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NOVEL EXTRAPOLATIONFOR STRONG COUPLING EXPANSIONS�K.P. Shmidt, C. Knetter and G.S. UhrigInstitut für Theoretishe Physik, Zülpiher Str. 77, 50937 Köln, Germany(Reeived July 10, 2002)We present a novel extrapolation sheme for high order series expan-sions. The idea is to express the series, obtained in orders of an externalvariable, in terms of an internal parameter of the system. Here we applythis method to the 1-triplet dispersion in an antiferromagneti S = 1=2Heisenberg ladder. By the use of the internal parameter the auray ofthe trunated series is enhaned tremendously.PACS numbers: 75.40.Gb, 74.25.Ha, 75.10.Jm, 02.30.Mv1. IntrodutionHigh order series expansions have beome a powerful tool in the �eldof strongly orrelated eletron systems [1℄. Espeially in low dimensionalquantum spin systems signi�ant progress has been ahieved, see e.g. [2-6℄.Usually the obtained trunated series must be extrapolated using variousextrapolation shemes in order to obtain results for the physially interest-ing regions [7℄. Albeit these extrapolations are a standard tehnique theyalways introdue some unertainty about the results. Therefore, a generaltransformation sheme whih allows to read o� the information ontent ofthe high order series more diretly is highly desirable. Here we will proposesuh a general sheme. Its usefulness will be demonstrated for the 1-tripletdispersion in antiferromagneti 2-leg S = 12 Heisenberg ladders. The serieswas obtained previously by various tehniques [2,4,5℄; we used a perturbativeontinuous unitary transformation (CUT) [3℄.The Hamiltonian for the antiferromagneti 2-leg Heisenberg ladder readsH =Xi �Jk (S1;iS1;i+1 + S2;iS2;i+1) + J?S1;iS2;i� ; (1)� Presented at the International Conferene on Strongly Correlated Eletron Systems,(SCES02), Craow, Poland, July 10�13, 2002.(1481)



1482 K.P. Shmidt, C. Knetter, G.S. Uhrigwhere Jk and J? are the exhange ouplings on the legs and on the rungs,respetively. The subsript i denotes the rungs and the subsript 1; 2 thelegs of the ladder.We use a CUT to map the Hamiltonian H to an e�etive HamiltonianHe� whih onserves the number of rung-triplets, i.e. [H0;He� ℄ = 0 whereH0 := HjJk=0 [3℄. The ground state of He� is the rung-triplet vauum.The e�etive Hamiltonian He� is alulated in the 1-triplet subspae of theHilbert spae to order 14 in x := Jk=J?. The ground state energy E0 =h0jHe� j0i and the 1-triplet dispersion !(k) = hkjHe� jki � E0 is obtained[2,4,5℄. The 1-triplet dispersion is expressed in terms of the 1-triplet hoppingamplitudes tn(x) = hijHe� ji+ ni where jii denotes the state with one tripleton rung i !(k)J? =Xn tn(x) os(nk) : (2)The 1-triplet dispersion has a minimum for k = �, i.e. the 1-triplet gap�(x) given by !(�). In Fig. 1(a), the results for �(x) are shown. Thetrunated series for �(x) yields a satisfatory agreement up to x � 0:6.Beyond this value it annot be used as estimate for the value of the gap.More sophistiated extrapolation shemes, however, still work �ne.
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Fig. 1. (a) Gap �(x)=J?. The solid and the dotted urves result from a [7,7℄,[6,8℄ and a [8,6℄ dlogPadé approximant, respetively, assuming onstant behavioron x ! 1. The long-dashed urve depits the trunated series. (b) Dispersionrelation !(k) in units of J? + Jk for the ouplings x = Jk=J? = 0:2; 0:4; : : : ; 1:6.The highest plot at k = � is x = 0:2 and the lowest plot is x = 1:6. The long-dashed urve is the limit of isolated hains (x = 1), i.e. the Cloizeaux�Pearsonresult (�=2) sin(k) [10℄.



Novel Extrapolation for Strong Coupling Expansions 14832. Extrapolation sheme and resultsGenerially, the various physial quantities in a given system depend ina ompliated way on the external ontrol parameters. Expanding the quan-tities under study in terms of one of the external ontrol parameters, let ussay x, yields the bare, trunated series whih an only rarely be diretly usedto ompute the quantities. This is so sine singularities indued by phasetransitions easily spoil the onvergene of the series. For instane, a orre-lation length diverges and the orresponding energy gap loses rendering anexpansion about the gapped phase di�ult.If the onvergene of the series is deteriorated due to an inipient phasetransition it is reasonable to assume that all quantities in the partiular sys-tem behave in a similar fashion. If this is so we may proeed in two separatesteps: (i) We extrapolate an internal parameter whih may serve as a mea-sure of the distane to the phase transition as reliably as we an. Thereby,we an attribute reliably to a given value of x the orresponding value of theinternal parameter. (ii) We express all other quantities as funtions of theinternal parameter. Aording to our argument the latter funtional depen-denies are expeted to be muh simpler, i.e. they are muh less singular.The anonial andidate for the internal parameter measuring the distaneto a phase transition or, more generally, to some singular situation is theenergy gap �. It is inversely proportional to the orrelation length � whihplays the role of the internal ontrol parameter in standard renormalizationgroup treatments.In the following, we illustrate for the 1-triplet dispersion of the modelin (1) that this sheme works indeed stunningly well. The gap �(x) an beextrapolated reliably up to x � 2 using dlogPadé-approximants, Fig. 1(a).In this extrapolation we an exploit additional properties of the gap suhas its positivity and its asymptoti behavior for x ! 1. In this way, veryreliable extrapolations are possible (Fig. 1(a)) so that step (i) is suessfullysolved. Note that �(x) in units of J? does not vanish on x !1 but rests�nite [8, 9℄.For step (ii) we de�nep(x) = 1��(x)=((1 + x)J?) = 1��(x)=(Jk + J?) : (3)In units of Jk + J? the gap is unity at x = 0 and it goes to zero on x!1.So p(x) varies monotonially between 0 and 1 when x is inreased from 0 to1. Note that p = 1, i.e. x =1, onstitutes the limit where the spin ladderbeomes a system of two isolated spin hains. Sine one has p / x for smallx any expansion in x an be rewritten as expansion in p of the same order asthe series in x, yet with other oe�ients! This is done by inverting Eq. (3),thus ompleting the seond step.



1484 K.P. Shmidt, C. Knetter, G.S. UhrigWe applied the extrapolation sheme proposed above to the expansionsof the 1-triplet hopping amplitudes tn in Eq. (2) whih yields the 1-tripletdispersion !(k; p). In Fig. 1(b) the results are depited for the trunatedseries in p without any further extrapolation! For x < 0:6 the dispersionis a monotoni dereasing funtion in k whereas for larger values of x aharateristi dip at k = 0 appears. For omparison, the limiting ase ofisolated hains is also inluded [10℄. The main point is that the trunatedseries in p gives a quantitatively orret 1-triplet dispersion up to x � 1:2(f. Ref. [2℄) and qualitatively good results up to x � 2 while the trunatedseries in x an be trusted only up to x � 0:6.3. ConlusionWe presented a novel generally appliable extrapolation sheme for highorder series expansions. The basi idea is to use an internal ontrol pa-rameter instead of an external ontrol parameter as expansion variable. Alldi�ulties stemming from singularities are dealt with in the determinationof the dependene of the internal parameter on the external one.The power of the novel sheme was demonstrated for the 1-triplet dis-persion of the antiferromagneti S = 12 2-leg Heisenberg ladder. Furtherinvestigations on other quantities and systems are in progress. In addition,the use of standard extrapolation tehniques on the series in the internalparameter onstitutes a very promising route to extend the appliability ofstrong oupling expansions.We are indebted to H. Monien and E. Müller-Hartmann for helpful dis-ussions and to the DFG for �nanial support in SP 1073 and in SFB 608.REFERENCES[1℄ M.P. Gelfand, R.R.P. Singh, Adv. Phys. 49, 93 (2000).[2℄ J. Oitmaa, R.P. Singh, Z. Weihong, Phys. Rev. B54, 1009 (1996).[3℄ C. Knetter, G.S. Uhrig, Eur. Phys. J. B13, 209 (2000).[4℄ S. Trebst et al., Phys. Rev. Lett. 85, 4373 (2000).[5℄ C. Knetter, K.P. Shmidt, M. Grüninger, G.S. Uhrig, Phys. Rev. Lett. 87,167204 (2001).[6℄ K.P. Shmidt, C. Knetter, G.S. Uhrig, Eur. Phys. Lett. 56, 877 (2001).[7℄ C. Domb, J.L. Lebowitz, Phase Transitions and Critial Phenomena Vol. 13,Aademi Press Limited, San Diego 1983, p.3.[8℄ D.G. Shelton, A.A. Nersesyan, A.M. Tsvelik, Phys. Rev. B53, 8521 (1996).[9℄ M. Greven, R.J. Birgeneau, U.-J. Wiese, Phys. Rev. Lett. 77, 1865 (1996).[10℄ J. Cloizeaux, J.J. Pearson, Phys. Rev. 128, 2131 (1962).


