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NOVEL EXTRAPOLATIONFOR STRONG COUPLING EXPANSIONS�K.P. S
hmidt, C. Knetter and G.S. UhrigInstitut für Theoretis
he Physik, Zülpi
her Str. 77, 50937 Köln, Germany(Re
eived July 10, 2002)We present a novel extrapolation s
heme for high order series expan-sions. The idea is to express the series, obtained in orders of an externalvariable, in terms of an internal parameter of the system. Here we applythis method to the 1-triplet dispersion in an antiferromagneti
 S = 1=2Heisenberg ladder. By the use of the internal parameter the a

ura
y ofthe trun
ated series is enhan
ed tremendously.PACS numbers: 75.40.Gb, 74.25.Ha, 75.10.Jm, 02.30.Mv1. Introdu
tionHigh order series expansions have be
ome a powerful tool in the �eldof strongly 
orrelated ele
tron systems [1℄. Espe
ially in low dimensionalquantum spin systems signi�
ant progress has been a
hieved, see e.g. [2-6℄.Usually the obtained trun
ated series must be extrapolated using variousextrapolation s
hemes in order to obtain results for the physi
ally interest-ing regions [7℄. Albeit these extrapolations are a standard te
hnique theyalways introdu
e some un
ertainty about the results. Therefore, a generaltransformation s
heme whi
h allows to read o� the information 
ontent ofthe high order series more dire
tly is highly desirable. Here we will proposesu
h a general s
heme. Its usefulness will be demonstrated for the 1-tripletdispersion in antiferromagneti
 2-leg S = 12 Heisenberg ladders. The serieswas obtained previously by various te
hniques [2,4,5℄; we used a perturbative
ontinuous unitary transformation (CUT) [3℄.The Hamiltonian for the antiferromagneti
 2-leg Heisenberg ladder readsH =Xi �Jk (S1;iS1;i+1 + S2;iS2;i+1) + J?S1;iS2;i� ; (1)� Presented at the International Conferen
e on Strongly Correlated Ele
tron Systems,(SCES02), Cra
ow, Poland, July 10�13, 2002.(1481)
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hange 
ouplings on the legs and on the rungs,respe
tively. The subs
ript i denotes the rungs and the subs
ript 1; 2 thelegs of the ladder.We use a CUT to map the Hamiltonian H to an e�e
tive HamiltonianHe� whi
h 
onserves the number of rung-triplets, i.e. [H0;He� ℄ = 0 whereH0 := HjJk=0 [3℄. The ground state of He� is the rung-triplet va
uum.The e�e
tive Hamiltonian He� is 
al
ulated in the 1-triplet subspa
e of theHilbert spa
e to order 14 in x := Jk=J?. The ground state energy E0 =h0jHe� j0i and the 1-triplet dispersion !(k) = hkjHe� jki � E0 is obtained[2,4,5℄. The 1-triplet dispersion is expressed in terms of the 1-triplet hoppingamplitudes tn(x) = hijHe� ji+ ni where jii denotes the state with one tripleton rung i !(k)J? =Xn tn(x) 
os(nk) : (2)The 1-triplet dispersion has a minimum for k = �, i.e. the 1-triplet gap�(x) given by !(�). In Fig. 1(a), the results for �(x) are shown. Thetrun
ated series for �(x) yields a satisfa
tory agreement up to x � 0:6.Beyond this value it 
annot be used as estimate for the value of the gap.More sophisti
ated extrapolation s
hemes, however, still work �ne.
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Fig. 1. (a) Gap �(x)=J?. The solid and the dotted 
urves result from a [7,7℄,[6,8℄ and a [8,6℄ dlogPadé approximant, respe
tively, assuming 
onstant behavioron x ! 1. The long-dashed 
urve depi
ts the trun
ated series. (b) Dispersionrelation !(k) in units of J? + Jk for the 
ouplings x = Jk=J? = 0:2; 0:4; : : : ; 1:6.The highest plot at k = � is x = 0:2 and the lowest plot is x = 1:6. The long-dashed 
urve is the limit of isolated 
hains (x = 1), i.e. the Cloizeaux�Pearsonresult (�=2) sin(k) [10℄.
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heme and resultsGeneri
ally, the various physi
al quantities in a given system depend ina 
ompli
ated way on the external 
ontrol parameters. Expanding the quan-tities under study in terms of one of the external 
ontrol parameters, let ussay x, yields the bare, trun
ated series whi
h 
an only rarely be dire
tly usedto 
ompute the quantities. This is so sin
e singularities indu
ed by phasetransitions easily spoil the 
onvergen
e of the series. For instan
e, a 
orre-lation length diverges and the 
orresponding energy gap 
loses rendering anexpansion about the gapped phase di�
ult.If the 
onvergen
e of the series is deteriorated due to an in
ipient phasetransition it is reasonable to assume that all quantities in the parti
ular sys-tem behave in a similar fashion. If this is so we may pro
eed in two separatesteps: (i) We extrapolate an internal parameter whi
h may serve as a mea-sure of the distan
e to the phase transition as reliably as we 
an. Thereby,we 
an attribute reliably to a given value of x the 
orresponding value of theinternal parameter. (ii) We express all other quantities as fun
tions of theinternal parameter. A

ording to our argument the latter fun
tional depen-den
ies are expe
ted to be mu
h simpler, i.e. they are mu
h less singular.The 
anoni
al 
andidate for the internal parameter measuring the distan
eto a phase transition or, more generally, to some singular situation is theenergy gap �. It is inversely proportional to the 
orrelation length � whi
hplays the role of the internal 
ontrol parameter in standard renormalizationgroup treatments.In the following, we illustrate for the 1-triplet dispersion of the modelin (1) that this s
heme works indeed stunningly well. The gap �(x) 
an beextrapolated reliably up to x � 2 using dlogPadé-approximants, Fig. 1(a).In this extrapolation we 
an exploit additional properties of the gap su
has its positivity and its asymptoti
 behavior for x ! 1. In this way, veryreliable extrapolations are possible (Fig. 1(a)) so that step (i) is su

essfullysolved. Note that �(x) in units of J? does not vanish on x !1 but rests�nite [8, 9℄.For step (ii) we de�nep(x) = 1��(x)=((1 + x)J?) = 1��(x)=(Jk + J?) : (3)In units of Jk + J? the gap is unity at x = 0 and it goes to zero on x!1.So p(x) varies monotoni
ally between 0 and 1 when x is in
reased from 0 to1. Note that p = 1, i.e. x =1, 
onstitutes the limit where the spin ladderbe
omes a system of two isolated spin 
hains. Sin
e one has p / x for smallx any expansion in x 
an be rewritten as expansion in p of the same order asthe series in x, yet with other 
oe�
ients! This is done by inverting Eq. (3),thus 
ompleting the se
ond step.
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hmidt, C. Knetter, G.S. UhrigWe applied the extrapolation s
heme proposed above to the expansionsof the 1-triplet hopping amplitudes tn in Eq. (2) whi
h yields the 1-tripletdispersion !(k; p). In Fig. 1(b) the results are depi
ted for the trun
atedseries in p without any further extrapolation! For x < 0:6 the dispersionis a monotoni
 de
reasing fun
tion in k whereas for larger values of x a
hara
teristi
 dip at k = 0 appears. For 
omparison, the limiting 
ase ofisolated 
hains is also in
luded [10℄. The main point is that the trun
atedseries in p gives a quantitatively 
orre
t 1-triplet dispersion up to x � 1:2(
f. Ref. [2℄) and qualitatively good results up to x � 2 while the trun
atedseries in x 
an be trusted only up to x � 0:6.3. Con
lusionWe presented a novel generally appli
able extrapolation s
heme for highorder series expansions. The basi
 idea is to use an internal 
ontrol pa-rameter instead of an external 
ontrol parameter as expansion variable. Alldi�
ulties stemming from singularities are dealt with in the determinationof the dependen
e of the internal parameter on the external one.The power of the novel s
heme was demonstrated for the 1-triplet dis-persion of the antiferromagneti
 S = 12 2-leg Heisenberg ladder. Furtherinvestigations on other quantities and systems are in progress. In addition,the use of standard extrapolation te
hniques on the series in the internalparameter 
onstitutes a very promising route to extend the appli
ability ofstrong 
oupling expansions.We are indebted to H. Monien and E. Müller-Hartmann for helpful dis-
ussions and to the DFG for �nan
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