnetic suscepti-
bility (b) in (Y,Cei—_;)7Rhs. The inset (a) shows z—T phase diagram.

x = 0.5 and 0.99 up/Ce for z = 0.9, respectively). These results indi-
cate that the intermediate valence state may exist above £=0.5. Trovarelli
et.al., suggested that in Ce;Rhg, each sublattce contributes to intermediate
valence (Cery), Kondo effect (Cerp) and magnetic ordering (Cer) due to the
difference of Ce—Ce atomic distance [3]. In (Y;Cej_,)7Rhs system, there is
no change in X ray diffraction pattern and lattice constant decreases con-
tinuously with increasing z as shown in Fig. 2(a). Lattice constant ratio
is constant in entire concentration range. Thus, preferential substitution of
Ce ions by Y does not appear. However, since interatomic distance between
Ce ions decreases continuously with increasing z, RKKY interaction is sup-
pressed and intermediate valence state between Ce3t and Ce?T can occur
above z = 0.5.

Electrical resistivity p is shown in Fig. 3 as a function of temperature.
At x = 0, resistivity decreases with decreasing temperature, exhibits mini-
mum at about 23 K and an anomaly is observed at T¢. This indicates that
the Kondo scattering is suppressed by RKKY interaction and ferromagnetic
state is stabilized at low temperature. Resistivity increases with increasing x
at room temperature and temperature coefficient of resistivity changes from
positive to negative at about z = 0.5. Concerning the temperature variation
of resistivity in Y7Rhs, negative temperature coefficient of resistivity at room
temperature is attributed to the semimetallic band structure having narrow
band gap and electron-hole pockets. Namely, thermal excitation of electrons
due to narrow band gap brings about the semiconductive resistivity varia-
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Fig. 3. Electrical resistivity for (Y,Ce;_,)7Rhs as a function of temperature.

tion at high temperature. At low temperature, thermal excitation is reduced
and metallic conduction is recovered by carriers in conduction band [4]. High
resistivity value in Y7Rhs indicates the low carrier semimetallic band struc-
ture. In (Y,;Ce;_,)7Rhg, though the same temperature variation of p as
Y~7Rh3 is observed in z = 0.98, low temperature resistivity is pushed up
with decreasing z and resistivity maximum disappears below x = 0.9. Con-
sidering the change of band structure in (Y,Cej_,)7Rh3, low temperature
resistivity increase may be attributed to the impurity Kondo effect. From
these, in (Y;Cej_,)7Rhs, electronic band structure changes from metallic
to semimetallic at about x = 0.5 with increasing x, where ferromagnetic
state vanishes. The change of magnetic properties can be originated by the
decrease of minimum Ce—Ce interatomic distance and coexistence of inter-
mediate valence and impurity Kondo state may exist in semimetallic band
structure above x = 0.5. For further investigation, measurement of Hall
effect is now in progress.
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