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We have found an efficient algorithm for high temperature expansion
of the SU(n) Heisenberg model, using properties of permutation. We also
comment on the n — oo limit.
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1. Introduction

The high temperature expansion is the Taylor expansion in inverse tem-
perature around the high-temperature limit. It can be used to any interac-
tion in any dimensions, and has provided significant information on variety
of models [1]. Recently, we have found an efficient algorithm to carry out
the high-temperature expansion for the SU(n) Heisenberg model. In Ref. [2],
we have applied the algorithm to the one dimensional (1D) system, and ob-
tained high order coefficients.

2. Model

We consider a generalized Heisenberg model that has SU(n) symmetry.
When n = 2, the model is equivalent to the ordinary SU(2) Heisenberg
model. Let each site take one of the m colors, and denote them as |«)
with @ = 1,2,---,n. We define X := |a)(3| and an exchange operator
Pij =0 1251 X?BX].BO‘, for i # j. Colors of sites i and j are exchanged
by P; ;. The Hamiltonian for the SU(n) Heisenberg model in 1D is given by

N-1

H:=J> P+ JPy. (1)
i=1
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In general, when there are n states per site, the maximum number of in-
dependent interacting components is n? — 1. The model, isotropic with
respect to these components, is the SU(n) Heisenberg model. Hereafter,
Z :=Tr e PM denotes the partition function, and (---) := Tr (--- e #*) /Z
denotes the average in this system. To investigate the specific heat, we cal-
culate (P; ;1) because the internal energy is obtained by (H) = NJ(P; it1).

Furthermore, to investigate a correlation function (X' h Xf ), we calcu-
late (P; ;) because there is a relation, (XzaﬂXfa) = 5 —~({(Pi;) —n1), for

n2—1

a # B,i # j. In addition, for i # j, (XlaﬂXfa) =1/n.

3. High temperature expansion

We use the finite cluster method for the high temperature expansion.
That is, series coefficients in the thermodynamic limit are exactly obtained
by summing up all the non-zero contribution from each finite-size cluster.
The cluster of size £ is defined by Hy := J Zf;ll P;iy1, and (- - -)p denotes the
thermal average using Hy. In 1D, it is reduced to a simple equation. Namely,
the formula Zf;f(]’i7i+m)g — Zgi_ll)_m<13i7i+m)g,1 gives correct coefficients of
(Py12) up to O[(BI)?=271].

In order to obtain the series expansion of (P; ;) up to O[(8J)M], we need
to calculate Tr{(H,)™} and Tr{P;;(H,)™} for 0 < m < M. The traces
are calculated by decomposing a permutation into a product of independent
cyclic permutations [3,4| as explained in the following. Let us consider a
trace of P := P; ; P, j, -+ B, j,., with Tr(® denoting the trace in the £-site
system,

n n
1 2 )4 1 2 4
Op — Z"'Z<a1a2"'ae|P|ala2"'al)

ar=1 ap=1
" 1 £, 1 2 ¢
= > o) (aray - ag | aprapy -+ apg), (2)
ar=1 ap=1

where ap; refers to the color at position ¢ after the permutation P. The sum-
mation of a; makes a contribution only when a; = ap; for every 7. Consider
using this relation successively starting from 4. That is, a; is equal to ap;,
and then ap; is equal to ap2,;, ..., one can repeat this procedure until com-
ing back to «; at a certain power of P, namely, o; = ap; = ap2; =+ = q;.
In other words, all the variables whose subscript belongs to one cyclic per-
mutation in P have to be equal. Since any permutation is decomposed into
a product of independent cyclic permutations, the number of the indepen-
dent variables of the summation is the number Y (P) of cyclic permutations
of P. Therefore the trace is given by, TOp = p¥® ), and accordingly,
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(P); = TeO P/Te()1 = nY(P)~L_ This equation has been used for the Hand-
scomb’s Monte Carlo [3]. It was also used for the high temperature expan-
sion [4] for the ferromagnetic SU(n) Heisenberg model in three dimension
to calculate the specific heat and the uniform susceptibility up to O[(8.J)%].
To investigate the antiferro-interaction model [2], we have calculated wave-
number ¢ # 0 components of the correlation function up to high orders. It
requires a further refinement of the algorithm.

If we first expand (H,)™ and apply the relation above, large clusters have
too many terms — e.g. m = 22 and £ = 11 make (£ — 1)™ = 10?? terms.
The calculation then consumes too much time. The point is to operate the
Hamiltonian order by order. Since the Hamiltonian #, has only permutation
operators, after H, is operated m times to |ajas - - - ay), the expression is
written with proper coefficients a,,  (0: permutation) as

(Hf)m|a10‘20‘3 s 045) = am’123...g|a1a2a3 e al)
+(Zm7231...g|052043051 ceeay)
+am 312--elazoiaz -+ - ap)
+...... . (3)

Assuming we know the coefficients a,, , the trace is calculated by counting
the number of cycles of permutation of each term in the r.h.s. of Eq. (3),
namely,

T4 H)™ =) amen’ . (4)

This method has an advantage that contribution from |, e, - - - @) is cal-
culated only once, instead of a, ;,4,...;, times. Therefore, we carry out the
calculation with the following manner. First, in order to regard a,, , as an
array, give a specific number to every permutation ¢ of numbers 1,2,..., 4.
For example, one can regard ¢ as an ¢-digits number of base #; or, one can
use a number whose p-th digit is of base p. In any case, these numbers can
be very large in general. In the practical calculation, however, the array is
extremely sparse and it can be compressed. We prepare an array to store
the pointers in the ascending order and another array for the coefficients.
Every time using the array, we use a binary search, which requires log, N,
steps for an array with length N, and thus it does not consume too much
time. Then, start from |ajaq - -- ay), operate Hy, calculate the trace, and
go to the next order; repeat this procedure up to the desired order. This
method extremely decreases the number of terms in the array — e.g. 22-nd
power of Hy—q11 requires only 4903704 terms.

Lastly, we comment on the limit of n — oco. In Ref. [2], we have obtained
the specific heat by calculating the free energy. In this limit, the procedure
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is simplified because only the identity permutation has contribution. Odd
permutations do not contribute, that is, coefficients of J™ with odd m are
equal to zero. Suppose we know a, , in Eq. (3) for all o for given m. Since
(He)?™ = (Ho)™(H¢)™, then o in (H)™ has to make a product with o~ ! in
the other (H;)™ in order to make an identity permutation. Therefore,

nlggo <(H[)2m> = G2m,identity = Z Am,ocAm,o—1- (5)
o

Let us think about a,, ,-1. Any product P of P;;’s in (H;)™, any combi-
nation of P;;’s, has a one-to-one correspondence with a product made by
reversing the order of P; ;’s in P, and the reversed product is nothing but
P~L. This one-to-one correspondence leads to @, , = a1 In the end,
we obtain,

lim ((He)*™) =Y (amq)™. (6)

n— 00
a

Note that the limit n — oo corresponds to 8.J < n, because the limit is
taken with fixed S. Therefore, the limit § — oo (T — 0) after n — oo is
not necessarily the same as the n — oo limit of the ground state. Hence we
expect that the n — oo limit of a function of 8 is not uniformly convergent
around T ~ 0 just like the specific heat of the 1/r2-model commented in
Ref. [2].

4. Conclusion

We have formulated the high temperature expansion for the SU(n)
Heisenberg model, which is a fundamental model of orbitally degenerate
systems with the multiplicity n per site. In our algorithm, neither compu-
tational time nor memory depends on n; the series coefficients are explicit
functions of n. Furthermore, n — oo is related to a simple combinatorial
problem counting the identity permutation. Thus, our method is useful to
investigate systematically from n = 2 to n — oo. We expect that the explicit
n-dependence will help us to extrapolate the series to low temperature.
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