MAGNETIC PROPERTIES OF NEW COMPOUNDS RMg₂Cu₉ WITH TWO-DIMENSIONAL ALIGNMENT OF R ATOMS*

Y. Nakamori, H. Nakamori and H. Fujii

Faculty of Integrated Arts and Science, Hiroshima University Higashi-Hiroshima, 739-8521, Japan

(Received July 10, 2002)

Structural and magnetic properties of new compounds RMg_2Cu_9 were examined. The results indicated that RMg_2Cu_9 crystallize in the CeNi₃ type hexagonal structure for R = La, Ce, Pr, Nd, Sm and show magnetic order for R = Ce and Sm, that is in contrast with RMg_2Ni_9 system. Some contrastive physical properties in RMg_2T_9 (T = Ni, Cu) might be originated in both the two-dimensionality of R atoms and the number of carrier.

PACS numbers: 61.66.-f, 75.20.En, 75.50.Ee

1. Introduction

CeMg₂Ni₉ crystallizes in the hexagonal PuNi₃ type structure, while CeMg₂Cu₉ crystallizes in the CeNi₃ type structures [1], both of which are built up from the stacking of single layers of CeT₅ (T = Ni, Cu) and double layers of MgT₂ along the *c*-axis. It have been clarified that CeMg₂T₉ system reveal some novel physical properties, for example, no magnetic long range order in RMg₂Ni₉ with R = Ce, Pr, Nd and Gd and almost pressure-independence of T_N up to 0.9 GPa for CeMg₂Cu₉, that might be reflected two-dimensionality of R atoms [2]. To clarify the influence of twodimensional arrangement of R atoms, we studied physical properties of lightrare-earth RMg₂Cu₉ (R = La, Pr, Nd and Sm) compounds. In this paper, we report the crystal structure and magnetic properties of new compounds RMg₂Cu₉ (R = La, Ce, Pr, Nd and Sm). Details of the sample preparation and the other experimental procedures are given in Ref. [3].

^{*} Presented at the International Conference on Strongly Correlated Electron Systems, (SCES 02), Cracow, Poland, July 10-13, 2002.

2. Results and discussion

2.1. Crystal structure

Figure 1(a) shows powder X-ray diffraction pattern for RMg_2Cu_9 (R = La, Ce, Pr, Nd and Sm) together with the simulation pattern assumed CeNi₃ type hexagonal structure. Comparing our experimental pattern with the simulation one, we can conclude that RMg_2Cu_9 (R = La, Ce, Pr, Nd and Sm) is in a single phase of CeNi₃ type hexagonal structure. The refined lattice constants are listed in Table I. The lattice constants of RMg_2Cu_9 obey the lanthanide contraction, indicating that R is in a tri-valent state, being in contrast with RMg_2Ni_9 system that Ce is in an intermediate valence state [4].

From the above simulation result, the crystal structure of RMg_2Cu_9 can be drawn in figure 1(b), which is built up of alternating single layers of RCu_5 and double layers of $MgCu_2$ along the *c*-axis. In this structure, the R-R nearest neighbor distance along the *c*-axis are almost two-times larger than that in the *c*-plane (see Table I). Thus, these compounds are characterized by two-dimensional alignment of R atoms.

Fig. 1. (a) Powder X-ray diffraction profiles of RMg_2Cu_9 (R = La, Ce, Pr, Nd and Sm) and the simulation pattern assumed CeNi₃ type hexagonal structure. (b) The crystal structure of RMg_2Cu_9 with a hexagonal CeNi₃ type.

TABLE I

Structural and magnetic properties of RMg_2Cu_9 (R = La, Ce, Pr, Nd and Sm).

RMg ₂ Cu ₉	Lattice constance a (Å) c (Å) c / a		R-R nearest neighbor distance a (Å) c (Å)		$\begin{array}{c} \mu_{\text{eff}}\left(\mu_{B}\right) \\ \text{Obserbed Theoritical} \end{array}$		θ _p (K)	$T_{\rm N}({\rm K})$	
LaMg ₂ Cu ₉ CeMg ₂ Cu ₉ PrMg ₂ Cu ₉ NdMg ₂ Cu ₉ SmMg ₂ Cu ₉	5.073 5.061 5.052 5.041 5.027	16.270 16.260 16.251 16.236 16.213	3.207 3.213 3.217 3.221 3.225	5.073 5.061 5.052 5.041 5.027	8.646 8.639 8.633 8.624 8.610	2.4 3.3 3.6	2.54 3.58 3.62	-15.7 -21.7 -1.56	2.7 10

2.2. Magnetic properties

The magnetization curves for RMg_2Cu_9 at 2 K are shown in figure 2. For LaMg₂Cu₉, the magnetization decrease linearly with increasing magnetic field, indicating LaMg₂Cu₉ is diamagnetism. On the other hand, the magnetization for R = Ce, Pr and Sm, linearly increase with increasing magnetic field, indicating that these compounds are antiferromagnetism or paramagnetism. For NdMg₂Cu₉ on the contrary, the magnetization gradually increases with increasing magnetic field.

Fig. 2. Magnetization curve for RMg_2Cu_9 at 2 K. The inset shows the magnetization curve for $LaMg_2Cu_9$.

Figure 3 shows the temperature dependence of the magnetic susceptibility χ for RMg₂Cu₉ with (a) R = Ce, Pr and Nd, (b) La, and Sm. The χ of

Fig. 3. Temperature dependence of the magnetic susceptibility at 10 kOe for RMg_2Cu_9 (a) R = Ce, Pr, Nd and (b) La, Sm.

LaMg₂Cu₉ and SmMg₂Cu₉ are almost independent of temperature, reflecting diamagnetism and Van Vleck paramagnetism. The χ of CeMg₂Cu₉ and SmMg₂Cu₉ exhibit a small peak at 2.7 K and 10 K respectively, suggesting the existence of antiferromagnetic order below these temperatures. On the other hand, the χ of PrMg₂Cu₉ was observed no magnetic anomaly at 2 K, which is due to singlet ground state caused by a crystal electric field splitting. The χ for NdMg₂Cu₉ shows induced-ferromagnetic behavior below about 4 K. The $1/\chi$ for R = Ce, Pr, Nd follows the Curie–Weiss Law with effective magnetic moments that are close to theoretical values expected for the R³⁺ free ion. The effective magnetic moment $\mu_{\rm eff}$, Curie–Weiss temperature θ_p and magnetic ordering temperature are summarized in Table I. Since the θ_p for NdMg₂Cu₉ is near 0 K, it seems likely that the ground state of NdMg₂Cu₉ is in a paramagnetic state and shows induced-ferromagnetism in high field at T < 4 K.

It should be noted that RMg_2Cu_9 for R = Ce and Sm show antiferromagnetic order at low temperature, while RMg_2Ni_9 show no-magnetic order even for Gd-system with large spin components. The reason of no magnetic order for RMg_2Ni_9 was originally thought to be the two-dimensionality of rare earth arrangement [3]. However, there is antiferromagnetic order in the RMg_2Cu_9 with R = Ce and Sm, although nearest neighbor R-R distances along *c*-axis are larger than that in the RMg_2Ni_9 . Therefore, it seems likely that the reason of no magnetic order for RMg_2Ni_9 is not only in a twodimensionality of R atoms, but also in a low carrier number of conduction electrons which could be observed as a high electrical resistivity compared to that in the Cu system [2].

3. Summary

We have clarified that new compounds of RMg_2Cu_9 crystallize in the hexagonal CeNi₃ type structure for R = La, Ce, Pr, Nd, Sm and show magnetic order for R = Ce and Sm, that is in contrast with the RMg_2Ni_9 system. The physical properties of RMg_2T_9 for T = Ni, Cu therefore might be originated in both the two-dimensionality of R atoms and the number of carrier.

REFERENCES

- [1] J. Cromer et al., Acta Crystallogr. 12, 689 (1959).
- [2] Y. Nakamori et al., Physica B **312**, 235 (2002).
- [3] H. Fukuda et al., J. Phys. Soc. Jpn. 67, 2201 (1998).
- [4] K. Kadir et al., J. Alloy. Compd. 257, 115 (1997).