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HIGH TEMPERATURE SERIES EXPANSIONFOR ORBITALLY DEGENERATE SYSTEMS�Noboru FukushimaMax-Plank-Institut für Physik Komplexer SystemeNöthnitzer Straÿe 38, D-01187 Dresden, Germany(Reeived July 10, 2002)We have found an e�ient algorithm for high temperature expansionof the SU(n) Heisenberg model, using properties of permutation. We alsoomment on the n!1 limit.PACS numbers: 71.70.Gm, 75.10.Jm1. IntrodutionThe high temperature expansion is the Taylor expansion in inverse tem-perature around the high-temperature limit. It an be used to any intera-tion in any dimensions, and has provided signi�ant information on varietyof models [1℄. Reently, we have found an e�ient algorithm to arry outthe high-temperature expansion for the SU(n) Heisenberg model. In Ref. [2℄,we have applied the algorithm to the one dimensional (1D) system, and ob-tained high order oe�ients. 2. ModelWe onsider a generalized Heisenberg model that has SU(n) symmetry.When n = 2, the model is equivalent to the ordinary SU(2) Heisenbergmodel. Let eah site take one of the n olors, and denote them as j�iwith � = 1; 2; � � � ; n. We de�ne X�� := j�ih�j and an exhange operatorPi;j :=Pn�=1Pn�=1X��i X��j , for i 6= j. Colors of sites i and j are exhangedby Pi;j. The Hamiltonian for the SU(n) Heisenberg model in 1D is given byH := J N�1Xi=1 Pi;i+1 + JP1;N : (1)� Presented at the International Conferene on Strongly Correlated Eletron Systems,(SCES02), Craow, Poland, July 10�13, 2002.(1489)



1490 N. FukushimaIn general, when there are n states per site, the maximum number of in-dependent interating omponents is n2 � 1. The model, isotropi withrespet to these omponents, is the SU(n) Heisenberg model. Hereafter,Z := Tr e��H denotes the partition funtion, and h� � �i := Tr �� � � e��H� =Zdenotes the average in this system. To investigate the spei� heat, we al-ulate hPi;i+1i beause the internal energy is obtained by hHi = NJhPi;i+1i.Furthermore, to investigate a orrelation funtion hX��i X��j i, we alu-late hPi;ji beause there is a relation, hX��i X��j i = 1n2�1(hPi;ji � n�1); for� 6= �; i 6= j. In addition, for i 6= j, hX��i X��i i = 1=n.3. High temperature expansionWe use the �nite luster method for the high temperature expansion.That is, series oe�ients in the thermodynami limit are exatly obtainedby summing up all the non-zero ontribution from eah �nite-size luster.The luster of size ` is de�ned by H` := JP`�1i=1 Pi;i+1, and h� � �i` denotes thethermal average usingH`. In 1D, it is redued to a simple equation. Namely,the formulaP`�xi=1 hPi;i+xi`�P(`�1)�xi=1 hPi;i+xi`�1 gives orret oe�ients ofhPi;i+xi up to O[(�J)2`�x�1℄.In order to obtain the series expansion of hPi;ji up to O[(�J)M ℄, we needto alulate Trf(H`)mg and TrfPi;j(H`)mg for 0 � m � M . The traesare alulated by deomposing a permutation into a produt of independentyli permutations [3, 4℄ as explained in the following. Let us onsider atrae of P := Pi1;j1Pi2;j2 � � �Pim;jm , with Tr(`) denoting the trae in the `-sitesystem, Tr(`)P := nX�1=1 � � � nX�`=1h 1�1 2�2 � � � �̀` jP j 1�1 2�2 � � � �̀`i= nX�1=1 � � � nX�`=1h 1�1 2�2 � � � �̀` j 1�P1 2�P2 � � � `�P`i; (2)where �Pi refers to the olor at position i after the permutation P . The sum-mation of �i makes a ontribution only when �i = �Pi for every i. Considerusing this relation suessively starting from i. That is, �i is equal to �Pi,and then �Pi is equal to �P 2i, . . . , one an repeat this proedure until om-ing bak to �i at a ertain power of P , namely, �i = �Pi = �P 2i = � � � = �i.In other words, all the variables whose subsript belongs to one yli per-mutation in P have to be equal. Sine any permutation is deomposed intoa produt of independent yli permutations, the number of the indepen-dent variables of the summation is the number Y (P ) of yli permutationsof P . Therefore the trae is given by, Tr(`)P = nY (P ), and aordingly,



High Temperature Series Expansion : : : 1491hP i` = Tr(`)P=Tr(`)1 = nY (P )�`: This equation has been used for the Hand-somb's Monte Carlo [3℄. It was also used for the high temperature expan-sion [4℄ for the ferromagneti SU(n) Heisenberg model in three dimensionto alulate the spei� heat and the uniform suseptibility up to O[(�J)8℄.To investigate the antiferro-interation model [2℄, we have alulated wave-number q 6= 0 omponents of the orrelation funtion up to high orders. Itrequires a further re�nement of the algorithm.If we �rst expand (H`)m and apply the relation above, large lusters havetoo many terms � e.g. m = 22 and ` = 11 make (` � 1)m = 1022 terms.The alulation then onsumes too muh time. The point is to operate theHamiltonian order by order. Sine the Hamiltonian H` has only permutationoperators, after H` is operated m times to j�1�2 � � ��`i, the expression iswritten with proper oe�ients am;� (�: permutation) as(H`)mj�1�2�3 � � ��`i = am;123���`j�1�2�3 � � ��`i+am;231���`j�2�3�1 � � ��`i+am;312���`j�3�1�2 � � ��`i+ : : : : : : : (3)Assuming we know the oe�ients am;� the trae is alulated by ountingthe number of yles of permutation of eah term in the r.h.s. of Eq. (3),namely, Tr(`)f(H`)mg =X� am;� nY (�) : (4)This method has an advantage that ontribution from j�i1�i2 � � ��i`i is al-ulated only one, instead of am;i1i2:::i` times. Therefore, we arry out thealulation with the following manner. First, in order to regard am;� as anarray, give a spei� number to every permutation � of numbers 1; 2; : : : ; `.For example, one an regard � as an `-digits number of base `; or, one anuse a number whose p-th digit is of base p. In any ase, these numbers anbe very large in general. In the pratial alulation, however, the array isextremely sparse and it an be ompressed. We prepare an array to storethe pointers in the asending order and another array for the oe�ients.Every time using the array, we use a binary searh, whih requires log2Nasteps for an array with length Na and thus it does not onsume too muhtime. Then, start from j�1�2 � � ��`i, operate H`, alulate the trae, andgo to the next order; repeat this proedure up to the desired order. Thismethod extremely dereases the number of terms in the array � e.g. 22-ndpower of H`=11 requires only 4903704 terms.Lastly, we omment on the limit of n!1. In Ref. [2℄, we have obtainedthe spei� heat by alulating the free energy. In this limit, the proedure



1492 N. Fukushimais simpli�ed beause only the identity permutation has ontribution. Oddpermutations do not ontribute, that is, oe�ients of Jm with odd m areequal to zero. Suppose we know am;� in Eq. (3) for all � for given m. Sine(H`)2m = (H`)m(H`)m, then � in (H`)m has to make a produt with ��1 inthe other (H`)m in order to make an identity permutation. Therefore,limn!1 
(H`)2m� = a2m;identity =X� am;�am;��1 : (5)Let us think about am;��1 . Any produt P of Pi;j's in (H`)m, any ombi-nation of Pi;j 's, has a one-to-one orrespondene with a produt made byreversing the order of Pi;j's in P , and the reversed produt is nothing butP�1. This one-to-one orrespondene leads to am;� = am;��1 . In the end,we obtain, limn!1 
(H`)2m� =X� (am;�)2: (6)Note that the limit n!1 orresponds to �J � n, beause the limit istaken with �xed �. Therefore, the limit � ! 1 (T ! 0) after n ! 1 isnot neessarily the same as the n!1 limit of the ground state. Hene weexpet that the n!1 limit of a funtion of � is not uniformly onvergentaround T ' 0 just like the spei� heat of the 1=r2-model ommented inRef. [2℄. 4. ConlusionWe have formulated the high temperature expansion for the SU(n)Heisenberg model, whih is a fundamental model of orbitally degeneratesystems with the multipliity n per site. In our algorithm, neither ompu-tational time nor memory depends on n; the series oe�ients are expliitfuntions of n. Furthermore, n ! 1 is related to a simple ombinatorialproblem ounting the identity permutation. Thus, our method is useful toinvestigate systematially from n = 2 to n!1. We expet that the expliitn-dependene will help us to extrapolate the series to low temperature.REFERENCES[1℄ G.S. Rushbrooke, G.A. Baker, Jr., P.J. Wood, Phase Transitions and CritialPhenomena, vol. 3 eds. C. Domb, M. S. Green, Aademi Press, London 1974,p.245[2℄ N. Fukushima, Y. Kuramoto, J. Phys. So. Jpn. 71, 1238 (2002).[3℄ D.C. Handsomb, Pro. Camb. Phil. So. 60, 115 (1964).[4℄ H.H. Chen, R.K. Joseph, J. Math. Phys. 13, 725 (1972).


