$^{11}\text{B-NMR}$ STUDIES OF WEAKLY FERROMAGNETIC $$\operatorname{BaB_6}^*$$

SH. MUSHKOLAJ, J.L. GAVILANO, D. RAU, H.R. OTT

Laboratorium für Festkörperphysik, ETH-Hönggerberg, 8093 Zürich, Switzerland

A. BIANCHI, AND Z. FISK

National High Magnetic Field Laboratory, Florida State University Tallahassee, Florida 32306, USA

(Received July 10, 2002)

BaB₆ is a weakly ferromagnetic material with a Curie temperature $T_{\rm C}$ well above room temperature. From the results of d.c. magnetization measurements on single crystalline BaB₆, the saturation magnetization at low temperatures is $8 \times 10^{-4} (\mu_{\rm B}/{\rm f.u.})$, in line with other weak ferromagnets of the hexaboride series. The ¹¹B-NMR spectra measured on a collection of single crystals of BaB₆ yield a quadrupolar frequency of 472 KHz, in good agreement with calculated field gradients for this type of materials. The central ¹¹B-NMR transition consists of two partially resolved signals, where the frequency displacement between them is of the order of 10 KHz. One of the signals exhibits a positive, the other a negative frequency shift, both of the order of 50 ppm. Between 7 K and room temperature these shifts do not vary with temperature. The temperature dependence of the spin-lattice relaxation rate $T_1^{-1}(T)$ at the B sites is similar to that of other alkaline-earth hexaborides.

PACS numbers: 75.50.Cc, 76.60.-k, 76.60.Cq

Alkaline-earth hexaboride compounds XB₆ (where X=Ca, Sr and Ba) adopt a simple cubic CsCl-type crystal structure containing divalent metal ions and B₆-octahedra. In spite of this simple crystal structure they show very puzzling physical properties. *E.g.*, La-doped Ca_{1-x}La_xB₆ with x=0.005and SrB₆ exhibit weak ferromagnetism with very high Curie temperatures [1,2] of the order of 600 K or more.

^{*} Presented at the International Conference on Strongly Correlated Electron Systems, (SCES 02), Cracow, Poland, July 10-13, 2002.

In figure 1 we show one example of a hysteresis loop of BaB₆, measured at 200 K, using a commercial SQUID magnetometer. From this type of measurements we found that BaB₆ orders ferromagnetically with a Curie temperature $T_{\rm C}$ well above room temperature. The coercive field $H_{\rm c}$ at 200 K is of the order of 250 Oe and the saturation magnetization at this temperature is $6.5 \times 10^{-4} (\mu_{\rm B}/{\rm f.u.})$. In addition to the ferromagnetic part of the magnetization, we also identify paramagnetic and diamagnetic contributions. The temperature dependence of the magnetic susceptibility χ (T), measured at 5 T, exhibits a Curie–Weiss behavior with an effective magnetic moment of $5.6 \times 10^{-2} (\mu_{\rm B}/{\rm f.u.})$ and a paramagnetic Curie temperature of θ =-6 K. The diamagnetic offset is -2×10^{-6} (emu/mol of f.u.) [3]. Similar results were obtained for other weak ferromagnets in the hexaboride series.

Fig. 1. Hysteresis loop M(H) of BaB₆ at 200K.

In order to obtain additional microscopic information on the magnetic features of BaB₆, we made NMR measurements on ¹¹B nuclei. For these measurements we have used two types of standard spin-echo NMR techniques: sweeping the magnetic field H at a constant frequency ν and sweeping the frequency at a constant magnetic field, respectively, and by recording the spin-echo intensity as a function of H or ν . The wide NMR spectra which include the central line and quadrupolar wings were measured by magnetic field sweeping. High resolution measurements of the central line alone were performed at a fixed magnetic field and changing stepwise the frequency. From our measurements of the wings of the ¹¹B-NMR (data not shown here [3]), we extract a quadrupolar frequency for the ¹¹B nuclei of 472 KHz, which implies an electric field gradient at the B sites of 1.09×10^{21} V/m². This value is in good agreement (better than 5 %) with theoretical values predicted for BaB₆ [4].

Figure 2 depicts the central transition $(-1/2 \leftrightarrow +1/2)$ for ¹¹B nuclei taken at 85 K in a field of 7.06 T. The central transition consists of two partially overlapping signals with frequency shifts of +60 ppm and -40 ppm, respectively. The frequency shifts have been measured by comparing the position of the two peaks of the ¹¹B central line in BaB₆ with the resonant frequency of ¹¹B nuclei in liquid B(OH)₃. Between 7 K and room temperature the ¹¹B NMR line shifts do not vary with temperature. The width of each of the two individual ¹¹B NMR-signals is 10 KHz and their intensities are approximately equal. One may interpret the results for the ¹¹B NMR central line as an indication that in BaB₆ the B sites experience two magnetically different environments. The appearance of two peaks in the ¹¹B central line seems to be independent of the concentration of conduction electrons, because it has also been observed in hexaborides with very different transport properties, such as CaB₆, La-doped CaB₆ (Ca_{1-x}La_xB₆ for x = 0.005, x = 0.1 and x = 0.2), BaB₆, LaB₆ and YbB₆ [3,5].

Fig. 2. Central signal of the ¹¹B-NMR Spectrum of BaB_6 at 7.2 T. The solid line represents the best fit to the data at 85 K using the sum of two Gaussian functions.

The temperature dependence of the spin-lattice relaxation rate $T_1^{-1}(T)$ measured in a constant magnetic field of 5.2 T is very different in two different *T*-regions. At temperatures above a crossover temperature of approximately 5 K, T_1^{-1} is, on the average, temperature independent and at temperatures below 5 K it decreases very rapidly with decreasing temperature. These results for the spin-lattice relaxation rate are very similar to the cases of Ca_{0.995}La_{0.005}B₆ and SrB₆ [6].

REFERENCES

- D.P. Young, D. Hall, M.E. Torelli, Z. Fisk, J.L. Sarrao, J.D. Thompson, H.-R. Ott, S.B. Osseroff, R.G. Goodrich, R. Zysler, *Nature* 397, 412 (1999).
- [2] H.R. Ott, J.L. Gavilano, B. Ambrosini, P. Vonlanthen, E. Felder, L. Degiorgi, D.P. Young, Z. Fisk, R. Zysler, *Physica B* 281-282, 423 (2000).
- [3] Sh. Mushkolaj, J.L. Gavilano, D. Rau, H.R. Ott, A. Bianchi, Z. Fisk (unpublished).
- [4] K. Schwarz, H. Ripplinger, P. Blaha, Z. Naturforsch. 51A, 527 (1996).
- [5] J.L. Gavilano, Sh. Mushkolaj, D. Rau, H.R. Ott, A. Bianchi, Z. Fisk (unpublished).
- [6] J.L. Gavilano, Sh. Mushkolaj, D. Rau, H.R. Ott, A. Bianchi, D.P. Young, Z. Fisk, *Phys. Rev.* B63, 140410(R) (2001).