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NQR AND �SR IN DILUTED TWO-DIMENSIONALS = 1=2 HEISENBERG ANTIFERROMAGNETS�P. Carretta, A. Rigamonti, E. TodeshiniDipartimento di Fisia �A. Volta� � INFM Unitá di PaviaVia Bassi 6, 27100 Pavia, Italyand L. MalavasiDipartimento di Chimia Fisia, Via Taramelli 10, 27100 Pavia, Italy(Reeived July 10, 2002)139La NQR spetra and relaxation and �SR preessional frequenies inLa2Cu1�xMxO4 (for M= Zn and Mg) are reported in order to study thee�et of spin dilution in the planar quantum Heisenberg antiferromagnet(2DQHAF) La2CuO4. The behavior of the spin sti�ness �s(x) and of thein-plane orrelation length �2D(x; T ), of the sublattie magnetization and ofthe Néel temperature, for a dilution approahing the perolation thresholddepart sizeably from the ones expeted in dilution-like models. In spite ofthe marked redution of �s the transition to the ordered state ours at atemperature, where �2D(x; TN) reahes a value lose to the one in undoped2DQHAF.PACS numbers: 76.60.Es, 75.40.Gb, 75.10.Jm, 75.50.Ee1. IntrodutionThe behavior of harateristi magneti properties, suh as spin sti�-ness �s and in-plane orrelation length �2D, in pure as well as in hargeand/or spin disordered two-dimensional quantum Heisenberg antiferromag-nets (2DQHAF) has reently attrated a great deal of interest. It has beenproved [1�3℄ that 139La NQR relaxation in La2Cu1�xZnxO4 allows to derivethe temperature and doping dependene of �2D(x; T ). The main onlu-sions were that for x � 0:1 �2D follows the T -dependene expeted in therenormalized lassial (RC) regime, with �s and the spin-wave veloity swrenormalized by quantum �utuations, with respet to the mean �eld values.A simple dilution like model was found to aount for most of the experi-mental �ndings [3℄. Of partiular interest is the range of strong dilution so� Presented at the International Conferene on Strongly Correlated Eletron Systems,(SCES02), Craow, Poland, July 10�13, 2002.(1417)



1418 P. Carretta et al.that the perolation threshold, where no 3D long range order is developed,is approahed. In this report we extend the 139La NQR and �SR measure-ments to La2CuO4 with Mg2+ (S = 0) for Cu2+ (S = 1=2) substitution toan extent x ' 0:3. 2. Experimental resultsThe 139La NQR spetra and �SR preessional frequenies were used toextrat the Néel temperature TN(x) (Fig. 1(a)) and the sublattie mag-netization, namely the expetation value h�(x; T ! 0)i (Fig. 1(b)) (fordetails on the proedure see Ref. [1℄). For low dilution levels one has(�1=TN(0))(dTN(x)=dx) ' 3:2, as expeted for an e�etive HamiltonianH = Je�(x)Xi;j ~Si � ~Sj = J(1� x)2Xi;j ~Si � ~Sj : (1)For x � 0:25 a lear departure ours, onsistent with a perolation thresholdat x = 0:41. The normalized sublattie magnetizationm = h�(x; 0)i=h�(0; 0)i(Fig. 1(b)) is ompared to reent evaluations, arried out in the frameworkof di�erent theoretial models. Only the behavior predited for m withinspin wave theory seems to model the experimental �ndings. We point outthat reent neutron sattering data, up to x ' 0:42 [4℄ qualitatively supportour observation.
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xFig. 1. (a) Néel temperature in La2Cu1�x(Mg,Zn)xO4. The dotted line is thebehavior expeted within the dilution model. (b) Sublattie magnetization as afuntion of spin dilution. The solid line was derived from quantum Monte Carlosimulations [6℄, the dashed line from spin-wave theory [7℄, the dotted line in theframework of an e�etive quantum non-linear � model [8℄.



NQR and �SR in Diluted Two-Dimensional . . . 1419139La NQR relaxation rate 2W , for x = 0:3, is reported in Fig. 2. Fromthe omparison of the reovery laws for the 2�Q and 3�Q resonane lines [5℄ ithas been proved that below T ' 140 K the relaxation proess is of magnetiorigin, i.e. driven by the time-dependene of the hyper�ne magneti �elddue to Cu2+ spins. The phonon ontribution to the relaxation mehanism,whih yields 2W / T 2, was subtrated to analyze the experimental data.
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T(K)Fig. 2. Temperature dependene of 139La NQR spin-lattie relaxation rate inLa2Cu0:7Mg0:3O4. The solid line shows the phonon ontribution to the relaxation.3. Disussion and onlusionsThe relaxation rate 2W an be related to �2D(x; T ) along lines analogousto the ones already used [2, 3℄ for pure and lightly doped 2DQHAF. Theform fator relating 2W to the generalized spin suseptibility was assumedjA~qj2 ' 106 Gauss2. Thus, one an write 2W ' 3:3� 10�3(�2D=a)zs�1 (a isthe lattie step). The dynamial saling exponent z was taken z = 1, as forundoped or lightly doped 2DQHAF. The behavior of �2D(x; T ) (see Fig. 3)is lose to the one expeted in the RC regime:�2D=a = ~sw16�kB�s e 2��s(x)T �1� 0:5 T2��s(x)� : (2)In Fig. 3 the values �2D(x; TN(x)) estimated from the mean-�eld ar-gument (�2D(x; TN(x))=a)2J?(1 � x)2 = TN(x) are also reported. It anbe onluded that also for high dilution �2D follows rather well Eq. (2),having left �s(x) as an adjustable parameter. The values of �s(x) are re-ported in Fig. 3. It is noted that in the strongly diluted regime, x � 0:1,
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