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HIGH TEMPERATURE SERIES EXPANSIONFOR ORBITALLY DEGENERATE SYSTEMS�Noboru FukushimaMax-Plan
k-Institut für Physik Komplexer SystemeNöthnitzer Straÿe 38, D-01187 Dresden, Germany(Re
eived July 10, 2002)We have found an e�
ient algorithm for high temperature expansionof the SU(n) Heisenberg model, using properties of permutation. We also
omment on the n!1 limit.PACS numbers: 71.70.Gm, 75.10.Jm1. Introdu
tionThe high temperature expansion is the Taylor expansion in inverse tem-perature around the high-temperature limit. It 
an be used to any intera
-tion in any dimensions, and has provided signi�
ant information on varietyof models [1℄. Re
ently, we have found an e�
ient algorithm to 
arry outthe high-temperature expansion for the SU(n) Heisenberg model. In Ref. [2℄,we have applied the algorithm to the one dimensional (1D) system, and ob-tained high order 
oe�
ients. 2. ModelWe 
onsider a generalized Heisenberg model that has SU(n) symmetry.When n = 2, the model is equivalent to the ordinary SU(2) Heisenbergmodel. Let ea
h site take one of the n 
olors, and denote them as j�iwith � = 1; 2; � � � ; n. We de�ne X�� := j�ih�j and an ex
hange operatorPi;j :=Pn�=1Pn�=1X��i X��j , for i 6= j. Colors of sites i and j are ex
hangedby Pi;j. The Hamiltonian for the SU(n) Heisenberg model in 1D is given byH := J N�1Xi=1 Pi;i+1 + JP1;N : (1)� Presented at the International Conferen
e on Strongly Correlated Ele
tron Systems,(SCES02), Cra
ow, Poland, July 10�13, 2002.(1489)



1490 N. FukushimaIn general, when there are n states per site, the maximum number of in-dependent intera
ting 
omponents is n2 � 1. The model, isotropi
 withrespe
t to these 
omponents, is the SU(n) Heisenberg model. Hereafter,Z := Tr e��H denotes the partition fun
tion, and h� � �i := Tr �� � � e��H� =Zdenotes the average in this system. To investigate the spe
i�
 heat, we 
al-
ulate hPi;i+1i be
ause the internal energy is obtained by hHi = NJhPi;i+1i.Furthermore, to investigate a 
orrelation fun
tion hX��i X��j i, we 
al
u-late hPi;ji be
ause there is a relation, hX��i X��j i = 1n2�1(hPi;ji � n�1); for� 6= �; i 6= j. In addition, for i 6= j, hX��i X��i i = 1=n.3. High temperature expansionWe use the �nite 
luster method for the high temperature expansion.That is, series 
oe�
ients in the thermodynami
 limit are exa
tly obtainedby summing up all the non-zero 
ontribution from ea
h �nite-size 
luster.The 
luster of size ` is de�ned by H` := JP`�1i=1 Pi;i+1, and h� � �i` denotes thethermal average usingH`. In 1D, it is redu
ed to a simple equation. Namely,the formulaP`�xi=1 hPi;i+xi`�P(`�1)�xi=1 hPi;i+xi`�1 gives 
orre
t 
oe�
ients ofhPi;i+xi up to O[(�J)2`�x�1℄.In order to obtain the series expansion of hPi;ji up to O[(�J)M ℄, we needto 
al
ulate Trf(H`)mg and TrfPi;j(H`)mg for 0 � m � M . The tra
esare 
al
ulated by de
omposing a permutation into a produ
t of independent
y
li
 permutations [3, 4℄ as explained in the following. Let us 
onsider atra
e of P := Pi1;j1Pi2;j2 � � �Pim;jm , with Tr(`) denoting the tra
e in the `-sitesystem, Tr(`)P := nX�1=1 � � � nX�`=1h 1�1 2�2 � � � �̀` jP j 1�1 2�2 � � � �̀`i= nX�1=1 � � � nX�`=1h 1�1 2�2 � � � �̀` j 1�P1 2�P2 � � � `�P`i; (2)where �Pi refers to the 
olor at position i after the permutation P . The sum-mation of �i makes a 
ontribution only when �i = �Pi for every i. Considerusing this relation su

essively starting from i. That is, �i is equal to �Pi,and then �Pi is equal to �P 2i, . . . , one 
an repeat this pro
edure until 
om-ing ba
k to �i at a 
ertain power of P , namely, �i = �Pi = �P 2i = � � � = �i.In other words, all the variables whose subs
ript belongs to one 
y
li
 per-mutation in P have to be equal. Sin
e any permutation is de
omposed intoa produ
t of independent 
y
li
 permutations, the number of the indepen-dent variables of the summation is the number Y (P ) of 
y
li
 permutationsof P . Therefore the tra
e is given by, Tr(`)P = nY (P ), and a

ordingly,



High Temperature Series Expansion : : : 1491hP i` = Tr(`)P=Tr(`)1 = nY (P )�`: This equation has been used for the Hand-s
omb's Monte Carlo [3℄. It was also used for the high temperature expan-sion [4℄ for the ferromagneti
 SU(n) Heisenberg model in three dimensionto 
al
ulate the spe
i�
 heat and the uniform sus
eptibility up to O[(�J)8℄.To investigate the antiferro-intera
tion model [2℄, we have 
al
ulated wave-number q 6= 0 
omponents of the 
orrelation fun
tion up to high orders. Itrequires a further re�nement of the algorithm.If we �rst expand (H`)m and apply the relation above, large 
lusters havetoo many terms � e.g. m = 22 and ` = 11 make (` � 1)m = 1022 terms.The 
al
ulation then 
onsumes too mu
h time. The point is to operate theHamiltonian order by order. Sin
e the Hamiltonian H` has only permutationoperators, after H` is operated m times to j�1�2 � � ��`i, the expression iswritten with proper 
oe�
ients am;� (�: permutation) as(H`)mj�1�2�3 � � ��`i = am;123���`j�1�2�3 � � ��`i+am;231���`j�2�3�1 � � ��`i+am;312���`j�3�1�2 � � ��`i+ : : : : : : : (3)Assuming we know the 
oe�
ients am;� the tra
e is 
al
ulated by 
ountingthe number of 
y
les of permutation of ea
h term in the r.h.s. of Eq. (3),namely, Tr(`)f(H`)mg =X� am;� nY (�) : (4)This method has an advantage that 
ontribution from j�i1�i2 � � ��i`i is 
al-
ulated only on
e, instead of am;i1i2:::i` times. Therefore, we 
arry out the
al
ulation with the following manner. First, in order to regard am;� as anarray, give a spe
i�
 number to every permutation � of numbers 1; 2; : : : ; `.For example, one 
an regard � as an `-digits number of base `; or, one 
anuse a number whose p-th digit is of base p. In any 
ase, these numbers 
anbe very large in general. In the pra
ti
al 
al
ulation, however, the array isextremely sparse and it 
an be 
ompressed. We prepare an array to storethe pointers in the as
ending order and another array for the 
oe�
ients.Every time using the array, we use a binary sear
h, whi
h requires log2Nasteps for an array with length Na and thus it does not 
onsume too mu
htime. Then, start from j�1�2 � � ��`i, operate H`, 
al
ulate the tra
e, andgo to the next order; repeat this pro
edure up to the desired order. Thismethod extremely de
reases the number of terms in the array � e.g. 22-ndpower of H`=11 requires only 4903704 terms.Lastly, we 
omment on the limit of n!1. In Ref. [2℄, we have obtainedthe spe
i�
 heat by 
al
ulating the free energy. In this limit, the pro
edure



1492 N. Fukushimais simpli�ed be
ause only the identity permutation has 
ontribution. Oddpermutations do not 
ontribute, that is, 
oe�
ients of Jm with odd m areequal to zero. Suppose we know am;� in Eq. (3) for all � for given m. Sin
e(H`)2m = (H`)m(H`)m, then � in (H`)m has to make a produ
t with ��1 inthe other (H`)m in order to make an identity permutation. Therefore,limn!1 
(H`)2m� = a2m;identity =X� am;�am;��1 : (5)Let us think about am;��1 . Any produ
t P of Pi;j's in (H`)m, any 
ombi-nation of Pi;j 's, has a one-to-one 
orresponden
e with a produ
t made byreversing the order of Pi;j's in P , and the reversed produ
t is nothing butP�1. This one-to-one 
orresponden
e leads to am;� = am;��1 . In the end,we obtain, limn!1 
(H`)2m� =X� (am;�)2: (6)Note that the limit n!1 
orresponds to �J � n, be
ause the limit istaken with �xed �. Therefore, the limit � ! 1 (T ! 0) after n ! 1 isnot ne
essarily the same as the n!1 limit of the ground state. Hen
e weexpe
t that the n!1 limit of a fun
tion of � is not uniformly 
onvergentaround T ' 0 just like the spe
i�
 heat of the 1=r2-model 
ommented inRef. [2℄. 4. Con
lusionWe have formulated the high temperature expansion for the SU(n)Heisenberg model, whi
h is a fundamental model of orbitally degeneratesystems with the multipli
ity n per site. In our algorithm, neither 
ompu-tational time nor memory depends on n; the series 
oe�
ients are expli
itfun
tions of n. Furthermore, n ! 1 is related to a simple 
ombinatorialproblem 
ounting the identity permutation. Thus, our method is useful toinvestigate systemati
ally from n = 2 to n!1. We expe
t that the expli
itn-dependen
e will help us to extrapolate the series to low temperature.REFERENCES[1℄ G.S. Rushbrooke, G.A. Baker, Jr., P.J. Wood, Phase Transitions and Criti
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